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Quantum Annealing for Prime 
Factorization
Shuxian Jiang1, Keith A. Britt2, Alexander J. McCaskey   2, Travis S. Humble2 & Sabre Kais1,3

We have developed a framework to convert an arbitrary integer factorization problem to an executable 
Ising model by first writing it as an optimization function then transforming the k-bit coupling (k ≥ 3) 
terms to quadratic terms using ancillary variables. Our resource-efficient method uses N(log ( ))2  binary 
variables (qubits) for finding the factors of an integer N. We present how to factorize 15, 143, 59989, and 
376289 using 4, 12, 59, and 94 logical qubits, respectively. This method was tested using the D-Wave 
2000Q for finding an embedding and determining the prime factors for a given composite number. The 
method is general and could be used to factor larger integers as the number of available qubits 
increases, or combined with other ad hoc methods to achieve better performances for specific numbers.

Integer factorization reduces an integer N to its factors p and q such that pq = N. While this fundamental prob-
lem in number theory is computationally hard in practice, integer factorization is not believed to belong to the 
class of NP-hard problems. However, all known classical factoring algorithms which are deterministic and don’t 
have unproven hypotheses require time exponential in logN. For example, the fastest, known classical algorithm 
for integer factorization is the general number field sieve method1, which scales exponentially in the number of 
operations required with respect to the integer N. Thus, the integer factorization problem has been used as a basic 
hardness assumption for many encryption methods including the widely deployed RSA cryptographic system. 
With broad applications in cryptographic data storage and communications2, identifying new methods for inte-
ger factorization plays an important role in modern information security.

Quantum computing theory has the potential to reduce the number of operations required for solving the 
integer factorization problem. Within the circuit model of quantum computation, Shor’s algorithm is perhaps 
the most well-known method for integer factorization, in which the number of operations to factorize an inte-
ger N is polynomial in the size logN3. This exponential speedup over the general number field sieve is achieved 
by reducing factorization to the order-finding problem. Several experimental demonstrations using quantum 
computing hardware have validated the correctness of Shor’s algorithm for small integer values, including early 
work by Vandersypen et al.4 to factorize N = 15 using seven spin-1/2 nuclei in a molecule as qubits. Subsequent 
experiments by Lanyon et al.5, Lu et al.6, and Politi et al.7 implemented compiled versions of Shor’s algorithm 
using photonic systems for factoring 15. Martín-López et al.8 factored 21 using qubit recycling, and Lucero et al.9 
used superconducting qubits to factor 15. Geller et al.10 used a simplified version of Shor’s algorithm for factoring 
products of the Fermat primes 3, 5, 17, 257, and 65537. Recent work from Grosshans et al. has shown how factor-
ing safe semi-primes using the quantum order-finding algorithm can reduce the failure probability11.

An equally powerful model of quantum computing is the adiabatic quantum computing (AQC) model12,13, 
which can also solve the integer factorization problem. Peng et al. first developed integer factorization within 
AQC by reducing it to unconstrained optimization and solving this problem using adiabatic quantum dynamics. 
They further validated these ideas experimentally using a three-qubit NMR quantum processor for the case of 
N = 2114, while Xu et al. subsequently factored 143 using similar NMR technology15. Schaller et al. developed a 
novel approach based on multiplication tables that can be cast as an optimization, which they have demonstrated 
for biprimes up to N = 21716. Dridi et al. furthered these ideas by using Gröbner bases to reduce the number 
of auxiliary variables required and simplify equations, thereby enabling a demonstration of factorization up to 
22335717.

In this contribution, we introduce a new procedure for solving the integer factorization problem using quan-
tum annealing18,19 which utilizes adiabatic quantum computation. Differ from the recent work20 which sketched 
the hardware design of reversible multiplier to achieve factorization, we provide specific mathematical deriva-
tions to be tested on the existing hardware. We begin by describing a direct method for integer factorization that 
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reduces the problem to unconstrained optimization. We review how this optimization problem can be reduced to 
a quadratic form Ising Hamiltonian and be solved using quantum annealing. We then describe a modified multi-
plication table method that reduces the overall resource requirements on the optimization problem and permits 
methods to account for constraints that may appear in quantum annealing hardware, such as connectivity and 
number of qubits. Our modification also reduces the range of coefficients in the underlying cost function without 
increasing the number of qubits required. This method avoided the time-consuming preprocessing steps17 to 
achieve comparable results, and could be combined with other ad-hoc function simplification methods to further 
reduce the number of qubits or other aspects. We finally tested both methods with results from experimental 
demonstrations using quantum annealing hardware.

Background
Quantum Annealing was introduced18 to solve optimization problems using quantum fluctuations to transit to 
the ground state, compared to simulated annealing which uses thermal fluctuations to get to the global minimum. 
Quantum fluctuations such as quantum tunneling21 provide ways of transitions between states. The transverse 
field controls the rate of the transition, as the role of temperature played in simulated annealing.

Farhi et al.12 remodeled the procedure as Adiabatic Quantum Computing(AQC), which finds the energetic 
ground state of a problem Hamiltonian by adiabatically evolving the quantum state. If the system begins at the 
ground state, after the adiabatic evolution, the system will remain at the ground state. By combining the initial 
Hamiltonian HB and the problem Hamiltonian HP linearly, the system could be defined as a time-dependent 
Hamiltonian = − +( )H t H H( ) 1 t

T B
t
T P, where the duration T defines the time-scale for evolution and controls 

the rate at which the time-dependent Hamiltonian changes, the initial Hamiltonian HB is of the form 
σ= −∑ =HB i

L
x

i
1

( ) over L qubits with the Pauli operator σx
i( ) defining the x-basis of the i-th qubit. The problem 

Hamiltonian HP is in the form of Ising model over L qubits as
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where σz
i( ) defines the z-basis for the i-th qubit and the local fields hi and couplings Jij define the problem instance.

Computation within the AQC model evolves the L-qubit quantum state under the time-dependent 
Hamiltonian H(t) according to the Schrödinger equation ψ ψ=∂

∂
i t H t t( ) ( ) ( )

t
 , where |ψ(t)〉 is the state of the 

system at time t ∈ [0, T] and we will set ℏ = 1. Let |φi(t)〉 be the i-th instantaneous eigenstate, such that 
H(t)|φi(t)〉 = Ei(t) |φi(t)〉, and let the initial state of the system be the ground state at time t = 0, such that 
|ψ(0)〉 = |φ0(0)〉. According to the adiabatic theorem22, the system state will remain in the instantaneous ground 
state of the time-dependent Hamiltonian provided the evolution is sufficiently slow to prevent excitations to 
higher-lying states. Under these idealized adiabatic conditions, the system will evolve into the energetic ground 
state of the problem Hamiltonian as |ψ(T)〉 = |φ0(T)〉. This prepared quantum state of L qubits is then measured 
to generate a classical string of L bits that represents the solution to the encoded factorization problem.

Several practical considerations limit the applicability of the AQC model for solving optimization problems. 
Foremost is the requirement that changes in the quantum state must be adiabatic, i.e, slow, relative to the inter-
nal timescales of the instantaneous Hamiltonian H(t). Theoretical analyses of this requirement provide a best 
lower bound on the time T as O(Δ−2), where Δ is the minimum energy gap within the instantaneous eigen 
spectrum of H(t)13. However, the minimum spectral gap is dependent on the specific instances of the initial and 
final Hamiltonians and the interpolation between them. A priori knowledge of spectral gap information would 
provide a significant insight into the underlying optimization problem, if not the solution directly, and therefore 
is an impractical expectation for a computational method. In addition, the pure-state model for AQC fails to 
account for finite-temperature effects observed in actual hardware as well as unexpected environmental coupling, 
unpredictable control noise, unwanted crosstalk, and other imperfections.

Practically quantum annealing relaxes the AQC with guarantee that the observed final state corresponds to 
the energetic ground state. However, the probability to observe the energetic ground state may be reduced due to 
physical noise and non-adiabatic dynamics. The resulting error rate pe(L) characterizes the quantum annealing 
dynamics, which is most accurately modeled as an open quantum system of L-qubits evolving the presence of an 
uncontrolled environment. The quantum annealing model is therefore more robust to the above practical con-
siderations but it is necessarily a probabilistic computational model. Statistical sampling of a quantum annealing 
computation is always necessary to gather confidence in the observed result. Quantum annealing may also be 
interpreted as a meta-heuristic for managing noisy AQC computation, whereby the aggregate likelihood of suc-
cess ps is determined by the number of samples S as ps = 1−(pe)S. The number of samples necessary to achieve a 
desired probability of success is therefore S ≥ log(1−ps)/log(pe). For a fixed annealing duration T and probability 
of success ps, we may expect the probability of error p to increase as the size of the system increases, i.e., as L 
increases. The rate at which the sample number S increases with system size plays an important role in deter-
mining the computational complexity of using the quantum annealing model. For example, an error rate that 
increases exponentially with system size, i.e., pe ∝ exp(L), yields a sampling rate that increases linearly.

A related practical consideration is the resource efficiency with which quantum annealing can be imple-
mented. Specifically, the number of qubits necessary to realize the problem Hamiltonian HP influences not only 
the number of samples required but also the feasibility of demonstrating the method on available hardware. The 
most general case of L-qubit Hamiltonian may include all-to-all connectivity, whereby each qubit must interact 
with every other qubits. However, most of the existing hardware does not permit such connectivity directly, 
and methods for realizing implicit connections have been developed23,24. In our implementation of integer fac-
torization using the Ising Hamiltonian, it is necessary to compose a problem Hamiltonian in terms of pairwise 
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interactions, and we develop an efficient transformation of the factoring problem Hamiltonian into pair-wise 
coupling.

Methods
We describe two methods for implementing integer factorization within the quantum annealing model. We found 
these two corresponding Hamiltonians HP to encode the factors of an input integer N, such that the energetic 
ground state corresponds to factorization of the input. The first is a direct method to compute the factors of 
N = pq by constructing the associated optimization problem as an Ising Hamiltonian. The second method is based 
on the modified multiplication tables to translate the problem into the Ising Hamiltonian. We test our methods 
using experimental quantum computing hardware appropriate for quantum annealing. The D-Wave 2000Q pro-
cessor natively implements an Ising model Hamiltonian and provides programmable control over the parameters 
hi and Ji,j as well as the annealing duration T.

Direct Method.  Our direct method factors N = pq, where p and q are prime numbers. We set = ⌊ ⌋l plog ( )1 2  
and = ⌊ ⌋l log q( )2 2 . Because p and q are prime numbers, we use the binary representations = ...− −p x x x( 1)l l1 2 1 21 1

 
and = ...+ − + −q x x x( 1)l l l l l2 3 21 2 1 2 1

, where l1 > l2 and xi ∈ {0, 1} for i = 1 to l1 + l2−2. We define the cost function 
... = −+ −f x x x x x N pq( , , , , , ) ( )l l1 2 3 4 2

2
1 2

, and explicit multiplication of the binary representations for p and q 
yields a sum of binary products. We reduce the resulting 3-local terms to 2-local terms using the following equiv-
alence24: for x, y, z ∈ {0, 1}, xy = z iff xy−2xz−2yz + 3z = 0, and xy ≠ z iff xy−2xz−2yz + 3z > 0. Therefore,

= + − − + =x x x x x x x x x x x x x x x2( 2 2 3 ) if1 2 3 4 3 1 2 1 4 2 4 4 4 1 2

and

< + − − + ≠x x x x x x x x x x x x x x x2( 2 2 3 ) if1 2 3 4 3 1 2 1 4 2 4 4 4 1 2

thus, the x1x2x3 term may be transformed to quadratic form by replacing x1x2 with x4 plus a constraint in the form 
of a penalty term:

= + − − +x x x x x x x x x x x xmin( ) min( 2( 2 2 3 ) (2)1 2 3 4 3 1 2 1 4 2 4 4

By introducing a new variable and adding the penalty term, we are able to transform 3-local terms to 2-local 
terms.

For integer factorization, we require 





 +







 = +− −l l

2 2
l l l l1 2 ( 1)

2
( 1)

2
1 1 2 2  auxiliary variables to form a quadratic 

cost function, and when l1 = l2 = l this number is l × (l−1). Counting the variables to denote the factors them-
selves, the quadratic function requires L = 2 × (l−1) + l × (l−1) = (l + 2) × (l−1) binary variables in total. Since 

=l N(log( )) , =L N(log ( ))2 . We could also let = ... = ...− + − −p x x q x x(1 1) , (1 1)l l l l2 1 2 4 1 21 1 2 1
 when lengths 

of p and q are prefixed.
We illustrate this direct method of factorization for the case of N = 15. Because ≤ < <p qlog ( ) 2 log ( ) 42 2 , we 

define p = (x11)2 and q = (x2x31)2. The objective function f(x1, x2, x3) = (N−pq)2 may then be reduced to the 3-local 
form:

= − − + − − − + .f x x x x x x x x x x x x x( ) 128 56 48 16 52 52 96 1961 2 3 1 2 1 3 2 3 1 2 3

We reduce the 3-local terms to 2-local terms using the method described above to obtain

′ = − − + − +
− − − + +

f x x x x x x x x x x x x x
x x x x

( ) 200 48 512 16 512 128
52 52 96 768 196,

1 2 1 3 1 4 2 3 2 4 3 4

1 2 3 4

where

= ′
=

f x x x x f x x x xmin ( , , , ) min ( , , , )
x x x

1 2 3 4 1 2 3 4
1 2 4

This result is a quadratic unconstrained binary optimization (QUBO) problem over L = 4 variables that may 
be transformed into an equivalent Ising Hamiltonian as defined in Eq. 1 by identifying the binary variable xi with 
the i-th spin state si = 2xi − 1. For N = 15, the local fields hT and couplings J of the Ising problem Hamiltonian are 
then determined to be

= −h (58, 50, 12, 80) (3)T

and

=






− −
−






J

25 6 64
2 64

16 (4)

It is notable that the L × L coupling matrix J is generally dense on the upper triangle, indicating that L(L−1)/2 
couplings are necessary. Similarly Ising parameters may be generated for other integers N by the appropriate 
quadritization into a QUBO problem and then reduced to Ising form.
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Modified Multiplication Table Method.  The second method is based on modified multiplication table. 
It reduces the range of Ising parameter values used as coefficients for the local fields and couplings. At the mean-
time, it considers to use a smaller number of carry variables without complicated preprocessing.

The modified multiplication table method uses local minimizations over the products of individual binary 
substring bits representing the integers p and q. It divides the multiplication table into several blocks, and consid-
ers each block individually. We could also choose the size of each block to get the desired range of parameters and 
the number of variables, or make a balance between them. A detailed analysis of the range of coefficients is shown 
in the last section of the supplemental material. Note that the modified multiplication table method does not 
eliminate the need for quadratization of 4-body and 3-body product terms and auxiliary variables are required. 
However, this approach does reduce the number of these higher-order terms compared to the direct method, 
which makes it possible to embed larger problem sizes on currently available quantum hardware.

We describe this method by an illustrative example of N = 143, for which p = 13 and q = 11. Past approaches 
for integer factorization constructed a system of equations from each column or part of each column in the mul-
tiplication table17,25,26, which accounts for a carry bit or several carry bits for each part. In our approach, we divide 
the multiplication table into blocks so that it is only needed to use carries between blocks. This greatly reduced the 
number of carries, thus the total number of variables reduced too.

As shown in Table 1 for N = 143, we introduce two sets of carry bits. We denote them using ci ∈ {0, 1}, and 
the two-bit numbers (c2c1)2 = c2 × 2 + c1 and (c4c3)2 = c4 × 2 + c3 represent the carry bits for each of the divided 
columns in the table. Note that the columns are composed along two-bit domains, so that addition within each 
block is over two-bit numbers. But the sums are over four-bit numbers. The resulting block system of equations 
derived from Table 1 is

(5)

p p q q p q c c
c c

q p q p c p q p q c c c
c c

c q p c

( ) 2 ( ) 2 2 (11)
8 4 3

( ) 2 (1 1 ) 2 2 (01)
8 4 1

(1 ) 2 ( ) (100)
4

2 1 1 2 1 1 2
3

1
2

2

2 1

1 2 2 1 2 2 1 1 2 1 4
3

3
2

2

4 3

4 2 2 3 2

+ + × + + = × + × +
= × + × +

+ + + × + + + + + = × + × +
= × + × +

+ × + + + =
=

Because this modified multiplication table method calculates carries only for each block, it avoids requiring 
carry bits for each column in the multiplication table. This reduces the overall complexity of the computation 
by reducing the number of carry bits as well as the number of couplings between bits. In the limit of a single 
column per block, the conventional multiplication table is recovered, while in the limit of a single equation the 
direct method is recovered. Instead of making the sum of each column equal to every each bit of the number to 
be factored as in a conventional multiplication table, we make each block of the multiplication table equal to the 
corresponding block of the number to be factored. As shown in the appendix material, the equations for these 
blocks may be reduced to the non-negative cost function

= + + − − + + −

+ + + + − − + +

+ + + + + + − .

f p q c p p q q c c p q
q p q p c c c p q p q

c q p c c

( , , ) (2 2 2 8 4 3)
(2 2 2 2 8 4

1) ( 2 2)

2 1 1 2 2 1 1 1
2

1 2 2 1 2 4 3 2 1 1 2

1
2

2 2 3 4
2

This form may be expanded and further simplified using the property = =x x xfor 0, 1i i i
2 , while the remain-

ing cubic and higher-order terms like c1p1q1 and p1p2q1q2 can be reduced to quadratic form by introducing auxil-
iary variables. In particular, we note that the quadratization of the negative term is similar to the position term, 
e.g.,






− = − + − − + =
− < − + − − + ≠

x x x x x x x x x x x x x x x
x x x x x x x x x x x x x x x

2( 2 2 3 ) if
2( 2 2 3 ) if

1 2 3 4 3 1 2 1 4 2 4 4 4 1 2

1 2 3 4 3 1 2 1 4 2 4 4 4 1 2

as detailed in the appendix material, the conversion to QUBO form leads to the parameters for the Ising 
Hamiltonian. For N = 143, this yields the local fields

27 26 25 24 23 22 21 20

p 1 p2 p1 1

q 1 q2 q1 1

1 p2 p1 1

q1 p2q1 p1q1 q1

q2 p2q2 p1q2 q2

1 p2 p1 1

carries c4 c3 c2 c1

p × q = 143 1 0 0 0 1 1 1 1

Table 1.  Multiplication table for 13 × 11 or 11 × 13 = 143 in binary.
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= . . . . − − − − − −h (130 5, 107 5, 130 5, 107 5, 41, 82, 3, 6, 137, 81, 107, 81) (6)T

and the upper triangular coupling matrix

=







. − − − − − −
. − − − −

− − − − − −
− − − −

− − −
− − −

− − −
− − −







J

2 79 47 5 2 4 8 16 148 84 0 0
47 5 71 8 16 1 2 6 6 124 84

2 2 4 8 16 148 0 0 84
8 16 1 2 6 84 124 6

34 4 8 8 1 2 1
8 16 16 2 4 2

34 0 4 8 4
0 8 16 8

0 1 0
0 0

0 (7)

Our approach requires a decision to partition the columns of the multiplication table into blocks, and this 
choice must balance the number of unknown variables (carries) against the range of coefficients in the problem 
Hamiltonian. We illustrate this choice for the factorization of biprimes 59989 and 376289 in Tables 2 and 3. Our 
approach is to set the bit-length of the carry variable for each block based on the largest possible number of that 
block(the right neighboring columns). For example, the maximum carry for the right-most block in the multi-
plication table of N = 59989 is 3 which requires two bits to represent. Thus, the bit-length of the carry variable for 
this block is 2, i.e., (c2c1)2. Similarly, for N = 376289, the bit-length of the carry variables for the right-most block 
is 3, while the bit-length of the carry variable for the third block is 4. Because this bit-length is larger than the size 
of the fourth block, which has a bit-length of 3, the most significant bit of the carry is included in the neighboring 
block, i.e., the fifth block in this example.

215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

p 1 p6 p5 p4 p3 p2 p1 1

q 1 q6 q5 q4 q3 q2 q1 1

1 p6 p5 p4 p3 p2 p1 1

q1 p6q1 p5q1 p4q1 p3q1 p2q1 p1q1 q1

q2 p6q2 p5q2 p4q2 p3q2 p2q2 p1q2 q2

q3 p6q3 p5q3 p4q3 p3q3 p2q3 p1q3 q3

q4 p6q4 p5q4 p4q4 p3q4 p2q4 p1q4 q4

q5 p6q5 p5q5 p4q5 p3q5 p2q5 p1q5 q5

q6 p6q6 p5q6 p4q6 p3q6 p2q6 p1q6 q6

1 p6 p5 p4 p3 p2 p1 1

c11 c10 c9 c8 c7 c6 c5 c4 c3 c2 c1

1 1 1 0 1 0 1 0 0 1 0 1 0 1 0 1

Table 2.  Multiplication table for 251 × 239 = 59989 in binary.

218 217 216 215 214 213 212 211 210 29 28 27 26 25 24 23 22 21 20

1 p8 p7 p6 p5 p4 p3 p2 p1 1

1 q8 q7 q6 q5 q4 q3 q2 q1 1

1 p8 p7 p6 p5 p4 p3 p2 p1 1

q1 p8q1 p7q1 p6q1 p5q1 p4q1 p3q1 p2q1 p1q1 q1

q2 p8q2 p7q2 p6q2 p5q2 p4q2 p3q2 p2q2 p1q2 q2

q3 p8q3 p7q3 p6q3 p5q3 p4q3 p3q3 p2q3 p1q3 q3

q4 p8q4 p7q4 p6q4 p5q4 p4q4 p3q4 p2q4 p1q4 q4

q5 p8q5 p7q5 p6q5 p5q5 p4q5 p3q5 p2q5 p1q5 q5

q6 p8q6 p7q6 p6q6 p5q6 p4q6 p3q6 p2q6 p1q6 q6

q7 p8q7 p7q7 p6q7 p5q7 p4q7 p3q7 p2q7 p1q7  q7

q8 p8q8 p7q8 p6q8 p5q8 p4q8 p3q8 p2q8 p1q8 q8

1 p8 p7 p6 p5 p4 p3 p2 p1 1

c14 c10 c9 c8 c7 c6 c5 c4 c3 c2 c1

c13 c12 c11

1 0 1 1 0 1 1 1 1 0 1 1 1 1 0 0 0 0 1

Table 3.  Multiplication table for 659 × 571 = 376289 in binary.
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We estimate the number of variables needed to construct the Ising Hamiltonian that encodes the factorization 
problem for N = 59989 and 376289. This requires quadratization of the resulting systems of factoring equations 
followed by reduction to the Ising form, exactly as discussed explicitly above. For the case of N = 59989, we have 
l1 = l2 = 6, and therefore 12 variables are required to represent the factors themselves plus 11 variables to denote 
the carries, while 36 auxiliary variables are required for quadratization of the factoring equations. The total num-
ber variables is 59. For N = 376289, we have l1 = l2 = 8 with 14 carries and 64 auxiliary variables. As noted above, 
sometimes vary bits in the multiplication table will overlap, as is the case for column 214 of 376289 shown in 
Table 3. In such circumstances, we just simply add these carries in the table and then use the same method as 
before to find the corresponding Ising Hamiltonian. Thus, this problem Hamiltonian requires 94 qubits.

Generally, for factoring a biprime number, we use approximately log(N) binary variables to encode the integer 
factors and about log(N) binary variables to denote the carries where N is the number to be factored. An addi-
tional log2(N)/4 auxiliary binary variables are required for quadratization. Therefore, a total of approximately 
log2(N)/4 binary variables are required to represent the problem Hamiltonian and, consequently, a similar num-
ber of qubits must be available within hardware. As a point of reference, applying this method to the current 
factoring record for RSA-768 would require approximately 147456 qubits.

Experiments
We tested both the direct and modified multiplication table methods using quantum annealing hardware from 
D-Wave Systems. The D-Wave System hardware consists of a programmable platform of integrated supercon-
ducting flux qubits designed to operate within the quantum annealing model. In particular, the hardware system 
accepts as input a problem Hamiltonian HP presented in Ising form and the parameters h and J. The hardware 
also enables interpolation from the starting Hamiltonian HB and the final Hamiltonian at a rate controlled by the 
annealing duration T. Measurements of the resulting quantum state are performed in σz basis for each qubits.

While the latest 2000Q system contains up to 2048 qubits arranged in a connectivity pattern expressed as a 
16-by-16 Chimera graph, this sparse connectivity pattern requires additional resources to ensure the required 
interactions between the logical variables defining the problem Hamiltonian. This is accomplished by embedding 
the problem Hamiltonian into the hardware graph while maintaining the logical form of the cost function27–29. 
From the coupling matrix J, we define a graph G that represents the variables as vertices and non-zero coupling as 
edges. A minor embedding of G(V, E) into a hardware graph G′(V′, E′) is defined by a mapping φ ′G G:  such 
that each vertex v ∈ G is mapped to a connected subtree Tv of G′ and if (u, v) ∈ E then there exist iu, iv ∈ G′ such 
that iu ∈ Tu, iv ∈ Tv and (iu, iv) ∈ E′. If such a mapping φ exists between G and G′, we say G is a minor of G′ and we 
use G ≤ mG′ to denote such relationship.

The logical parameters for local fields and couplers should also be considered. In the parameter setting prob-
lem30, we assign each node and each edge in the minor embedding graph such that: (1) for each node in the tree 
Ti expanded by the same vertex i, its value ′h ik

 satisfies ∑ ′ =h hi ik
, (2) for each edge in the tree Ti expanded by the 

same vertex i, the value 
′

Ji i,k k
 needs to be large enough to make sure all physical qubits that correspond to the same 

logical qubit to be of the same value and (3) for each edge in the minor embedding graph which is in the original 
graph, we could use the same Jij value.

Our programmed implementation of these methods were written in C/C++ using the XACC programming 
framework31. XACC enables integration of the D-Wave solver application programming interface (SAPI) using 
a directive-based programming model. Pre-processing of the input N generated the Ising parameters for a logi-
cal Hamiltonian that was then embedded into the hardware graph structure. For minor embedding, we use the 
sapi_findembedding method included in the D-Wave 2000Q control software, SAPI version 3.0. This embedding 
methods is based on a randomized algorithm from Cai, Macready and Roy32, while access to these methods 
were managed using the XACC dwsapi-embedding plugin31. The corresponding biases and couplings for the 
embedded problem were generated using the logical Ising parameters. The output of the embedding was a pro-
gram implementation of the physical Ising model that was submitted for execution on the D-Wave processor. 
Additional parameters for the execution included the number of samples S and the annealing duration T. The 
default annealing schedule for the 2000Q was used for all executions. The output from each of the S execu-
tions was a measured binary string designating ±1 values for each spin variable. The number of samples was 
S = 10,000. Each returned string was then classified according to the corresponding energy for the physical Ising 
model and subsequently decoded into the factors p and q. A histogram of all solutions returned for a specific 
annealing time was recorded.

Figure 1(a,b) shows the frequency of each decoded solutions to the factorization problem for N = 15 and 21 
using the direct method. These observed solutions are decoded using the inverse of the embedding with majority 
vote used to resolve any ambiguity in results. The plot presents the decoded results in order of lowest energy to 
highest energy (left to right). For these two examples, the lowest energy solution corresponds to the correct fac-
tors. In addition, several other computed solutions decoded into the correct factors as the associated errors were 
resolved by the decoding method. For example, several solutions are labeled as (3,7) because the observed bit 
strings corresponded to high-energy states before decoding. Only the first (leftmost) corresponds to the lowest 
energy state. The others were higher energy solutions, thus can’t be counted as the correct solution.

Using the modified multiplication table method for factoring 143, we embed the problem Hamiltonian to 
D-Wave machine using the following method. Suppose n qubits are needed in the Hamiltonian, we divide n into 






n
4

 groups. For each group, we use 4 copies of the nodes with each ′ =h hi i
1
4k

. We assign each edge in the tree Ti 
the negative number with largest absolute value to make it a penalty term. This method guarantees the nodes 
correspond to the same original qubit have the same value. We assign each edge corresponding to the original 
edge in the problem graph the same Jij value. The embedded graph to D-Wave machine is in Fig. 2.
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The results graph are shown in Fig. 3. The final state of the part of the system which represents the problem 
solution will be |1 −1 −1 1〉 or |−1 1 1−1〉 with relatively high probability, which corresponds to solutions 
p = (1p2p11) = (1101)2 = 13, q = (1q2q11) = (1011)2 = 11 or p = 11, q = 13.

For factoring larger numbers like 376289 using D-Wave, we embed the Hamiltonians into the Chimera hard-
ware using the predefined function find_embedding and embed_problem available in the vendor’s software devel-
oper packages, because the problem graph can’t be embedded directly like the case 143 shown above which has 12 
qubits, due to the size limitation of the current Chimera hardware. For now, the largest number experimented for 
finding an embedding in D-Wave 2000Q is 249919 which equals to 509 × 491. It uses 74 qubits in the final Ising 
Hamiltonian, and embeds to 1803 physical qubits in Chimera graph.

Conclusions
We have presented two general methods for factoring integers using quantum annealing for optimizing a cost 
function that is reduced to an Ising Hamiltonian. Both methods requires N(log ( ))2  qubits in total, where N is 
the number to be factored. The novelty of our demonstration of quantum annealing for prime factorization is 
based on the reduction in quantum resources required to execute factoring and the experimental verification of 

Figure 1.  Experimental results on D-Wave machine: rates of getting different solutions. For example, the (3, 5) 
in the x-axis denotes the factorization of 15 is 3 multiplied by 5, the number in y-axis denotes the rate to get this 
factorization.

Figure 2.  Embedding the factoring instance N = 143 to Chimera graph. The nodes with the same color denote 
the same original qubit, with their connected lines corresponding to strong couplings. The left footnotes refer to 
which spin the node was embedded.
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the algorithmic accuracy using currently available hardware. As a proof-of-concept, we have demonstrated these 
methods by factoring integers using the D-Wave 2000Q quantum annealing hardware, but these methods may be 
used on any other quantum annealing system with a similar number of qubits, qubit degree of connectivity, and 
hardware parameter precision. Assuming that quantum annealing hardware systems will continue to grow both 
in the number of qubits and bits of precision capabilities, our methods offer a promising path toward factor much 
larger numbers in the future. It is also good to combine our method with other ad hoc methods to achieve signif-
icantly better performances for specific numbers.

Finally, we note that while our demonstrations of factoring have made use of currently available quantum 
annealers, there is an outstanding question regarding the asymptotic complexity for this approach. It is well 
known that algorithmic complexity within the AQC model depends on the minimum spectral gap between the 
ground and first-excited states of the underlying time-dependent Hamiltonian. Attempts to classify the complex-
ity of the spectral gap with respect to system size have not yet succeed and, indeed, Cubitt, Perez-Garcia, and Wolf 
have proven that the problem of claiming a Hamiltonian has a gap is undecidable in general33. Nonetheless, there 
is hope that our resource-efficient algorithms may find use in pre-processing potential factors for noisy factoriza-
tion algorithms, e.g., as suggested by Patterson et al. within the context of RSA34.

Data Availability
The data that support the plots within this paper and other findings of this study are available from the corre-
sponding author upon reasonable request.
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