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Abstract
The uncertainty principle imposes constraints on an observer’s ability to make preci-
sion measurements for two incompatible observables; thus, uncertainty relations play
a key role in quantum precision measurement in the field of quantum information
science. Here, our aim is to examine non-Markovian effects on quantum-memory-
assisted entropic uncertainty relations in a system consisting of two atoms coupled
with structured bosonic reservoirs. Explicitly, we explore the dynamics of the uncer-
tainty relations via entropic measures in non-Markovian regimes when two atomic
qubits independently interact with their own infinite degree-of-freedom bosonic reser-
voir. We show that measurement uncertainty vibrates with periodically increasing
amplitude with growing non-Markovianity of the observed system and ultimately
saturates toward a fixed value at a long time limit. It is worth noting that there are
several appealing conclusions raised by us: First, the uncertainty’s lower bound does
not entirely depend on the quantum correlations within the two-qubit system, being
affected by an interplay between the quantum discord and the minimal von Neu-
mann conditional entropy Sce. Second, the dynamic characteristic of the measurement
uncertainty is considerably distinctive with regard to Markovian and non-Markovian
regimes, respectively. Third, the measurement uncertainty is closely correlated with
the Bell non-locality B. Moreover, we claim that the entropic uncertainty relation
could be a promising tool with which to probe entanglement in current architecture.
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1 Introduction

Uncertainty principle, which bounds our ability to predict measurement outcomes for
a couple of incompatible observables with an arbitrarily small uncertainty, is viewed
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as one of the most remarkable characteristics in the region of quantum mechanics and
intrinsically illuminates the discrepancy between classical and quantum mechanics
[1,2]. Later, Kennard andRobertson generalized this principle to the so-called standard
deviation [3,4]. Several authors [5–7] have demonstrated several tighter uncertainty
relations based on the variances’ sum, in which the lower bounds are showing their
significance in quantum physics with respect to any pair of incompatible observables.
However, the aforementioned deviation is not always optimal when evaluating the
magnitude of the uncertainty, since the bounds for the deviation are state dependent,
whichwould give rise to a trivial result if the commutator related to the observables has
zero expectation value.Whereafter,Deutsch [8] put forward a newandprogressive type
of uncertainty relation in terms of information entropy, entropic uncertainty relations
(EURs), and subsequently these EURs were simplified by Refs. [9] and [10] into

H(P̂) + H(R̂) ≥ log2
1

c
, (1)

here the Shannon entropy H(ε) = −∑
ε pε logpε with pε = 〈ϕε |ρ̂|ϕε〉, log2 1c

describes the incompatibility of the two observables P̂ and R̂ while c = max{|〈
ϕP̂ |ϕR̂〉|2}; here, |ϕP̂ 〉 and |ϕR̂〉 denote the corresponding eigenstates of P̂ and R̂.
Compared with the standard deviation, the EUR’s bound completely is irrelevant to
the system’s state ρ̂, which does not occur in the standard deviation [11,12].

Furthermore, some authors had proved that the measurement uncertainty can be
reduced in the presence of quantum entanglement (memory) [13–16] with a new
Heisenberg expression

S(P̂|B) + S(R̂|B) ≥ S(A|B) + log2
1

c
, (2)

which canonically is deemed as quantum-memory-assisted entropic uncertainty rela-
tions (QMA-EUR). Within the above, the conditional entropy S(X |B) = S(ρ̂XB) −
S(ρ̂B) with X ∈ (P̂, R̂), S(ρ̂) = −Tr(ρ̂logρ̂), and ρ̂XB = ∑

x (|φx 〉〈φx | ⊗ I) ρ̂AB

(|φx 〉〈φx | ⊗ I) is the post-measurement state with the eigenstate |φx 〉 of observable
X and I being the identical operator. To better understand the physics behind this
new relation, Berta et al. [14] ingeniously introduced so-called uncertainty game. To
be specific, the game scenario may be depicted as follows: To start with, there are
two legitimate players (say, Alice and Bob). Bob in priori prepares a wanted entan-
glement of qubits A to be measured and B as quantum memory and then transmits
A to Alice, who will make the measurement of either P̂ or R̂ and later inform Bob
of the measured selection with classical information. By the received information,
Bob is capable of predicting Alice’s result with a minimal uncertainty. Specifically,
the above expression for von Neumann entropy given in Eq. (2) directly shows that
the bipartite entanglement can effectively reduce the lower bound as S(A|B) < 0 and
consequently is capable ofminimizing themeasurement uncertainty. Additionally, this
relation naturally reduces to Deutsch’s outcome if A and B remain disentangled [8].

Besides, theQMA-EURhad received a great deal of attention because of its amazing
applications in quantum entanglement witnessing [14–17], quantum metrology [18],
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Fig. 1 (Color online) Schematic of the two-atom system where each independently couples with its own
reservoirs EA and EB , J (ω), respectively. Each reservoir is characterized by a Lorentz spectral distribu-
tion, J (ω)

quantum cryptography [19,20], quantum randomness [21,22], and quantum key distri-
bution [23,24]. Contemporaneously, the inequality has been generalized to the several
different forms through the Rényi entropy [25–27]. Moreover, there also have existed
some other situationally specific optimized results [28–44]. Indeed, any systems are
essentially open and inevitably interact with their surrounding environment, which
induces decoherence or dissipation phenomena [45–48]. Therefore, to clarify how
various environments influence the uncertainty for measurement is a basic require-
ment during measurement estimation. Indeed, some studies expend effort toward
exploiting the effects of various forms of real environmental noises on the dynam-
ics of QMA-EUR [49–58]. In light of with and without memory effect, environments
can be typically classified into Markovian ones and non-Markovian ones. Until now,
there existed several investigations on dynamics of the entropic uncertainty in the
non-Markovian regimes [30,49,59,60]. Different from the previous, our work will
focus on revealing the evolution characteristic of the measurement uncertainty within
a canonical scenario that any two qubits independently suffer from non-Markovian
reservoirs.

2 Physical model, analytical solution, and non-Markovianity

Before exploring non-Markovian effects on the entropic uncertainty, let us briefly
describe the model considered here with a toy system comprised of two atoms acting
as qubits, where each atom interacts independently with its local environment, as
illustrated in Fig. 1. For the purpose of this work, we will consider a single qubit-
reservoir Hamiltonian with � = 1 written as [61,62]

H = ω0σ̂
+σ̂− +

∑

k

ωk b̂
†
k b̂k +

∑

k

(gk σ̂
+b̂k + g∗

k σ̂
−b̂†k ), (3)

with the qubits’ transition frequency ω0, the k-th field mode frequency ωk in the
reservoir, the system’s raising (lowering) operator σ̂+ = |e〉〈g| (σ̂− = |g〉〈e|), b̂k
(b̂†k ) denoting the creation (annihilation) operator of the reservoir’s k-th mode, and the
coupling strength gk . In the zero-temperature approximation, the given Hamiltonian
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H stands as a specific open system which possesses an analytical solution. Within
such a quantum system, the qubits’ dynamics can be expressed as the density matrix
[63]

ρ̂α(t) =
(

ρα
ee(0)ξt ρα

eg(0)
√

ξt
ρα
ge(0)

√
ξt 1 − ρα

gg(0)ξt

)

(4)

for qubit α, where ξt complies with the differential equation

ξ̇t = −
∫ t

0
dt1 f (t − t1)ξ(t1). (5)

f (t − t1) is referred to the correlation function, which is highly relevant to the reser-
voir’s spectral density J (ω) through

f (t − t1) = −
∫

J (ω)ei(ω0−ω)(t−t1)dω. (6)

Thereby, ξt mainly depends on the spectral density J (ω). Since the Hamiltonian given
by Eq. (3) describes a canonical model where an atom in a cavity undergoes energetic
decay, by considering a single excitation in the observed system, one here can obtain
the exact dynamics of the system. J (ω) adopts the spectral distribution as to an external
driven field inside a deficient cavity providing ω0; such a system would result from
the combination of the reservoir spectrum and the system–reservoir coupling through
δ0 (called as a coupling constant of system and reservoir) and given a Lorentz form
[61]

J (ω) = 1

2π

δ0�
2

(ω − ω0)2 + �2 . (7)

� represents the spectral width for the coupling, which is quantified by the correlation
time τr of the reservoir in terms of τr = 1/�. Additionally, the parameter δ0 relates
to the decay of the atomic excitation in the Markovian limit of flat spectrum and is
correlated with the relaxation time τq by τq = 1/δ0, which is the time over which
the state of the qubit system evolves. In the weak-coupling regime (with δ0 < �/2),
τq > τr and ξt will substantially become a Markovian exponential decay mediated by
δ0. By contrast, τq ≤ τr in the regime of strong-coupling regime (with δ0 > �/2) and
then the system is responsible for a non-Markovian evolution. In our consideration, we
will focus on the strong-coupling regime to reveal the non-Markovian environmental
effects on the uncertainty. Within this regime, the function ξt can be written as [64]

ξt = e−�t
[

cos

(
λt

2

)

+ �

λ
sin

(
λt

2

)]2
, (8)

where λ = √
2δ0� − �2. ξt presents oscillations in its description of the damping

process for the atomic excitation generated by the coherent processes of the system–
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reservoir. Note that ξt ≡ 0 in the limit of tκ = 2[κπ − arctan(λ/�)]/λ ⇐⇒ κ ∈ Z .
In the standard basis vectors {|ee〉, |eg〉, |ge〉, |gg〉}, one thus can derive the system’s
density matrix with elements of [64]

ρ11(t) = ξt
2ρ11(0), ρ22(t) = ξtρ22(0) + ξt (1 − ξt )ρ11(0),

ρ33(t) = ξtρ33(0) + ξt (1 − ξt )ρ11(0),

ρ44(t) = 1 − [ρ11(t) + ρ22(t) + ρ33(t)],
ρ12(t) = ξt

3/2ρ12(0), ρ13(t) = ξt
3/2ρ13(0),

ρ14(t) = ξtρ14(0), ρ23(t) = ξtρ23(0),

ρ24(t) = √
ξt [ρ24(0) + (1 − ξt )ρ13(0)],

ρ34(t) = √
ξt [ρ34(0) + (1 − ξt )ρ12(0)], (9)

and ρi j (t) = ρ∗
j i (t), where ρ̂(t) is Hermite.

A working approach of measuring Markovianity with respect to a given system
is to utilize the trace distance (TD), which is considered as a metric determined by
performing the trace norm on the set of quantum states. The TD with respect to any
pair of states ρ̂1 and ρ̂2 can be expressed by [65]

D(ρ̂1(t), ρ̂2(t)) = 1

2
‖ ρ̂1(t) − ρ̂2(t)‖Tr, (10)

where ‖χ ‖Tr= Tr(
√

χ†χ). The D stands for a canonical metric within the density-
matrix space with 0 ≤ D ≤ 1. Consequently, the TD may be explained by a
measurement for two quantum states’ distinguishability. Notably, there exists a dis-
tinctive characteristic of the TD, which is contractility to this metric

D(�ρ̂1(t), �ρ̂2(t)) ≤ D(ρ̂1(t), ρ̂2(t)) (11)

for all absolutely positive and trace-preserving maps �. On the contrary, non-trace-
preserving quantum operations ever enable us to raise the states’ distinguishability.

An increase ofD between pairs of states associated with a system is understood as
the information backflow into the system, characteristic of non-Markovian regimes.
Otherwise, a reduction (or invariant value) of D means information is outflowing
into the environment from the system in an unidirectional manner, characteristic of
Markovian regimes. Then, the corresponding non-Markovianity can be measured by
the BLP formula [66]

N = max
ρ̂1(0),ρ̂2(0)

∫

σ>0
dt σ(t, ρ̂1(0), ρ̂2(0)), (12)

with the changing rate σ(t, ρ̂1(0), ρ̂2(0)) = d
dtD(ρ̂1(t), ρ̂2(t)) related to the TD as

expressed by Equation (10).
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3 Non-Markovian effects on themeasurement uncertainty via
entropy

In the uncertainty game mentioned before, Bob transmits A, which in prior is entan-
gled with B, to Alice. Alice makes a measurement by one of the two incompatible
observables P̂ and R̂ and subsequently tells Bob her measuring selection for P̂ or R̂
through the classical information; Bob can obtain the minimal uncertainty regarding
Alice’s measured outcome based on the information. To explore the non-Markovian
effects on the game of interest, we herein take into account a generic bipartite system,
initially sharing an any two-qubit state with Bloch representation,

ρ̂AB = 1

4

(

I A ⊗ I B + r · σ A ⊗ I B + I A ⊗ s · σ B +
3∑

k=1

ckσ
A
k ⊗ σ B

k

)

, (13)

where r and s denote Bloch vectors, {σk}3k=1 corresponds to the standard Pauli oper-
ators, and the correlation matrix ck = TrAB(ρ̂ABσ A

k ⊗ σ B
k ) with 0 ≤ |ck | ≤ 1. In

particular, r = s = 0, ρ̂AB reduces to a two-qubit Bell-diagonal state. In the fol-
lowing, suppose that the Bloch vectors are z-directional, we have r = (0, 0, r) and
s = (0, 0, s) with r = TrAB(ρ̂ABσ A

z ⊗ I B) and s = TrAB(ρ̂AB I A ⊗ σ B
z ). Inciden-

tally, we can also transform them to be x- or y-directional by means of an proper local
unitary transformation without loss of its diagonal property of the correlation term.

To uncover the dynamical traits of the uncertainty with regard to a pair of incompat-
ible measurements under two separate bosonic reservoirs while considering memory
effect, we resort to using σx and σz as the incompatible measurements. Derived from
the entropies in Equation (2), the post-measurement states are given by

ρ̂σx B = (1 + s)

4
ξt (|00〉〈00| + |10〉〈10|) + (2 − ξt − sξt )

4
(|01〉〈01| + |11〉〈11|)

+ c1ξt
4

(|01〉〈10| + |10〉〈01| + |00〉〈11| + |11〉〈00|),

ρ̂σz B =1 + c3 + r + s

4
ξt
2|00〉〈00| + 2 + 2r − ξt (1 + c3 + r + s)

4
ξt (|10〉〈10| + |01〉〈01|)

+ 4 − 2ξt (2 + r + s) + ξt
2(1 + c3 + r + s)

4
|11〉〈11|, (14)

respectively, and by calculating the corresponding eigenvalues, the von Neumann
entropies can be written as

S(ρ̂σx B) = Sbin

(
1 − √

�

2

)

+ 1,

S(ρ̂σz B) = −(ηlog2η + 2ϑ log2ϑ + νlog2ν), (15)

where Sbin(x) = −x log2x − (1 − x)log2(1 − x) is defined as a binary entropy,
� = 1 − 2ξt + ξt

2 + c12ξt 2 − 2ξt s + 2ξt 2s + ξt
2s2, η = (1 + c3 + r + s)ξt 2/4,

ϑ = [2 + 2r − ξt (1 + c3 + r + s)]ξt/4, and ν = 1 − η − 2ϑ .
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Fig. 2 (Color online) Dynamics of entropic uncertainty, lower bound, QD and the trace distance of the
bipartite system versus timescale, δ0t , when the initial state is prepared in a maximal entangled state with
r = s = 0 and (c1, c2, c3) = (1,−1, 1). LHS: the entropic uncertainty expressed by Eq. (2); RHS:
right-hand side of Equation (2); QD: the quantum discord of AB; D(ρ1(t), ρ2(t)): trace distance of the
system independently interacting with a structured reservoir possessing Lorentz spectrum, J (ω). In the
strong-coupling regime, δ0/� = 100 is set for subgraphs (a) and (d), and δ0/� = 10 for subgraphs (b)
and (e); In the weak-coupling regime, δ0/� = 0.2 is set for subgraphs (c) and (f)

On account of ρ̂B = TrA(ρ̂AB), the entropy of the quantummemory is easily given
as S(ρ̂B) = Sbin((1 + r)ξt/2). Speaking to the measurement for the observables σx
and σz , we obtain a form for the left-hand side (LHS) of the inequality (2), analytically
described by

U = Sbin

(
1 − √

�

2

)

− (ηlog2η + 2ϑ log2ϑ + νlog2ν) − 2Sbin((1 + r)ξt/2) + 1.

(16)

Now, let us examine the non-Markovian effect on the uncertainty in detail. When a
maximally entangled state is taken as the initial state with r = s = 0 and (c1, c2, c3) =
(1,−1, 1), we here draw the dynamical uncertainty with respect to the evolution time,
t , for different ratios of the coupling strengths δ0/� in Fig. 2. Following Fig. 2, one can
see that in the strong-coupling regime (with δ0/� > 0.5), as shown in Fig. 2a, b, d, e,
the initial variation in the uncertainty behaves periodically with time and diminishes
to a fixed value. This can be interpreted as the characteristic non-Markovianity of
the information will lead to information being able to not only outflowing but also
backflowing as strong coupling induces the fluctuations in the trace distance of the
qubit system. These fluctuations result in the characteristic resonance in the system’s
evolution as well as the uncertainty.
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Fig. 3 (Color online)
Non-Markovianity (of the
composite system independently
interacting with a bosonic
structured reservoir possessing a
Lorentz spectral distribution) as
a function of δ0/�. Note that the
line is broken at δ0/� = 0.5,
which is a singular point
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In theweak-coupling regime (with δ0/� < 0.5), shown in Fig. 2c, f, the uncertainty

would first rise and then reduce with time, saturating into a fixed value in the limit of
long time. In addition, let us impose an effective method to map system’s evolution,
i.e., quantum correlation, which can be measured by so-called quantum discord (QD)
[67–69]

Q(ρ̂AB) = I(A : B) − C(A : B). (17)

For a bipartite system AB, the total correlation I(A : B) = S(ρ̂A)+ S(ρ̂B)− S(ρ̂AB)

and the classical correlation C(A : B) = S(ρ̂A) − min�B
i
S(ρ̂AB |�B

i ). Where �B
i

is denoted by all possible POVM on qubit B, S(ρ̂AB |�B
i ) = ∑

i qi S(ρ̂A
i ) repre-

sents the conditional von Neumann entropy of A. The density operator is ρ̂A
i =

TrB(�B
i ρ̂AB�B

i )/qi with the probability qi = TrAB(ρ̂AB�B
i ). The quantum correla-

tion (i.e., QD) and trace distance of the bipartite system monotonically reduce with
the increasing time. With these results in mind, we can ascertain that the measure-
ment uncertainty via entropy is not completely dependent upon the system’s quantum
correlation, Q(ρ̂AB), which can been derived analytically to be:

Q(ρ̂AB)= Sbin(ρ22+ρ44)+
∑4

i=1 λi log2λi +min{F1,F2}, (18)

for an arbitrary state of X-structure density matrix ρ̂AB , with

F1 = Sbin(�), (19)

F2 = −
∑

i
ρi i log2ρi i − Sbin(ρ11 + ρ33), (20)

where� = 1
2

{
1 +

√
[1 − 2(ρ33 + ρ44)]2 + 4(|ρ14| + |ρ23|)2

}
, ρi j stands for the ele-

ments of the ρ̂AB’s density matrix and λi denotes the four eigenstates of ρ̂AB .
To clearly display the evolution of an atomic system interacting with reservoirs

with memory, we may utilize an optimal pair of quantum states ρ̂1(0) = |++〉〈++ |
and ρ̂2(0) = | − −〉〈− − | as two initial states with |±〉 = 1√

2
(|e〉 ± |g〉), as having
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been verified in previous works [70]. After some algebra, the trace distance of the any
bipartite system can be derived as

D(ρ̂1(t), ρ̂2(t)) =
√

ξt (2 − 2ξt + ξt
2). (21)

To be explicit, D(ρ̂1(t), ρ̂2(t)) versus δ0t has been provided in Fig. 2(e-f) for dif-
ferent coupling regimes. Obviously, in the strong-coupling regime, D(ρ̂1(t), ρ̂2(t))
shows a resonant properties, implying information exchange between the system
to be measured and the environment is bidirectional rather than mono-directional
(non-Markovian). Moreover, it is directly shown that the larger value of δ0/� (non-
Markovianity) induces period-increasing resonance of the uncertainty. By contrast,
D(ρ̂1(t), ρ̂2(t)) is monotonically reduced which leads to a one-way information
flow from system to environment (Markovian). For the sake of quantifying the non-
Markovianity of the observed system, we drawN with respect to δ0/� in Fig. 3. From
the figure, it shows that for the weak-coupling regime with 0 ≤ δ0/� < 0.5, N is
equal to zero; this displays that the trace distance never increases during the evolu-
tion of the system and consequently the evolution of the system is Markovian. With
respect to the strong-coupling regime with δ0/� > 0.5, the evolution implies that D
is characterized by the resonant variation in the course of the evolution and thereby the
evolution is non-Markovian. Additionally, a larger N can induce a larger-amplitude
and longer-period oscillations in the uncertainty, as shown in Fig. 2.

Let us proceed by investigating the lower bound given by relation (2). For any two
Pauli observables, the complementarity cwill be 1/2 always.Moreover, the eigenvalues
of the generic state in (13) are derived as

�± = ξt

4
(φ ± √

ψ), (22)

�± = (ϕ ± √
χ)/4, (23)

where φ = 2 − ξt − c3 + (s + r)(1− ξt ), ψ = (c1 + c2)2 + (r − s)2, ϕ = 2− 2ξt +
ξt
2 + c3ξt 2 − ξt (1− ξt )(r + s) and χ = 4(1− ξt )

2 + (c1 − c2)2ξt 2 − 4ξt r + 4ξt 2r +
ξt
2r2 − 4ξt s + 4p2s + 2ξt 2rs + ξt

2s2. Thus, one can get the RHS of the uncertainty
relation which is analytically expressed as

Ub = 1 −
∑

υ,ε=±

(
�υ log2�υ + �ε log2�ε

) − Sbin((1 + r)ξt/2). (24)

As plotted in Fig. 2, LHS = RHS holds and the uncertainty will be minimal at t = 0,
implying Bob is capable of precisely capturing Alice’s measurement outcome in this
limitation. While LHS > RHS is satisfied and the uncertainty will increase ∀ t , t > 0,
which weakens Bob’s ability to predict the measurement outcome to some degree. It
is deserving of noting that the uncertainty and the bound will saturate toward a fixed
nonzero value in the limitation of t → ∞.

Remarkably, we argue that the uncertainty is capable of being well applied as an
entanglement witness. As we know, one of the criteria for witnessing entanglement
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Fig. 4 (Color online) Uncertainty with respect to �/δ0 for different values of δ0t when the initial state is
chosen to r = s = 0 and (c1, c2, c3) = (1, −1, 1). In graph (a), δ0t = 1; in graph (b), δ0t = 10. For the
two graphs, �/δ0 = 2 is the critical point (singular point) in both Markovian and non-Markovian regimes

is the condition S(A|B) < 0 is held; notably, this is a sufficient but not necessary
condition for entanglement witness. In this regard, we can infer that A and B are
entangled affirmatively when Ub ≤ 1 within this model. In this sense, the lower
bound can be effectively applied as an entanglement witness. If Ub ≤ 1 is satisfied,
we can conclude that bipartite entanglement is emerging.

Now we continue to examine the effect of the different ratio �/δ0 on the
measurement uncertainty. It has been shown that the uncertainty as a function of �/δ0
is drawn in Fig. 4 for different δ0t . For a fixed value of δ0t , the QD monotonically
decreases with the growth of �/δ0. The uncertainty will experience diverse dynamical
performance with different δ0t . The uncertainty will increase with the increasing ratio
�/δ0 for small δ0t ; otherwise, the uncertainty will initially increase and then decrease
with increasing �/δ0 in the case of relatively large δ0t , as shown in Fig. 4. We note
that when t is fixed, a small value of reservoir correlation time, τr, can induce the
larger amount of the measurement uncertainty of interest, and vice versa. This is not
surprising as a smaller τr can induce Markovianity in the observed system, resulting
in faster one-way information outflow into the environment.

4 Physical interpretations on the dynamical properties of the
uncertainty

Empirically, the dynamical evolution of the uncertainty stems from the quantum corre-
lation of the system to be observed. However, as stated before, we obtain an interesting
result that the lower bound of the uncertainty is not completely determined by the
degree of quantum correlation of the composite system. To explicitly explain this,
let us render a reliable proof to our statements and reveal the quantum nature of the
phenomenon with respect to the dynamics of the uncertainty.
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Fig. 5 (Color online) Dynamics of the uncertainty bound, the mutual information and the entropy of A
under Markovian and non-Markovian regimes. Graph a: �/δ0 = 5 and graph b �/δ0 = 0.01 when the
initial state is prepared in r = s = 0 and (c1, c2, c3) = (1, −1, 1). The blue line represents the bound Ub ,
the red line represents the mutual information I(A : B), and the magenta line represents the entropy of the
subsystem A

4.1 The origin of the lower bound

To explain the dynamical behavior of the uncertainty within the current scenario, we
combine Eqs. (2) and (17); one can easily obtain a relation between the QD and the
lower bound

Ub = Sce − Q(ρAB) + log2
1

c
, (25)

withSce ≡ min�B
i
[S(ρ̂AB |�B

i )].We can differentiate both sides of the above equation
with respect to time, t , and obtain

d

dt
Ub ≡ d

dt
Sce − d

dt
Q(ρAB), (26)

due to log2
1
c being a constant,which straightforwardly indicates that the lower bound is

inherently anti-correlatedwith the quantumdiscordQ(ρAB) andmeanwhile correlated
with the conditional von Neumann entropy Sce of A to be observed. As a result, we
can infer that the rate of change of Ub is not only determined by the variation in QD,
but also by the variation in the entropy Sce. With these in mind, we can conclude
that Q(ρAB) and Sce act as competing factors in determining the magnitude of the
bound. Therefore, we argue that the uncertainty should be not entirely synchronous
with quantum correlation of the observed system.
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Another explanation can be given according to mutual information. The bound can
be expressed as Ub = S(ρ̂A) − I(A : B) + log2

1
c , which can lead to a differential

equation

d

dt
Ub ≡ d

dt
S(ρ̂A) − d

dt
I(A : B). (27)

From the above equation, one can infer that the variation rate of Ub is correlated with
von Neumann entropy S(ρ̂A) of A to be measured, while anti-correlated with the
mutual information I(A : B). For clearness, we draw the dynamics of uncertainty
bound, the mutual information, and the entropy of the subsystem A in Fig. 5. As to
the maximally entangled initial state employed, in the weak-coupling (Markovian)
regimes, the mutual information will decrease from the maximum 2 and saturate into
theminimum0as the evolution timegoes,while the entropy of Awill decrease from the
maximum 1 and saturate into the minimum 0, as shown in Fig. 5a. This reflects that the
A and B will become disentangled in a long time limit under suchMarkovian regimes.
And the measurement uncertainty will increase and saturate into a fixed value. On the
other hand, in the strong-coupling (non-Markovian) regimes, the mutual information
will firstly decrease from the maximum 2 and then vibrate up to the minimum 0 as
the time goes, and the entropy of A exhibits the same variation trend as I(A : B),
which shows the dynamic of the mutual information is synchronous with that of A’s
entropy as displayed in Fig. 5b. And the measurement uncertainty will increase and
then vibrate up to a fixed value. Specially, there exists another case which is that how
the uncertainty will evolve if the A is isolated and free from any noises. To answer this
question, we can resort to Eq. (27) and d

dt S(ρ̂A) = 0. Based on this equation, one can
easily get that the mutual information of the system is responsible for the dynamic of
the lower bound, and explicitly the lower bound is completely anti-correlated with the
mutual information in the situation of qubit A being isolated from any noises.

4.2 The relation between themeasurement uncertainty and Bell non-locality

In this subsection, let us examine the relation between the entropic uncertainty and
the quantum non-locality. It has been found the entropic uncertainty is oppositely
associated with the quantum non-locality of the system. Firstly, let us briefly review
the Bell-CHSH inequality [71,72], which can be canonically written as

BCHSH = a · σ ⊗ (b + b′) · σ + a′ · σ ⊗ (b − b′) · σ , (28)

with the unit vectors a, a′, b, b′ in the three dimensions, and σ = (σx , σy, σz) being
the standard Pauli matrices. For a bipartite systemwith the density matrix ρ̂, its CHSH
inequality can be expressed as

B = |〈BCHSH〉| = |Tr(ρ̂BCHSH)| ≤ 2. (29)

Derived from the results in Ref. [73–75], the maximal quantumCHSH inequality of an

arbitrary two-qubit X -structure state can be simplified as B = 2
√
maxi< j (�

2
i + �2

j )
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Fig. 6 (Color online) The uncertainty and the non-localityB of the systemas a function of t in units of δ0 with
the different coupling ratio�/δ0 when the initial state is prepared in r = s = 0 and (c1, c2, c3) = (1,−1, 1).
In graph (a), the blue lines: �/δ0 = 10, and the red lines: �/δ0 = 1; in graph (b), δ0t = 10

with i, j = 1, 2, 3, where

�1 = 2(|ρ14 + ρ23|), �2 = 2(|ρ14 − ρ23|), �3 = ρ11 − ρ22 − ρ33 + ρ44. (30)

The lower bound of the measurement uncertainty and the Bell non-locality versus
the time t are drawn in Fig. 6. In Markovian regimes, it is shown that the lower
bound firstly increases from a small value and then decreases into a fixed value, with
the growing time. In shape comparison with former, the Bell non-locality has the
opposite evolutionary trend, as shown in Fig. 6a. Notably, the Bell non-locality exists
the maximal violation B = 2

√
2 > 2. With respect to non-Markovian regimes, the

dynamic of the Bell non-locality shows a resonant character and is frozen to a value
less than 2 with the growing time, and we can see that the dynamic of the lower bound
is fully anti-correlated with that of B. By the above analysis, we thus argue that the
lower bound is essentially anti-correlated with the Bell non-locality of the system to
be probed. Incidentally, there exist the similar freezing behaviors for quantum discord
and coherence in the current scenario [76,77]. For simplicity, we here do not illustrate
them in detail.

5 Conclusions and remarks

Herein we have examined the dynamics of the measurement uncertainty for bipar-
tite separately coupled with two structured bosonic reservoirs. Explicitly, we study
the non-Markovian effects on the entropic uncertainty for measuring two incompati-
ble observables. It has been verified that stronger non-Markovianity can lead to both
larger-amplitude and longer-period oscillations in the dynamics of QMA-EUR, result-
ing from a slower pace variation in the trace distantD. This may be understood as the
information undergoing bidirectional flow between the qubits and the multi-degree-
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of-freedom reservoirs in the long time limit. While, in the Markovian regime (with
δ0/� < 0.5), the uncertainty will first increase and then gradually decrease to a fixed
value with increasing time accompanied by amonotonic decrease inD and inQ(ρ̂AB).
Notably, we deduce that the dynamical behavior of the lower bound is not fully deter-
mined by quantum correlation of the system, but by the conditional entropy Sce; this
implies there exists a competition between Q(ρ̂AB) and Sce determining the magni-
tude of Ub. Moreover, the uncertainty bound has been proved which is alternatively
affected by both the mutual information I(A : B) of the system and the entropy of
the reduced subsystem A to be measured. At last, we reveal the entropic uncertainty
of interest is possibly oppositely correlated with the Bell non-locality B of the system.
Thus, we believe that our explorations may provide some insight into the dynamical
characteristic of the measurement uncertainty via entropy in non-Markovian regimes
and shed light on quantum multi-component incompatible measurements in realistic
environments.
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