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Double-excitation manifold’s effect on exciton
transfer dynamics and the efficiency of coherent
light harvesting

Zixuan Hu, ab Gregory S. Engel c and Sabre Kais*a

The efficiency of natural light harvesting systems is largely determined by their ability to transfer

excitations from the antenna to the energy trapping center before recombination. The exciton diffusion

length similarly limits organic photovoltaics and demands bulk heterojunction architectures. Dark state

protection, achieved by coherent coupling between subunits within the antenna, can significantly

reduce radiative recombination and enhance the efficiency of energy trapping. In this work we extend

the dark state concept to the double-excitation manifold by studying the dynamical flow of excitations.

We show that the lowest double-excitation state carries minimal oscillator strength, but relaxation to

this state from higher lying double excitations can be relatively rapid such that the lowest double

excitation state can act as a dynamical dark state protecting excitation from radiative recombination.

This mechanism is sensitive to topology and operates differently for chain and ring structures, while

becoming more pronounced in both geometries when the size of the antenna increases. When the

exciton–exciton annihilation (EEA) mechanism is considered, the double-excitation population is quickly

depleted and the dynamics change dramatically. However the efficiency and output power are still

significantly different from those calculated using the single-excitation manifold alone, justifying the

necessity of considering the double-excitation manifold. Remarkably, in certain scenarios, EEA can even

increase the overall light harvesting efficiency by bringing population down from the double-excitation

dark states to the single-excitation manifold.

Introduction

Exciton recombination is an important process to consider in
designing high efficiency light harvesting systems.1 Based on
the detailed balance principle, radiative recombination is a
fundamental factor to the Shockley–Queisser limit on photo-
voltaic energy conversion.2 It has been proposed that the
detailed balance limit can be broken with coherence induced
by either microwave radiation or noise.3,4 Quantum coherence
exists naturally in light harvesting complexes (LHCs) that
contain multiple chromophores coherently coupled to each
other through dipole–dipole interactions.5–19 The coupling
between chromophores creates bands of delocalized eigen-
states with different optical coupling strengths to the ground
state. The states with strong coupling to the ground state are

called the bright states and the states with weak or zero coupling to
the ground state are called the dark states. In artificial models
inspired by natural LHCs, the dark states have been used to prevent
radiative recombination, effectively increasing the excitation transfer
efficiency.20–22 Theoretical and experimental studies typically
examine the single-excitation manifold, and the terms dark
and bright states refer to the eigenstates of the Hamiltonian
accessible from the ground state via a single excitation.23–25

A recent study explores the effect of the double-excitation
manifold on the energy transfer dynamics for a ring structure
with four subunits,26 while expecting diminishing returns from
increasing the size of the ring. On the other hand, studying
the dark state protection mechanism,27 we have observed an
abnormal result that increases with the size of the structure,
which cannot be explained by the single-excitation manifold
alone. In this study we investigate the effect of the double-
excitation manifold in detail and derive a theory showing that
the lowest energy double-excitation state can dynamically retain
exciton population and potentially enhance energy transfer
power by reducing radiative recombination more than expected
from the single-excitation dark state alone. This dynamical
effect is different for the open chain structure versus the closed
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ring structure, dependent on the trapping resonance conditions,
while in both cases the effect grows with the number of
subunits in the structure. Exciton–exciton annihilation (EEA)
is an important mechanism that quickly transfers excitation
from the double-excitation manifold to the single-excitation
manifold dissipatively.28,29 When EEA is considered, the
double-excitation dark state can no longer trap excitation and
its effect is reduced. Nonetheless, the efficiency calculated with
the EEA included is still significantly different from that
calculated with the single-excitation manifold alone, thus rein-
forcing the importance of the double-excitation manifold.
Remarkably, the dissipative process of EEA does not only
reduce its efficiency as originally expected. In certain scenarios
where the excitation can be retained in the double-excitation
dark state without a resonance condition necessary for trans-
ferring to the trapping site, EEA serves as a channel for the
excitation to escape to the single-excitation manifold and then
be harvested from there. In such a case, the overall efficiency is
increased when EEA is introduced.

Model

In this study we use a model described in detail previously27

wherein an antenna system made of N identical chromophore
subunits receives the light energy to generate excitations which are
then transferred to a trapping site. The antenna Hamiltonian is:

Ha ¼ o
XN
i¼1

sþi s
�
i þ J

XN�1
i¼1
ðsþi s�iþ1 þ sþiþ1s

�
i Þ þ JN sþNs

�
1 þ sþ1 s

�
N

� �
(1)

where h� = 1, o is the site energy, and J is the coupling strength.
The use of the Pauli raising and lowering operators explicitly
ensures that a single site cannot support more than one
excitation. For the ring structure JN = J while for the chain
structure JN = 0. Under the Jordan–Wigner transformation30 the
Hamiltonian becomes:

HJW ¼ on̂þ J
XN�1
j¼1

c
y
j cjþ1 þ c

y
jþ1cj

� �
� JN c

y
Nc1 þ c

y
1cN

� �
eipn̂

(2)

where n̂ ¼
PN
j

c
y
j cj counts the total number of excitations on the

ring, and c†
j and cj are the transformed fermionic creation and

annihilation operators. The boundary coupling condition
JN(c†

Nc1 + c†
1cN)eipn̂ in eqn (2) changes the sign depending on

the parity of the excitation number, and the ring structure has
a unique double-excitation manifold.31 For the chain JN = 0,
the solution is independent from the parity of the excitation
number. The antenna is connected incoherently to the trapping
center through the Nth site.

The steady-state dynamics is calculated through a Lindblad
optical master equation:26,27,32

_r = �i[Ha + Ht,r] + Do[r] +Dp[r] + DEEA[r] + Dt[r] + Dx[r]
(3)

where r is the total density operator of the antenna–trap
system, and Ht = ots

+
ts
�
t is the trapping site Hamiltonian. The

five Lindblad dissipators – Do[r], Dp[r], DEEA[r], Dt[r], and Dx[r]
– describe four different physical processes.

Do½r� ¼ go
P

K 0;K ;oo 4 0

GK 0;K N oo þ 1ð ÞD L̂K 0 ;K ; r
� �

þ N ooð Þ�
�

D L̂
y
K 0;K ; r

h i
Þ is the optical dissipator describing the interband

transitions between different excitation levels, where go gives the

optical transition rate for the antenna, GK 0 ;K ¼ K 0h j
PN
j¼1

sþj Kj i
�����

�����
2

is the optical coupling strength between two eigenstates on
different excitation manifolds of the antenna Hamiltonian with
oo = EK0 � EK 4 0, N(oo) = (eoo/kBTo � 1)�1 is the optical

distribution, and D L̂K 0;K ; r
� �

¼ L̂K 0 ;KrL̂
y
K 0 ;K �

1

2
L̂
y
K 0;KL̂K 0;K ; r

n o
is the Lindblad dissipator with L̂

y
K 0;K ¼ K 0j i Kh j.

Dp r½ � ¼ gp
P

m;n;op 40

N op þ 1
� �

D L̂m;n ;r
� �

þN op

� �
D L̂

y
m;n ;r

h i� �
is the phononic dissipator describing the intraband transitions
within one excitation level, where gp gives the phononic relaxa-
tion rate, N(op) = (eop/kBTp � 1)�1 is the thermal distribution,

and D L̂m;n ; r
� �

¼ L̂m;nrL̂
y
m;n �

1

2
L̂
y
m;nL̂m;n ; r

n o
where L̂†

m,n = |mihn|

are the intraband transitions between two eigenstates on the
same excitation manifold with op = Em � En 4 0.

DEEA r½ � ¼ gEEA
P
K2

D L̂L;K2
; r

� �
is a phenomenological process

describing the EEA process where excitation is transferred from
any |K2i from the double-excitation manifold to the lowest
single-excitation eigenstate |Li. Similar to the optical and thermal

processes, D L̂L;K2
; r

� �
¼ L̂L;K2

rL̂
y
L;K2
� 1

2
L̂
y
L;K2

L̂L;K2
; r

n o
and

L̂L,K2
= |LihK2|. In reality EEA can transfer excitation from any

|K2i to any single-excitation state, but phononic dissipation will
quickly bring the excitation to the lowest single-excitation state |Li.

Dt[r] = gtD[s�t ,r] describes the decay process of the
trapping site.

Dx r½ � ¼ gx
X

K1;oK1
¼oL

D s�K1
sþt ; r

h i
� PN K1ð Þ

þ gx
X

K1;K2 ;oK2
�oK1

¼oL

D sþK1
s�K2

sþt ; r
h i

� PN K2ð Þ

describes the incoherent transfer process from the antenna to
the trapping site. The first summation is through all the single-
excitation states |K1i with the same energy as the lowest single-
excitation state |Li (resonance condition), and PN(K1) is the
probability of |K1i projecting into the Nth site. The second
summation is through all the double-excitation states |K2i and
all the single-excitation states |K1i such that their energy
difference is equal to |Li. In this process an excitation state is
removed from |K2i and created in both |K1i and the trap |ti.
PN(K2) is the probability of |K2i projecting into the Nth site.

The parameters associated with each of the dissipators in
eqn (3) are given in Table 1 with the physical meaning of each
parameter described in the leftmost panel.

Paper PCCP

Pu
bl

is
he

d 
on

 1
4 

N
ov

em
be

r 
20

18
. D

ow
nl

oa
de

d 
by

 P
ur

du
e 

U
ni

ve
rs

ity
 o

n 
3/

5/
20

19
 5

:2
5:

42
 P

M
. 

View Article Online

http://dx.doi.org/10.1039/c8cp05535a


30034 | Phys. Chem. Chem. Phys., 2018, 20, 30032--30040 This journal is© the Owner Societies 2018

In Table 1 the EEA rate is set to be equal to the phononic
decay rate. The EEA process is commonly known to be a very
fast process33 on the same order of the phononic process as
compared to the slow optical process (typically 1000 times
difference). Because both the EEA and phononic processes
are orders of magnitude faster than the other rates involved
in the dynamics, their exact values become unimportant and we
just set them to be both equal to 1 meV. J = 100 meV is a
reasonable coupling strength for organic dyes and photosynthetic
chromophores,34 which is also strong enough such that the
thermal distribution and intraband transitions put most excitation
population in the lowest eigenstate in each band. In a previous
study,27 we have the results for various J values over a wide range,
showcasing the advantage of having a large J for maximizing the
power output. In the following we use an H-aggregate (positive J)
to probe the dark state effect. For the antenna–trap transfer we
use gx = g0 with which the transfer rate is comparable to the
interband transitions, thus the two processes compete. This is a
different condition from ref. 27, where a bottleneck condition
gx = 0.01g0 was used. In the following we show that even with
the moderate transfer rate gx = g0 the dark state mechanism is
significant, and the power output is enhanced greatly compared
to gx = 0.01g0.

The steady state solution of r in eqn (3) is obtained using the
open-source quantum dynamics software QuTiP.35 We then
use the standard way4,26,36 to calculate the power output of
our light harvesting system. The current is determined by
I = egthrteiss, with hrteiss being the steady state population of
the trap’s excited state, gt being the decay rate of the trap, and
e being the fundamental charge. The voltage is given by

eV ¼ �hot þ kBT ln
rteh iss
rtg
D E

ss

0
B@

1
CA, where hrtgiss is the steady state

population of the trap’s ground state, kB is the Boltzmann
constant, and T is the thermal temperature. The total power
output for a single antenna–trap system is then simply Pout = IV.

Here we introduce the concepts of total efficiency and

internal efficiency. The total efficiency is defined by ZT ¼
Pout

PSun

where Pout is the total power output for a single antenna–trap
system as just described, and PSun is the total light power
shined on the system from the Sun. PSun is a complicated
quantity dependent on many macroscopic factors such as the
material conditions, the sunlight conditions, the atmospheric

conditions, etc. In this microscopic study we do not calculate
PSun but instead assume that it is constant when the structure
of the system changes. This is a reasonable assumption since
PSun is unlikely to change when the microscopic conditions
change. When PSun is constant, Pout is then a qualitative
indicator of the total efficiency which we report in the unit of

picowatt (pW). The internal efficiency is defined by ZI ¼
Pout

Pin
,

where Pin is the total power absorbed by the antenna, which is
calculated by

Pin ¼ Pin0 þ Pin1

¼ go
X
K1

GK1;GN oK1

� �
rGh iss�oK1

þ go
X
K2;K1

GK2 ;K1
N oK2

� oK1

� �
rK1

	 

ss
� oK2

� oK1

� � (4)

where Pin0 is the power input when an optical transition happens
between the ground state |Gi and the single-excitation state |K1i,
and Pin1 is the power input when an optical transition happens
between the single-excitation state |K1i and the double-excitation
state |K2i. hrGiss is the steady state population of the ground state
|Gi and hrK1

iss is the steady state population of the single-
excitation eigenstate |K1i. The internal efficiency measures by
percentage how much energy absorbed by the antenna ends up in
the final power output. Since not all the power from the Sun can
be absorbed by the antenna, the internal efficiency is related to
but not the same as the total efficiency. The total efficiency as
measured by the total power output is the most important
quantity in evaluating the workload of the light harvesting
system. On the other hand, the internal efficiency is also an
important indicator of how efficient the light harvesting system
is. A system with a high total efficiency but a low internal
efficiency may power a large workload but generate much
wasted power in heat while operating. A system with a low
total efficiency but a high internal efficiency may only power a
small workload but generate little wasted power in heat as the
operation is very efficient.

Results and discussion

We start by numerically calculating both the total power output
and the internal efficiency for both the chain and ring structures.

First for the chain antenna model, in Fig. 1b showing the
total power output, we can see the power increase from a single
chromophore to a two-chromophore chain as well as the zigzag
pattern as N increases. These have been presented and explained
in ref. 27 in bottleneck conditions. Their presence here implies
that the dark state protection mechanism is important even for a
moderate antenna–trap transfer rate comparable to the optical
transition rate. For N Z 4 the medium blue bar (SE + DE) deviates
from the other two and the difference increases as N increases.
In Fig. 1c showing the internal efficiency, the dark green bar
(SE + DE + EEA) starts to deviate from the other two (which have
very similar trends) when N = 4 and the difference increases as
N increases. The differences between the data calculated with

Table 1 Parameters used in the numerical calculations

Parameter Symbol Value

Antenna site energy o 1.76 eV
Antenna coupling strength J 100 meV
Antenna optical decay rate go 0.001 meV
Antenna phononic decay rate gp 1 meV
EEA rate gEEA = gp

Antenna–trap transfer rate gx = go

Trap optical decay rate gt = go

Ambient temperature T 300 K
Optical temperature To 5800 K
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different methods show that the double-excitation manifold
becomes more important when N is larger. In Fig. 1b, the

inclusion of the double-excitation manifold greatly enhances
the output power while the EEA expectedly removes this enhance-
ment and brings the power output to values similar to those
calculated with the single-excitation manifold alone. In Fig. 1c,
the inclusion of the double-excitation manifold without exciton–
exciton annihilation reduces the efficiency slightly, while the EEA
reduces the efficiency further because the transition from the
single-excitation manifold to the double-excitation manifold adds
to the input power in eqn (4). With the EEA quickly bringing the
excitation back to the single-excitation manifold, there is little
power output from the double-excitation manifold. The input power
from the single-to-double transition is therefore lost through the
EEA (a dissipative process), causing an efficiency loss.

Second for the ring antenna model, in Fig. 2b showing the
total power output, the medium blue bar (SE + DE) starts to
deviate from the other two at N = 4 and the difference increases
as N increases. However the ring antenna is different from the
chain antenna in that this time at each N the medium blue bar
(SE + DE) is not higher but lower in power than the other two
bars. The results shown in Fig. 2c also behave very differently
from the chain antenna results, with the two bars with the
double-excitation manifold included having almost identical
internal efficiency, while the light blue bar (SE only) lying above
having almost constant internal efficiency. The EEA’s effect is
remarkable for the ring, where the inclusion of double-excitation
greatly reduces the power output, while the EEA brings the power
up to the values similar to those calculated with the single-
excitation manifold alone. In other words, the dissipative EEA
process does not reduce power output but enhances it. In addition
the EEA does not reduce the efficiency compared to the results
calculated including double-excitation but without EEA. Putting
the numerical results together, an important observation is that
the inclusion of the double-excitation manifold or the EEA process
can produce a significantly different power output or internal
efficiency, and therefore is necessary for simulating the excitation
dynamics. Both the results shown in Fig. 1 and 2 are obtained with
the solar temperature T = 5800 K under which the steady-state
population of double-excitation states is expected to be orders of
magnitude smaller than the single-excitation states. Nonetheless,
we have observed the effects due to the double-excitation mani-
fold for both the chain and ring structures. In the following we
rationalize this surprising fact by analyzing the movement of
excitation between the manifolds as shown in Fig. 3.

Upon excitation by light, single excitation is first created at
the bright state, from where it will quickly move to the dark
state via phononic dissipation. This excitation can be further
excited to the double-excitation manifold. The excitation in
various double-excitation states will move down by phononic
dissipation to the lowest energy state on that manifold, from
where it can either move down to the single-excitation manifold
or move up to the triple-excitation manifold. In this study, we
focus on the possibility of moving down only.

The steady-state population of the lowest energy double-
excitation state is dependent on three factors: (1) the distribution
over intraband levels; (2) the total incoming coupling strength Gin

of excitation from the lowest energy single-excitation state to all

Fig. 1 Showing the results for the chain antenna with the number of
chromophores in the antenna ranging from N = 1 to N = 8. (a) shows the
model system with a chain antenna. (b) shows the total power output and
(c) shows the internal efficiency. In (b and c) for each N we solve the steady state
solution of the dynamics with (1) the single-excitation manifold alone (SE only,
light blue/light green); (2) the single-excitation manifold plus the double-
excitation manifold (SE + DE, medium blue/medium green); and (3) the
single-excitation manifold plus the double-excitation manifold plus the EEA
process (SE + DE + EEA, dark blue/dark green). For the total power output, the
SE + DE results are significantly greater than both the SE only and SE + DE + EEA
results when N Z 4. For the internal efficiency, the SE + DE + EEA results are
significantly smaller than both the SE only and SE + DE results when N Z 4.
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double-excitation states; and (3) the total outcoming coupling
strength Gout of excitation to various single-excitation states. The
first factor is determined by the Davydov splitting between
intraband states. Here we use a coupling strength strong enough

( J = 100 meV) such that thermal distribution overwhelmingly
favors the lowest energy state at room temperature.27 The second
factor is determined by the sum of optical coupling strengths
from the lowest single-excitation state |Li to all double-excitation
states |K2i. This can be evaluated by deriving a sum rule between
the manifolds:

Gin ¼
X
K2

GK2;L ¼
X
K2

K2h j
X
i

sþi Lj i
�����

�����
2

¼
X
K2

Lh j
X
i

s�i K2j i K2h j
X
i

sþi Lj i

¼ Lh j
X
i

s�i
X
i

sþi Lj i

(5)

where GK2,L is the coupling strength from |Li to a double-
excitation state |K2i. Considering the coupling from |Li to the

ground state |Gi is GL;G ¼ Lh j
P
i

sþi Gj i
����

����
2

¼ Lh j
P
i

sþi
P
i

s�i Lj i,

we obtain:

Gin � GL;G ¼ Lh j
X
i

s�i ;
X
i

sþi

" #
Lj i ¼ Lh j

X
i

I � 2sþi s
�
i

� �
Lj i

¼ N � 2

(6)

where we have used the commutation relation [s�a ,s+
b] = (I � 2s+

as
�
b )

dab. For the ring structure the lowest single-excitation state |Li is
completely dark, GL,G = 0, hence Gring

in = N � 2. For the chain

structure,27 GL;G ¼
1

2 N þ 1ð Þ � cot
Np

2 N þ 1ð Þ

� �
� 1� �1ð ÞN
� �����

����
2

,

Fig. 2 Showing the results for the ring antenna with the number of
chromophores in the antenna ranging from N = 3 to N = 8 (the smallest
ring has to have three subunits). (a) shows the model system with a ring
antenna. (b) shows the total power output and (c) shows the internal
efficiency. In (b and c) for each N we solve the steady state solution of the
dynamics with (1) the single-excitation manifold alone (SE only, light blue/
light green); (2) the single-excitation manifold plus the double-excitation
manifold (SE + DE, medium blue/medium green); (3) the single-excitation
manifold plus the double-excitation manifold plus the EEA process (SE +
DE + EEA, dark blue/dark green). For the total power output, the SE + DE
results are noticeably smaller than both the SE only and SE + DE + EEA
results when N Z 4 and this difference increases with N. For the internal
efficiency, the SE only results are noticeably greater than both the SE + DE +
EEA and SE + DE results for all N and this difference increases with N.

Fig. 3 Four major steps of the dynamical process: (I) the initial excitation
to the bright state (in yellow) and relaxation to the dark state (in black) on
the single-excitation manifold; (II) the total incoming flow of excitation
from the dark state to the double-excitation manifold; (III) the relaxation
on the double-excitation manifold to deposit excitation on the lowest
double-excitation state (in grey); (IV) the total outcoming flow of excitation
from the lowest double-excitation state to the single-excitation manifold.
In the following we show that steps II and IV, and particularly the ratio
between Gin and Gout, determines the tendency with which excitation stays
in the double-excitation manifold. When Gin/Gout is large, the lowest
double-excitation state serves as a dynamical dark state that can hold a
considerable fraction of the excitation population.
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which is zero for even N’s and o0.1 for odd N Z 3, therefore
Gchain

in E N� 2 with a small error. Hence the total incoming flow
of excitation from the lowest single-excitation state to the lowest
double-excitation state is approximately Gin = N � 2, which
increases linearly with N. The third factor, the total outcoming
flow of excitation to various single-excitation states, is deter-
mined by the sum of optical coupling strengths from the lowest
double-excitation state to all single-excitation states. For the
ring structure we use the selection rule derived in ref. 31 to find
all the allowed transitions from the lowest double-excitation
state to the single-excitation manifold and then sum over all the
optical coupling strengths. After some algebra, the result is (see
the Appendix for detailed analytic derivations):

Gout ¼

2

N
tan2

p
N

N odd

4

N
tan2

p
2N

N even

8>><
>>: (7)

where in both cases Gout r N � 2 (with equality applying only
for N = 3) and decreases rapidly with increasing N. For the chain
structure we do not have an analytic form for Gout but numerical
results show that it has comparable values as in eqn (7) and also
decreases rapidly with increasing N. Now an important quantity
is the ratio between Gin and Gout, which gives the tendency of
the excitation to stay in the double-excitation manifold.

In Fig. 4 we plot Gin/Gout against DE/SE – the ratio between
the double-excitation population and the single-excitation
population – without the EEA process. We see a good correlation
between the two quantities across different numbers of chromo-
phores. When N = 3, Gin/Gout is close to unity for both structures.
Under the weak solar excitation (To = 5800 K), the double-
excitation population is negligible compared to the single-
excitation population. Consequently, the double-excitation manifold
is not important for N r 3 in the results shown in Fig. 1 and 2.
When N Z 6, Gin/Gout is large, and there is considerable
population on the double-excitation manifold. Consequently,
in Fig. 1 and 2 the results for N Z 6 calculated with the double-
excitation manifold is significantly different from the ones
calculated with the single-excitation manifold alone. The greater
double-excitation population at a larger N also causes the EEA to
have a greater effect.

These results inspire a dark state argument for the double-
excitation manifold. When Gin/Gout is large, the lowest double-
excitation state is a dynamical dark state in the sense that the
total downward transition is not forbidden but much weaker
than the total incoming transition from the single-excitation
manifold. The double-excitation dark state is therefore an
additional important factor in the overall excitation transfer
dynamics. For the chain structure shown in Fig. 1, when N is
large and the EEA is not considered, the double-excitation dark
state can hold excitation population, which enhances the total
power output by providing another layer of protection against
radiative recombination. The internal efficiency suffers a minor
loss because of the intraband transition within the double-
excitation manifold. When the EEA is considered, the signifi-
cant population held on the double-excitation manifold enables
the EEA to be an important part of the dynamics. Since the EEA
is a very fast process, the double-excitation manifold loses the
population and the total power output is brought down to the
level as calculated with the single-excitation manifold alone.
The internal efficiency suffers a major loss because the energy
absorbed by the single-to-double transition has not generated
any useful power before losing through the EEA, a dissipative
process. For the ring structure shown in Fig. 2, when N is large
and the EEA is not considered, we still expect the double-
excitation dark state to hold excitation population as shown in
Fig. 4, but this time there is a major loss to the total power
output instead of an enhancement. The reason is that the
boundary coupling condition JN(c†

Nc1 + c†
1cN)eipn̂ in eqn (2) changes

the sign depending on the parity of the excitation number, and
the ring structure has a unique double-excitation manifold.
Specifically the double-excitation states of the ring are not simple
composites made from two single-excitation states (like the
chain) but are made instead from component states that are
calculated with the anti-periodic boundary conditions.31 The
consequence of this is that the double-excitation states of the
ring structure do not have the energy resonance to transfer to
the trapping site. In this case the double-excitation dark state
functions as a pseudo-trap of excitation without converting
it into useful work, and therefore both the total power and
the internal efficiency suffer a major loss. When the EEA is

Fig. 4 Showing the incoming/outcoming coupling strength ratio Gin/Gout

together with the double-excitation/single-excitation population ratio
DE/SE. The results are obtained without the EEA process. The two quantities
have good correlation for both the chain (upper panel) and ring (lower
panel) structures. The results suggest a dynamical dark state concept for the
lowest double-excitation state.
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considered, the population trapped on the double-excitation
manifold can now go back to the single-excitation manifold,
and from there gets transferred to the actual trapping site
where it is converted to work. In this way the EEA actually
improves the total power output as shown in Fig. 2, and brings
the power up to the level as calculated with the single-excitation
manifold alone. Here we have used an idealized perfect reso-
nance condition to illustrate an important difference between
the ring and the chain, i.e. their double-excitation manifolds
are formed differently. When a small energy width is allowed
for the trapping process, the transfer rate from the double-
excitation manifold of a ring to the trap will be a non-zero value
but still significantly smaller than that of a chain, such that we
expect to see quantitatively different but qualitatively the same
results. The internal efficiency suffers a major loss when the
double-excitation manifold is considered, with or without EEA,
because either way the energy absorbed from the single-to-
double transition is not converted into power output. Combining
the results given in Fig. 1, 2 and 4, we see that (1) the double-
excitation manifold is indeed important if we want to have an
accurate analysis of the excitation transfer dynamics. (2) The EEA
process is important due to the significant population on the
double-excitation manifold caused by the dynamical dark state
character of the lowest double-excitation state. (3) The total power
output and internal efficiency behave very differently when the
double-excitation manifold is considered. (4) The chain and ring
structures give very different results when the double-excitation
manifold is considered, due to the resonance condition for
transferring to the trapping site.

Conclusions

In this study we have investigated the double-excitation manifold’s
effect on the exciton transfer dynamics and the efficiency of the
coherent light harvesting process. Despite using a weak solar
excitation, we show that the inclusion of the double-excitation
manifold produces significantly different total power output
and internal efficiency compared to those calculated with the
single-excitation manifold alone. By analyzing the movement of
the excitation between the various manifolds, we propose a
concept of dynamical dark states for the lowest double-
excitation state, which can hold a considerable fraction of
the excitation population on the double-excitation manifold,
causing significant changes to the dynamical results. Even in
the presence of EEA, the double-excitation manifold can be
important to the overall exciton transfer dynamics and must be
included for an accurate result for either the total output power
or the internal efficiency. Finally, chain and ring structures
behave distinctly when the double-excitation manifold and the
EEA are considered, due to the resonance conditions for the
exciton trapping process.
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Appendix 1: analytic derivation for eqn (7)

For the ring structure we solve eqn (2) with JN = J. We consider the
transitions from the single-excitation manifold to the double-
excitation manifold. Single-excitation states have the form:

ckj i ¼
1ffiffiffiffi
N
p

XN
j¼1

e
i
kp
N

j
sþj 0j i (8)

where k is an even number from 0 to 2N � 2. Double-excitation
states have the form:

cs1s2

�� 

¼ Cþs1C

þ
s2
0j i

¼ 1

N
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jo h

e
i
p
N

s1jþs2h½ �
� e

i
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N

s1hþs2 j½ �
0
@

1
Asþj s

þ
h 0j i (9)

where s1 and s2 are odd numbers from 1 to 2N � 1. The coupling
between them is given by:
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(10)

Eqn (10) is evaluated to be:31

Gs1s2;k ¼
1

N
cot

s2p
2N
þ cot

s2 � kð Þp
2N

� �2

(11)

By the selection rule derived in ref. 31, a non-zero coupling
strength Gs1s2,k requires:

s1 + s2 � k = 2mN (12)

where m is an integer.
Now for N is even, the lowest double-excitation states have

s1 = N � 1 and s2 = N + 1. Since s1 + s2 = 2N, the only choice of k
satisfying eqn (12) is k = 0. Thus to calculate the total coupling
strength from the lowest double-excitation state to the single-
excitation manifold, we only need to consider one coupling
term Gs1s2,k with s1 = N � 1, s2 = N + 1, and k = 0, which when
substituted into eqn (11) gives:

Gout ¼
1

N
cot
ðN þ 1Þp

2N
þ cot

N þ 1� 0ð Þp
2N

� �2

¼ 4

N
tan2

p
2N

� � (13)

which is the second line in eqn (7).
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For N is odd, the lowest double-excitation states have
s1 = N � 2 and s2 = N. By the selection rule in eqn (12) there
are two finite coupling terms Gs1s2,k that we need to sum over: one
with s1 = N + 2, s2 = N, and k = 2N � 2 such that s1 + s2 � k = 4N;
the other one with s1 = N � 2, s2 = N, and k = 2 such that
s1 + s2 � k = 2N. Substituting these into eqn (11) gives:

Gout ¼
1

N
cot

Np
2N
þ cot

N � 2N þ 2ð Þp
2N

� �2
"

þ cot
Np
2N
þ cot

N � 2ð Þp
2N

� �2
#

¼ 2

N
tan2

p
N

(14)

which is the first line in eqn (7). This concludes the analytic
derivation for eqn (7).

Appendix 2: delocalization effect

In Fig. 1 and 2, additional to the features discussed in the main
text, we note that neither the total power output nor the
internal efficiency scales linearly with the size of the system –
the power or efficiency initially increases with N but then
quickly plateaus and even decreases as N becomes larger. This
is because in our model the energy collected on the antenna is
transferred to the trap through the Nth dipole, yet the eigen-
states of the excitons are delocalized over the whole structure,
therefore the delocalization effect would reduce the rate of
energy trapping more when N is a larger number. Indeed the
delocalization effect has been shown consistently in our previous
work27 to lead to a saturation/convergence of the total power
output as N increases. This result would suggest a benefit of
using a larger number of smaller antennae over fewer larger ones
to optimize the total power output or the internal efficiency (given
the same transfer model).

Appendix 3: beyond the
double-excitation manifold

In this work we have focused only on the single-excitation and
double-excitation manifolds. Additional calculations including
the triple-excitation manifold but excluding the EEA process
show that the triple-excitation manifold has negligible population
and thus can be reasonably omitted in dynamical studies. For
example, for an N = 6 ring, the population ratio between the triple-
excitation manifold and the double-excitation manifold is about
0.05 – a very small number. We note that the climb to the next
excitation manifold is always hindered severely by the optical
distribution N(oo) = (eoo/kBTo� 1)�1 where oo is equal to the energy
difference (B1.76 eV) between the two manifolds. For this reason,
we have shown in Fig. 4 that only when the incoming/outcoming
coupling strength ratio Gin/Gout is sufficiently large can the higher
excitation manifold acquire significant population. In Fig. 4 for an
N = 6 ring, the double-excitation manifold has Gin/Gout E 84 to

acquire a population ratio DE/SE E 1.6. In contrast for an N = 4
ring, the double-excitation manifold has Gin/Gout E 12 and the
population ratio becomes as low as DE/SE E 0.2. Our result for the
triple-excitation manifold has Gin/Gout E 6 and this reasonably
leads to a small population ratio of TE/DE E 0.05. These results
are obtained without the EEA process. The existence of a fast EEA
process would quickly deplete the DE population, making it even
harder to reach the next level and the triple-excitation manifold
would not be relevant in such a case.

Appendix 4: disorder

The dark state effect discussed in this work does not require a
perfect symmetry of the system. Indeed one of the main points
of the work is that the lowest energy state on the double-
excitation manifold can act as a ‘‘dynamical dark state’’ with
non-zero but small coupling to the single-excitation manifold.
Hence we do not care so much if a dark state is completely dark,
but we do care about the overall population balance on differ-
ent excitation manifolds at the steady-state, which is governed
by the relative strengths of the incoming and outcoming
oscillator strengths. For this reason the model should be robust
against small deviations because a perfect system is not required.
The relative strengths of the incoming and outcoming oscillator
strengths are robust against small disorders in both the site
energy o and the coupling strength J, which is confirmed by our
calculations showing that with a 5% disorder in o and J the
output power and internal efficiency results are qualitatively the
same as presented in Fig. 1 and 2.
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