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Quantum machine learning for electronic
structure calculations
Rongxin Xia1 & Sabre Kais1,2,3

Considering recent advancements and successes in the development of efficient quantum

algorithms for electronic structure calculations—alongside impressive results using machine

learning techniques for computation—hybridizing quantum computing with machine learning

for the intent of performing electronic structure calculations is a natural progression. Here we

report a hybrid quantum algorithm employing a restricted Boltzmann machine to obtain

accurate molecular potential energy surfaces. By exploiting a quantum algorithm to help

optimize the underlying objective function, we obtained an efficient procedure for the cal-

culation of the electronic ground state energy for a small molecule system. Our approach

achieves high accuracy for the ground state energy for H2, LiH, H2O at a specific location on

its potential energy surface with a finite basis set. With the future availability of larger-scale

quantum computers, quantum machine learning techniques are set to become powerful tools

to obtain accurate values for electronic structures.
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Machine learning techniques are demonstrably powerful
tools displaying remarkable success in compressing
high dimensional data1,2. These methods have been

applied to a variety of fields in both science and engineering, from
computing excitonic dynamics3, energy transfer in light-
harvesting systems4, molecular electronic properties5, surface
reaction network6, learning density functional models7 to classify
phases of matter, and the simulation of classical and complex
quantum systems8–14. Modern machine learning techniques have
been used in the state space of complex condensed-matter sys-
tems for their abilities to analyze and interpret exponentially large
data sets9 and to speed-up searches for novel energy generation/
storage materials15,16.

Quantum machine learning17—hybridization of classical
machine learning techniques with quantum computation—is
emerging as a powerful approach allowing quantum speed-ups
and improving classical machine learning algorithms18–22.
Recently, Wiebe et al.23 have shown that quantum computing is
capable of reducing the time required to train a restricted
Boltzmann machine (RBM), while also providing a richer fra-
mework for deep learning than its classical analog. The standard
RBM models the probability of a given configuration of visible
and hidden units by the Gibbs distribution with interactions
restricted between different layers. Here, we focus on an RBM
where the visible and hidden units assume {+1,−1} forms24,25.

Accurate electronic structure calculations for large systems
continue to be a challenging problem in the field of chemistry and
material science. Toward this goal—in addition to the impressive
progress in developing classical algorithms based on ab initio and
density functional methods—quantum computing based simula-
tion have been explored26–31. Recently, Kivlichan et al.32 show
that using a particular arrangement of gates (a fermionic swap
network) is possible to simulate electronic structure Hamiltonian
with linear depth and connectivity. These results present sig-
nificant improvement on the cost of quantum simulation for both
variational and phase estimation based quantum chemistry
simulation methods.

Recently, Troyer and coworkers proposed using a restricted
Boltzmann machine to solve quantum many-body problems, for
both stationary states and time evolution of the quantum Ising
and Heisenberg models24. However, this simple approach has to
be modified for cases where the wave function’s phase is required
for accurate calculations25.

Herein, we propose a three-layered RBM structure that
includes the visible and hidden layers, plus a new layer correction
for the signs of coefficients for basis functions of the wave
function. We will show that this model has the potential to solve
complex quantum many-body problems and to obtain very
accurate results for simple molecules as compared with the results
calculated by a finite minimal basis set, STO-3G. We also
employed a quantum algorithm to help the optimization of
training procedure.

Results
Three-layers restricted Boltzmann machine. We will begin by
briefly outlining the original RBM structure as described by24. For
a given Hamiltonian, H, and a trial state, jϕi ¼Px ϕðxÞjxi, the
expectation value can be written as:24

hHi ¼ hϕjHjϕi
hϕjϕi ¼

P
x;x′ hϕjxihxjHjx′ihx′jϕiP

x hϕjxihxjϕi

¼
P

x;x′ ϕðxÞhxjHjx′iϕðx′ÞP
x jϕðxÞj2

ð1Þ

where ϕ(x)= 〈x|ϕ〉 will be used throughout this letter to express

the overlap of the complete wave function with the basis function
|x〉, ϕðxÞ is the complex conjugate of ϕ(x).

We can map the above to a RBM model with visible layer units
σz1; σ

z
2::: σ

z
n and hidden layer units h1, h2... hm with σzi , hj ∈

{−1, 1}. We use a visible unit σzi to represent the state of a qubit i
—when σzi ¼ 1; jσzi i represents the qubit i in state j1i and when
σzi ¼ �1; jσzi i represents the qubit i in state j0i. The total state of
n qubits is represented by the basis jxi ¼ σz1σ

z
2:::σ

z
n
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. ϕðxÞ ¼ffiffiffiffiffiffiffiffiffi

PðxÞp
where P(x) is the probability for x from the distribution

determined by the RBM. The probability of a specific set x ¼
fσz1; σz2:::σzng is:
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Within the above ai and bj are trainable weights for units σzi
and hj. wij are trainable weights describing the connections
between σzi and hj (see Fig. 1.)

By setting 〈H〉 as the objective function of this RBM, we can
use the standard gradient decent method to update parameters,
effectively minimizing 〈H〉 to obtain the ground state energy.

However, previous prescriptions considering the use of RBMs
for electronic structure problems have found difficulty as ϕ(x) can
only be non-negative values. We have thus appended an
additional layer to the neural network architecture to compensate
for the lack of sign features specific to electronic structure
problems.

We propose an RBM with three layers. The first layer, σz,
describes the parameters building the wave function. The h's
within the second layer are parameters for the coefficients for the
wave functions and the third layer s, represents the signs
associated |x〉:

sðxÞ ¼ s σz1; σ
z
2:::σ

z
n

� � ¼ tanh
X
i

diσ
z
i þ c

 !
ð3Þ

The s uses a non-linear function tanh to classify whether the
sign should be positive or negative. Because we have added
another function for the coefficients, the distribution is not solely
decided by RBM. We also need to add our sign function into the
distribution. Within this scheme, c is a regulation and di are
weights for σzi . (see Fig. 1). Our final objective function, now with
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Fig. 1 Constructions of restricted Boltzmann machine. a The original
restricted Boltzmann machine (RBM) structure with visible σ iz and hidden hj
layers. b Improved RBM structure with three layers, visible, hidden and sign.
ai, wij, bj, di, c are trainable weights describing the different connection
between layers
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jϕi ¼Px ϕðxÞsðxÞjxi, becomes:

hHi ¼
P

x;x′ ϕðxÞsðxÞhxjHjx′iϕðx′Þsðx′ÞP
x jϕðxÞsðxÞj2

ð4Þ

After setting the objective function, the learning procedure is
performed by sampling to get the distribution of ϕ(x) and
calculating to get s(x). We then proceed to calculate the joint
distribution determined by ϕ(x) and s(x). The gradients are
determined by the joint distribution and we use gradient
decent method to optimize 〈H〉 (see Supplementary Note 1).
Calculating the the joint distribution is efficient because s(x) is
only related to x.

Electronic structure Hamiltonian preparation. The electronic
structure is represented by N single-particle orbitals which can be
empty or occupied by a spinless electron:33

Ĥ ¼
X
i;j

hija
y
i aj þ

1
2

X
i;j;k;l

hijkla
y
i a

y
j akal: ð5Þ

where hij and hijkl are one and two-electron integrals. In this study
we use the minimal basis (STO-3G) to calculate them. ayj and aj
are creation and annihilation operators for the orbital j.

Equation (5) is then transformed to Pauli matrices representa-
tion, which is achieved by the Jordan-Wigner transformation34.
The final electronic structure Hamiltonian takes the general form

with σ iα 2 σx; σy; σz; I
n o

where σx, σy, σz are Pauli matrices and I

is the identity matrix:35
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γ þ ::: ð6Þ

Quantum algorithm to sample Gibbs distribution. We propose
a quantum algorithm to sample the distribution determined by
RBM. The probability for each combination y= {σz, h} can be
written as:
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Instead of P(y), we try to sample the distribution Q(y) as:
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where k is an adjustable constant with different values for each
iteration and is chosen to increase the probability of successful
sampling. In our simulation, it is chosen as O

�P
i;j jwijj

�
.

We employed a quantum algorithm to sample the Gibbs
distribution from the quantum computer. This algorithm is based
on sequential applications of controlled-rotation operations,
which tries to calculate a distribution Q′(y) ≥Q(y) with an ancilla
qubit showing whether the sampling for Q(y) is successful23.

This two-step algorithm uses one system register (with n+m
qubits in use) and one scratchpad register (with one qubit in use)
as shown in Fig. 2.

All qubits are initialized as |0〉 at the beginning. The first step is
to use Ry gates to get a superposition of all combinations of {σz, h}

with θi ¼ 2arcsin
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

eai=k

eai=kþe�ai=k

q� �
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q� �
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and |y〉 corresponds to the

combination jyi ¼ jσz1:::σznh1:::hmi� as before when hj ¼ 1; jhji
represents the corresponding qubit in state j1i and when hj ¼
�1; jhji represents the corresponding qubit in state j0i.

The second step is to calculate ewijσ
z
i hj . We use controlled-

rotation gates to achieve this. The idea of sequential controlled-
rotation gates is to check whether the target qubit is in state |0〉 or
state |1〉 and then rotate the corresponding angle (Fig. 2). If qubits
σzi hj are in |00〉 or |11〉, the ancilla qubit is rotated by Ry(θij,1) and

otherwise by Ry(θij,2), with θij;1 ¼ 2arcsin
ffiffiffiffiffiffiffiffiffiffi
ewij=k

e
wijj j=k

r !
and

θij;2 ¼ 2arcsin
ffiffiffiffiffiffiffiffiffi
e�wij=k

ejwij j=k

q� �
. Each time after one ewijσ

z
i hj is calculated,

we do a measurement on the ancilla qubit. If it is in |1〉 we
continue with a new ancilla qubit initialized in |0〉, otherwise we
start over from the beginning (details in Supplementary Note 2).

After we finish all measurements the final states of the first
m+ n qubits follow the distribution Q(y). We just measure the

⎪hj

⎪hi

⎪0

Controlled-rotation Measurement Controlled-rotation Measurement

Ry (�i j ,1) Ry (�i j ,2) Ry (�i j ,2) Ry (�i j ,1) Ry (�kl,1) Ry (�kl,2) Ry (�kl,2) Ry (�kl,1)

⎪σz
i

⎪σz
k

|0>

Fig. 2 The example circuit for the second step of the controlled-rotation gate approach with measurements
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first n+m qubits of the system register to obtain the probability
distribution. After we get the distribution, we calculate all
probabilities to the power of k and normalize to get the Gibbs
distribution (Fig. 3).

The complexity of gates comes to O(mn) for one sampling and
the qubits requirement comes to O(mn). If considering the reuse
of ancilla qubits, the qubits requirements reduce to O(m+ n) (see
Supplementary Note 4). The probability of one successful

sampling has a lower bound e
�1
k

P
i;j
2jwijj and if k is set to

O
P

i;j jwijj
� �

it has constant lower bound (see Supplementary

Note 3). If Ns is the number of successful sampling to get the
distribution, the complexity for one iteration should be O(Nsmn)
due to the constant lower bound of successful sampling as well as
processing distribution taking O(Ns). In the meantime, the exact
calculation for the distribution has complexity as O(2m+n). The
only error comes from the error of sampling if not considering
noise in the quantum computer.

Summary of numerical results. We now present the results
derived from our RBM for H2, LiH and H2O molecules. It can
clearly be seen from Fig. 4 that our three layer RBM yields very
accurate results comparing to the disorganization of transformed
Hamiltonian which is calculated by a finite minimal basis set,
STO-3G. Points deviating from the ideal curve are likely due to
local minima trapping during the optimization procedure. This
can be avoided in the future by implementing optimization
methods which include momentum or excitation, increasing the
escape probability from any local features of the potential energy
surface.

Further discussion about our results should mention instances
of transfer learning. Transfer learning is a unique facet of neural
network machine learning algorithms describing an instance
(engineered or otherwise) where the solution to a problem can
inform or assist in the solution to another similar subsequent
problem. Given a diatomic Hamiltonian at a specific intermole-
cular separation, the solution yielding the variational parameters
—which are the weighting coefficients of the basis functions—are
adequate first approximations to those parameters at a subse-
quent calculation where the intermolecular separation is a small
perturbation to the previous value.

Except for the last point in the Fig. 4d, we use 1/40 of the
iterations for the last point in calculations initiated with
transferred parameters from previous iterations of each points
and still achieve a good result. We also see that the local
minimum is avoided if the starting point achieve global
minimum.

Discussion
In conclusion, we present a combined quantum machine learning
approach to perform electronic structure calculations. Here, we
have a proof of concept and show results for small molecular
systems. Screening molecules to accelerate the discovery of new
materials for specific application is demanding since the chemical
space is very large! For example, it was reported that the total
number of possible small organic molecules that populate the
‘chemical space’ exceed 1060 36,37. Such an enormous size makes a
thorough exploration of chemical space using the traditional
electronic structure methods impossible. Moreover, in a recent
perspective38in Nature Reviews Materials the potential of
machine learning algorithms to accelerate the discovery of
materials was pointed out. Machine learning algorithms have
been used for material screening. For example, out of the GDB-17
data base, consisting of about 166 billion molecular graphs, one
can make organic and drug-like molecules with up to 17 atoms
and 134 thousand smallest molecules with up to 9 heavy atoms
were calculated using hybrid density functional (B3LYP/6-31G
(2df,p). Machine learning algorithms trained on these data, were
found to predict molecular properties of subsets of these
molecules38–40.

In the current simulation, H2 requires 13 qubits with the
number of visible units n= 4, the number of hidden units m= 8
and additional 1 reusing ancilla qubit. LiH requires 13 qubits with
the number of visible units n= 4, the number of hidden units
m= 8 and additional 1 reusing ancilla qubit. H2O requires 13
qubits with the number of visible units n= 6, the number of
hidden units m= 6 and additional 1 reusing ancilla qubit. The
order of scaling of qubits for the system should be O(m+ n) with
reusing ancilla qubits. The number of visible units n is equal to
the number of spin orbitals. The choice of the number of hidden
units m is normally integer times of n which gives us a scaling of
O(n) with reusing ancilla qubits. Thus, the scaling of the qubits
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Fig. 3 The algorithmic flow chart of the quantum algorithm based on sequential controlled-rotations gates
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increases polynomially with the number of spin orbitals. Also, the
complexity of gates O(n2) scales polynomially with the number of
spin orbitals while the scaling of classical Machine Learning
approaches calculating exact Gibbs distribution is exponential.
With the rapid development of larger-scale quantum computers
and the possible training of some machine units with the simple
dimensional scaling results for electronic structure, quantum
machine learning techniques are set to become powerful tools to
perform electronic structure calculations and assist in designing
new materials for specific applications.

Methods
Preparation of the Hamiltonian of H2, LiH and H2O. We treat H2 molecule with
2-electrons in a minimal basis STO-3G and use the Jordan-Wigner transforma-
tion34. The final Hamiltonian is of 4 qubits. We treat LiH molecule with 4-electrons
in a minimal basis STO-3G and use the Jordan-Wigner transformation34. We
assumed the first two lowest orbitals are occupied by electrons and the the final
Hamiltonian is of 4 qubits. We treat H2O molecule with 10-electrons in a minimal
basis STO-3G, we use Jordan-Wigner transformation34. We assume the first four
lowest energy orbitals are occupied by electrons and first two highest energy
orbitals are not occupied all time. We also use the spin symmetry in41,42 to reduce
another two qubits. With the reduction of the number of qubits, finally we have
6 qubits Hamiltonian35,43. All calculations of integrals in second quantization and
transformations of electronic structure are done by OpenFermion44 and Psi445.

Gradient estimation. The two functions ϕ(x) and s(x) are both real function. Thus,

the gradient for parameter pk can be estimated as 2 ElocDpk

D E
� Eloch i Dpk

D E� �

where ElocðxÞ ¼ hxjHjϕi
ϕðxÞsðxÞ is so called local energy, Dpk

ðxÞ ¼ ∂pk ðϕðxÞsðxÞÞ
ϕðxÞsðxÞ . 〈...〉 represents

the expectation value of joint distribution determined by ϕ(x) and s(x) (details in
Supplementary Note 1).

Implementation details. In our simulation we choose small constant learning rate
0.01 to avoid trapping in local minimum. All parameter are initialized as a random

number between (−0.02,0.02). The range of initial random parameter is to avoid
gradient vanishing of tanh. For each calculation we just need 1 reusing ancilla qubit
all the time. Thus, in the simulation, the number of required qubits is m+ n+ 1.
All calculations do not consider the noise and system error (details in Supple-
mentary Note 5).

Data availability
The data and codes that support the findings of this study are available from the cor-
responding author upon reasonable request.
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