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Natural light harvesting systems exploit electronic coupling of identical chromophores to generate
efficient and robust excitation transfer and conversion. Dark states created by strong coupling between
chromophores in the antenna structure can significantly reduce radiative recombination and enhance
energy conversion efficiency. Increasing the number of the chromophores increases the number of dark
states and the associated enhanced energy conversion efficiency yet also delocalizes excitations away
from the trapping center and reduces the energy conversion rate. Therefore, a competition between
dark state protection and delocalization must be considered when designing the optimal size of a light
harvesting system. In this study, we explore the two competing mechanisms in a chain-structured
antenna and show that dark state protection is the dominant mechanism, with an intriguing dependence
on the parity of the number of chromophores. This dependence is linked to the exciton distribution
among eigenstates, which is strongly affected by the coupling strength between chromophores and the
temperature. Combining these findings, we propose that increasing the coupling strength between the
chromophores can significantly increase the power output of the light harvesting system. Published
by AIP Publishing. https://doi.org/10.1063/1.5009903

I. INTRODUCTION

Natural and artificial light harvesting systems exploit
quantum coherent states generated by electronic coupling of
identical chromophores to enable efficient and robust excita-
tion transfer and conversion. Recent probes of quantum coher-
ence in light harvesting systems have enabled us to study not
only the couplings but also how the environment surround-
ing the chromophores drives photosynthetic energy transfer
and conversion.1–11 For many photovoltaic devices, radiative
recombination arising from the principle of detailed balance
limits efficiency. Indeed, radiative recombination is one of the
fundamental contributors to the famous Shockley-Queisser
limit.12 Previous works by Scully and co-workers13,14 have
shown that quantum coherence induced by either microwave
or noise can break the detailed balance limit and reduce the
radiative recombination rate. In artificial models inspired by
natural light harvesting complexes, quantum coherent states
formed by coupling between multiple chromophore subunits
in the antenna system have been shown to prevent radia-
tive recombination through dark state protection and effec-
tively increase the energy transfer efficiency to the trapping
center.15–17 On the other hand, the formation of the col-
lective eigenstates delocalizes the excitation away from the
trapping site and may reduce the energy transfer efficiency.
Therefore, a competition between dark state protection and

a)Email: kais@purdue.edu

delocalization needs to be considered when optimizing the
size of light harvesting systems.18 Here, we examine these two
competing mechanisms in detail for an antenna composed of
a chain of varied numbers of chromophore subunits. We show
that dark state protection is the dominating mechanism in the
presence of intraband transitions mediated by phononic dis-
sipation. Surprisingly, we observe an intriguing dependence
on the parity of the number of subunits. The resultant plot
of energy transfer power over the number of dipoles shows a
zigzag pattern in which the energy transfer efficiency depends
on whether the number of dipoles is even or odd. In the absence
of intraband transitions, dark state protection is turned off and
the delocalization effect becomes visible. Combining these
findings, we propose a way to increase the energy transfer
efficiency of the light harvesting system by increasing the cou-
pling strength between the dipoles and using an even number
of dipoles on the antenna such that dark state protection is
maximized.

II. MODEL

Figure 1 shows the model used in this study. The
model includes an antenna system that receives light energy
to produce optical excitations and an energy trapping site
that converts excitations transferred from the antenna into
power.

The antenna system consists of a chain of N identical
two-level optical emitters coupled through nearest-neighbor
dipole-dipole interactions, whose Hamiltonian is given

0021-9606/2018/148(6)/064304/5/$30.00 148, 064304-1 Published by AIP Publishing.

https://doi.org/10.1063/1.5009903
https://doi.org/10.1063/1.5009903
https://doi.org/10.1063/1.5009903
mailto:kais@purdue.edu
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5009903&domain=pdf&date_stamp=2018-02-12


064304-2 Hu et al. J. Chem. Phys. 148, 064304 (2018)

FIG. 1. Model showing (left) the physical arrangement of the chromophores
(structures in the box) with the trapping site (red dot) and (right) the energy
diagram for the antenna. The bright state is excited by light to create an exci-
ton, which then moves down to the dark state through phononic dissipation.
The dark state prevents radiative recombination, thereby improving exciton
transfer efficiency to the trapping site.

by
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where ~ = 1, ω is the site energy, and J is the coupling
strength. The use of the Pauli raising and lowering operators
explicitly ensures that a single site cannot support more than
one excitation. The single-excitation eigenstates can be solved
easily,
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√
2
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·
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kπ

N + 1
j

)
σ+

j |0〉, (2)

where k is an integer ranging from 1 to N. The eigenenergies
of |ψ〉k’s are given by

Ek = ω + 2J cos

(
kπ

N + 1

)
. (3)

After an excitation has been generated in the antenna sys-
tem, it can then be transferred to the trapping site through the
N th dipole via an incoherent transfer process. To calculate the
steady state dynamics of the combined antenna-trap system,
we follow the procedures used in Refs. 17 and 18 by setting
up a standard Lindblad optical master equation,

ρ̇ = −i
[
Ha + Ht , ρ

]
+ Do

[
ρ
]

+ Dp
[
ρ
]

+ Dt
[
ρ
]

+ Dx
[
ρ
]

,

(4)

where ρ is the total density operator of the antenna-trap sys-
tem and Ht = ωtσ

+
t σ
−
t is the trapping site Hamiltonian.

The four Lindblad dissipators—Do[ρ], Dp[ρ], Dt[ρ], and
Dx[ρ]—describe four different physical processes.

Do[ρ] = γo
∑

K ,K′,ωo>0
ΓK ,K′

(
(N (ωo) + 1)D

[
L̂K ,K′ , ρ

]

+ N (ωo)D
[
L̂†K ,K′ , ρ

] )
is the optical dissipator describing the

interband transitions between different excitation levels, where
γo gives the optical transition rate for the antenna, ΓK ,K′

=
�����
〈K |

N∑
j=1
σ+

j |K
′〉

�����

2

is the optical coupling strength between

two eigenstates of the antenna Hamiltonian withωo = EK−EK′

> 0, N (ωo) =
(
eωo/kBTo − 1

)−1
is the optical distribution, and

TABLE I. Parameters used in the numerical calculations.

Parameter Symbol Value

Antenna site energy ω 1.76 eV
Antenna coupling strength J 20 meV
Antenna optical decay rate γo 0.001 meV
Antenna phononic decay rate γp 1 meV
Trap optical decay rate γt 10�4 meV
Antenna to trap extraction rate γx 10�5 meV
Ambient temperature T 300 K
Optical temperature To 5800 K

D
[
L̂K ,K′ , ρ

]
= L̂K ,K′ ρL̂†K ,K′−

1
2

{
L̂†K ,K′ L̂K ,K′ , ρ

}
is the Lindblad

dissipator with L̂†K ,K′ = |K〉 〈K
′ |.
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]
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)
D

[
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] )
is the phononic dissipator describing the intra-

band transitions within one excitation level, where γp gives

the phononic relaxation rate, N
(
ωp

)
=

(
eωp/kBTp − 1

)−1

is the thermal distribution, and D
[
L̂µ,ν , ρ

]
= L̂µ,ν ρL̂†µ,ν

− 1
2

{
L̂†µ,νL̂µ,ν , ρ

}
, where L̂†µ,ν = |µ〉 〈ν | are the intraband

transitions with ωp = Eµ � Eν > 0.
Dt

[
ρ
]
= γtD

[
σ−t , ρ

]
describes the decay process of the

trapping site.
Dx

[
ρ
]
= γxD

[
σ−Nσ

+
t , ρ

]
describes the incoherent trans-

fer process from the antenna to the trapping site.
The parameters associated with each of the dissipators in

Eq. (4) are given in Table I with the physical meaning of each
parameter described in the leftmost panel.

Steady state solution of ρ in Eq. (4) is obtained using
the open-source quantum dynamics software QuTiP.19 We
then use the standard way14,17,20 to calculate the power out-
put of our light harvesting system. The current is deter-
mined by I = eγt〈ρte〉ss, with 〈ρte〉ss being the steady state
population of the trap’s excited state, γt being the decay
rate of the trap, and e being the fundamental charge.

The voltage is given by eV = ~ωt + kBT ln
(
〈ρte〉ss

〈ρtg〉ss

)
, with〈

ρtg

〉
ss

being the steady state population of the trap’s
ground state, kB the Boltzmann constant, and T the thermal
temperature.

III. RESULTS AND DISCUSSION

With both the analytic and numerical models established,
we are now ready to calculate the power output P = IV for
various numbers of dipoles on the antenna (N = 1–7). The
results are shown in Fig. 2.

In Fig. 2, it is clear that the exciton transfer dynamics
depend critically on phononic dissipation. When dissipation
is present, the power of exciton transfer increases manyfold.
When no dissipation is present, power drops by half from a
single dipole to a double dipole chain and remains at this low
level as the number of emitters increases. In both cases, delo-
calization is present. This delocalization causes the power to
drop when dissipation is absent. When dissipation is present,
the dark states become populated by dissipation from the bright
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FIG. 2. Exciton transfer power calculated with J = 20 meV and T = 300
K with and without dissipation. Other parameters are listed in Table I. In
the presence of dissipation, energy transfer power increases with increasing
numbers of coupled dipoles. The most pronounced increase is seen between
a single emitter and two emitters. In the absence of dissipation, a decrease in
power is observed between a single emitter and two emitters. Further increases
in the number of dipoles do not lead to an obvious trend.

states and radiative recombination is reduced. This dark state
mechanism dominates over the delocalization effect. Below,
we focus on the case with dissipation and discuss the case with-
out dissipation in the Appendix. Interestingly, if we increase
the coupling between dipoles from J = 10 meV to J = 100 meV,
a zigzag pattern emerges, as shown in Fig. 3.

In Fig. 3, we observe that as the coupling strength J
increases, the power trend displays a conspicuous zigzag pat-
tern as the number of dipoles (N) increases. In addition,
for the even N’s, there is a considerable power enhance-
ment when J increases; for the odd N’s, the power increases
with J initially but quickly converges beyond J = 40 meV.
To explain these results, we examine the optical cou-
pling of a single-excitation eigenstate |ψ〉k to the ground
state |0〉,

Γk0 =

�������
〈ψk |

N∑
j=1

σ+
j |0〉

�������

2

=
1

2 (N + 1)
·

�����
cot

(
kπ

2 (N + 1)

)
·
(
1 − (−1)k

) �����

2

. (5)

FIG. 3. Exciton transfer power calculated at T = 300 K as coupling between
dipoles increases from J = 10 meV to J = 100 meV in 10 meV increments.
Other parameters are listed in Table I. As the coupling strength increases,
the efficiency of energy transfer rises while the zigzag pattern becomes more
pronounced. Even numbers of dipoles show improved efficiency compared
with odd numbers.

In our model, J > 0, and by Eq. (3), the lowest energy eigenstate
has k = N whose coupling to the ground is

ΓN0 =
1

2 (N + 1)
·

�����
cot

(
Nπ

2 (N + 1)

)
·
(
1 − (−1)N

) �����

2

. (6)

The population distribution over the single-excitation
eigenstates is governed by the Bose-Einstein distribution

n (Ek) =
(
eEk/ kBT − 1

)−1
, where the lowest energy state has the

highest population. Consequently, if the lowest energy state is
completely dark, the dark state enhancement would be greater
than that if the lowest energy state is partially dark because in
the latter case, there is a small but finite rate for the excitation
to undergo radiative recombination. By Eq. (6), we see that if
N is even, ΓN0 = 0 and the lowest energy eigenstate is com-

pletely dark; yet, if N is odd, ΓN0 =
2

(N+1) ·
���cot

(
Nπ

2(N+1)

) ���
2
, 0

and the lowest energy eigenstate has finite rate for radia-
tive recombination. With these results, we would expect the
energy transfer power of our model light harvesting system
to drop for odd N’s and rise for even N’s, creating a zigzag
pattern, exactly as seen in Fig. 3. In Fig. 3, the zigzag pat-
tern is more noticeable with higher J values because greater
coupling strengths between the dipoles increase the energy
spacing between different eigenstates, causing more of the
population to shift to the lowest energy state. Indeed, if we
keep J = 20 meV but vary the temperature from T = 1 K
to T = 401 K, similar energy transfer patterns are obtained
(Fig. 4).

In Fig. 4, it is clear that lowering the temperature has
a similar effect to increasing the coupling strength; i.e., it
pushes the population distribution to the lowest energy state,
and the result is an obvious zigzag pattern for temperatures
below 151 K. In contrast, when the temperature is increased
beyond 200 K, the zigzag pattern becomes less obvious and
eventually disappears because, at higher temperatures, the
population is evenly distributed across all of the intraband
levels. At temperatures above 301 K, the power transfer
efficiency at each N decreases monotonically with further
increase in temperature, and the unusual alternating pattern
almost completely disappears. From these data and the data
in Fig. 3, we conclude that the effectiveness of the dark state
enhancement mechanism depends critically on the population

FIG. 4. Exciton transfer power calculated using J = 20 meV and T = 1 K to
401 K, with 50 K increments. Other parameters are listed in Table I. As the
temperature increases, the power transfer efficiency falls. The zigzag pattern is
most pronounced at low temperatures, but it persists to ambient temperatures.
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statistics among all the intraband levels. Pushing the popula-
tion distribution to lower energy levels—either by increasing
the coupling strength or by decreasing the temperature—can
significantly increase dark state protection and the power
enhancement.

Examining the traces with significant zigzag patterns in
Figs. 3 and 4, i.e., traces with J greater than 0.04 eV or T
lower than 151 K, we see that the power efficiency trend for
the even N’s is different from that for the odd N’s. The power
for the even N’s decreases as N increases, which is due to the
lowest energy eigenstate delocalizing away from the trapping
site. On the other hand, the odd N’s show a power increase
as N increases (with the exception of N = 7), which is due to

the coupling to the ground state ΓN0 =
2

(N+1) ·
���cot

(
Nπ

2(N+1)

) ���
2

decreasing over N. The exception of N = 7, and for greater
N’s (not shown), is due to complications caused by the dou-
ble excitation eigenstates of Eq. (1). The double excitation
states are generated by combining two single excitation states;
hence, the number of double excitation states depends on
N as N(N � 1)/2. For N ≥ 7, the number of double exci-
tation states is sufficient to affect the overall dynamics and
the power trends differ from what we have discussed so
far. This double excitation effect is interesting in its own
right and will be examined in a future study. Looking at the
separate trends for the odd and even numbers of dipoles, we
see again that the effect of the dark state protection mechanism
is much more significant than that of competing delocalization
mechanism: when the effectiveness of the dark state protec-
tion differs among the different N’s being considered, the
trend is determined by the dark state mechanism (the odd
N cases); when there is no difference in the effectiveness of
the dark state protection among the different N’s, the trend
is determined by the delocalization mechanism (the even N
cases). Going back to Fig. 3, an important implication from
the results is that by simply increasing the coupling J in the
chain structure under room temperature the power for each N
can be greatly enhanced. This inspires a design strategy for
maximizing the power for artificial light harvesting systems.
Once again, a greater coupling J increases the energy spac-
ing between the single-excitation eigenstates, which pushes
the population distribution to lower energy states. The cou-

pling to the ground Γk0 =
1

2(N+1) ·
���cot

(
kπ

2(N+1)

)
·
(
1 − (−1)k

) ���
2

is greatest when k = 1, and with Eq. (3), the |ψk=1〉 state is
also the highest in energy. Consequently, pushing the popu-
lation distribution towards lower eigenstates and away from
the brightest state can greatly enhance the output power of the
light harvesting system by reducing the exciton recombination
rate.

IV. CONCLUSIONS

In this study, we have examined two competing
mechanisms—dark state protection and delocalization—
which affect the energy transfer power in a model light har-
vesting system composed of a chain-structured antenna and
a trapping site. Numerical calculations have shown that the
dark state mechanism is the dominant mechanism in the pres-
ence of intraband transitions. This mechanism creates a curious
zigzag pattern on the power versus N plot, amplified by either

increasing the coupling between chromophores or lowering
the temperature. We attribute the zigzag pattern to the popula-
tion distribution over the eigenstates, whose optical couplings
to the ground state are sensitive to the parity of N. Our study is
inspired by the biological light harvesting systems. Although
our current model is quite simple and cannot compare to a
real biological system in complexity and function, our find-
ings on the interplay between the dark state protection and
delocalization mechanisms can help understand the role of
quantum coherence and inspire potential design of artificial
light harvesting systems by controlling the exciton population
statistics.
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APPENDIX: FURTHER DISCUSSIONS
1. Further discussion on the delocalization effect
without dissipation

In the main text, we have studied the dynamics with
dissipation where the population distribution over different
eigenstates is important. In the following we consider the case
without dissipation by setting γp = 0 and focusing on the effect
of delocalization. In the orange/triangle curve in Fig. 2 in the
main text, we observed the power drop from a single dipole
to a double dipole chain. Surprisingly, when the number of
dipoles is further increased, the delocalization effect does not
lead to a monotonic decrease of energy transfer power but to
a minor zigzag pattern that cannot be accounted for by the
thermal distribution over eigenstates of different degrees of
darkness. We show in the following that this behavior can be
attributed to the edge state effect caused by the boundary con-
ditions of the chain. Since there is no intraband transition,
the only states excited will be the ones accessible from opti-
cal transitions, i.e., only the states with finite coupling to the
ground state will be populated. The coupling strength to the
ground state is calculated in Eq. (5) in the main text, and in
the states with finite coupling, k is odd. For each N in our
model, only the terminal site (the Nth site) is connected to
the trapping site and the probability of finding the excitation
on the terminal site for the single-excitation eigenstate labeled
by k is given by

pN (k) = |CN (k)|2 =
2

(N + 1)
·

�����
sin

(
Nkπ

N + 1

) �����

2

, (A1)

which is plotted in Fig. 5 for different k values and dipole
number N’s.

Figure 5 plots the probability of finding the excitation
on the terminal site nearest the trap against different integer k
values, which represent the eigenstates of descending energies
with increasing k. Note that for each N ≥ 3, there is always
a state(s) in the middle of the energy ladder that will have
the greatest probability of finding the excitation on the site
nearest the trap; this is known as the edge state effect in solid
state physics. For example, when N = 3, the edge state has k = 2
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FIG. 5. Probability of finding the excitation on the terminal site for different
eigenstates indexed by k. For N greater than 3, the state(s) with the greatest
probability of finding the excitation on the terminal site (nearest to the trapping
site) lies in the middle of the energy ladder (k values in the middle).

which, by Eq. (5) in the main text, will not couple to the ground
state. Hence, we need to consider the state with the second
greatest probability on the Nth site, which we call the lesser
edge state. For even N’s, one of the two edge states will have
an odd k, such that it will couple to the ground. Therefore,
if we go from, e.g., N = 3 to N = 4, the populated eigenstate
is actually closer to the trapping site rather than further away
from it. In other words, the delocalization effect works in a
complicated way due to the existence of edge states.

2. On the global vs local master equation discussion

Here we comment on the ongoing debate on “global” vs
“local” master equations in open quantum dynamics and show
that in our model the global approach is clearly the method of
choice. The global master equation assumes that the system-
bath coupling applies to the delocalized eigenstates of the
system Hamiltonian, while the local master equation assumes
that the system-bath coupling applies to the localized states
of the system Hamiltonian. Our understanding, supported by
recent discussions by other groups,21,22 is that when the system
is in equilibrium, the global master equation gives the correct
result, while the local master equation gives a perturbative
approximation when the interaction between subunits in the
system is weak. The condition “in equilibrium” means differ-
ent subunits in the system are under the same bath (or baths at
the same temperature). In our model, this is exactly the case as
both the optical bath and the thermal bath apply to all subunits

in the antenna structure in the same way. In addition, the global
approach relies on the secular approximation that requires the
incoherent coupling rate γ, which is much smaller compared
with the system coherent coupling strength J.21 The physical
interpretation of this requirement is clear: if γ � J, the sub-
units can have sufficient time to form delocalized eigenstates
before incoherent coupling mediated by the bath can happen,
and therefore the global master equation is applicable. This is
indeed true for our model since the incoherent coupling rate
is γp = 1000γo = 1 meV and the coherent coupling strength is
J = 20 meV. In conclusion, the use of the global master equation
in our study is well justified.

1A. Ishizaki and G. R. Fleming, Annu. Rev. Condens. Matter Phys. 3, 333
(2012).

2G. S. Engel, T. R. Calhoun, E. L. Read, T. K. Ahn, T. Mancal, Y. C. Cheng,
R. E. Blankenship, and G. R. Fleming, Nature 446(7137), 782–786
(2007).

3H. Lee, Y. C. Cheng, and G. R. Fleming, Science 316(5830), 1462–1465
(2007).

4M. Mohseni, P. Rebentrost, S. Lloyd, and A. Aspuru-Guzik, J. Chem. Phys.
129(17), 174106 (2008).

5S. Mukamel, J. Chem. Phys. 132(24), 241105 (2010).
6J. Cao and R. J. Silbey, J. Phys. Chem. A 113(50), 13825–13838 (2009).
7F. Caruso, A. W. Chin, A. Datta, S. F. Huelga, and M. B. Plenio, J. Chem.
Phys. 131(10), 105106 (2009).

8E. Collini, C. Y. Wong, K. E. Wilk, P. M. G. Curmi, P. Brumer, and
G. D. Scholes, Nature 463(7281), 644–U669 (2010).

9E. Harel, J. Chem. Phys. 136(17), 174104 (2012).
10S. Jang and Y.-C. Cheng, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 3(1),

84–104 (2013).
11X. Li, R. M. Parrish, F. Liu, S. I. L. Kokkila Schumacher, and T. J. Martı́nez,

J. Chem. Theory Comput. 13(8), 3493–3504 (2017).
12W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961).
13M. O. Scully, Phys. Rev. Lett. 104(20), 207701 (2010).
14M. O. Scully, K. R. Chapin, K. E. Dorfman, M. B. Kim, and A. Svidzinsky,

Proc. Natl. Acad. Sci. U. S. A. 108(37), 15097–15100 (2011).
15C. Creatore, M. A. Parker, S. Emmott, and A. W. Chin, Phys. Rev. Lett.

111(25), 253601 (2013).
16Y. Zhang, S. Oh, F. H. Alharbi, G. S. Engel, and S. Kais, Phys. Chem. Chem.

Phys. 17(8), 5743–5750 (2015).
17K. D. B. Higgins, B. W. Lovett, and E. M. Gauger, J. Phys. Chem. C 121(38),

20714–20719 (2017).
18Y. Zhang, A. Wirthwein, F. H. Alharbi, G. S. Engel, and S. Kais, Phys.

Chem. Chem. Phys. 18(46), 31845–31849 (2016).
19J. R. Johansson, P. D. Nation, and F. Nori, Comput. Phys. Commun. 184(4),

1234–1240 (2013).
20K. E. Dorfman, D. V. Voronine, S. Mukamel, and M. O. Scully, Proc. Natl.

Acad. Sci. U. S. A. 110(8), 2746–2751 (2013).
21P. P. Hofer, M. Perarnau-Llobet, L. D. M. Miranda, G. Haack, R. Silva,

J. B. Brask, and N. Brunner, New J. Phys. 19(12), 123037 (2017).
22A. S. Trushechkin and I. V. Volovich, Europhys. Lett. 113(3), 30005 (2016).

https://doi.org/10.1146/annurev-conmatphys-020911-125126
https://doi.org/10.1038/nature05678
https://doi.org/10.1126/science.1142188
https://doi.org/10.1063/1.3002335
https://doi.org/10.1063/1.3454657
https://doi.org/10.1021/jp9032589
https://doi.org/10.1063/1.3223548
https://doi.org/10.1063/1.3223548
https://doi.org/10.1038/nature08811
https://doi.org/10.1063/1.4704656
https://doi.org/10.1002/wcms.1111
https://doi.org/10.1021/acs.jctc.7b00171
https://doi.org/10.1063/1.1736034
https://doi.org/10.1103/physrevlett.104.207701
https://doi.org/10.1073/pnas.1110234108
https://doi.org/10.1103/physrevlett.111.253601
https://doi.org/10.1039/c4cp05310a
https://doi.org/10.1039/c4cp05310a
https://doi.org/10.1021/acs.jpcc.7b07138
https://doi.org/10.1039/c6cp06098f
https://doi.org/10.1039/c6cp06098f
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1073/pnas.1212666110
https://doi.org/10.1073/pnas.1212666110
https://doi.org/10.1088/1367-2630/aa964f
https://doi.org/10.1209/0295-5075/113/30005

