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ABSTRACT
We compare recently proposed methods to compute the electronic state energies of the water
molecule on a quantum computer. The methods include the phase estimation algorithm based
on Trotter decomposition, the phase estimation algorithm based on the direct implementation of
the Hamiltonian, direct measurement based on the implementation of the Hamiltonian and a spe-
cific variational quantum eigensolver, Pairwise VQE. After deriving the Hamiltonian using STO-3G
basis, we first explain how each method works and then compare the simulation results in terms
of gate complexity and the number of measurements for the ground state of the water molecule
with different O–H bond lengths. Moreover, we present the analytical analyses of the error and the
gate-complexity for eachmethod.While the requirednumberof qubits for eachmethod is almost the
same, thenumberofgates and theerror vary a lot. In conclusion, amongmethodsbasedon thephase
estimation algorithm, the second-order direct method provides themost efficient circuit implemen-
tations in terms of the gate complexity. Moreover, Pairwise VQE serves the most practical method
for near-term applications on the current available quantum computers. Finally the possibility of
extending the calculation to excited states and resonances is discussed.
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1. Introduction

The problem at the heart of computational chemistry is
electronic structure calculation. This problem concerns
calculating the properties of the stationary state describ-
ingmany electrons interacting with some external poten-
tial and between each other via Coulomb repulsion. The
ability to efficiently solve these problems for the cases of
many body systems can have huge effects in pharmaceu-
tical development, materials engineering, and all areas of
chemistry. Quantum computing proposes the possibility
to efficiently solve this problem for molecules with many
more electrons than what can currently be simulated by
classical computers [1].

CONTACT Sabre Kais kais@purdue.edu Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, USA; Department of
Chemistry, Purdue University, West Laffayete, IN 47907, USA

The ability to calculate properties of large quantum
systems using precise control of some other quantum
system was first proposed by Feynman [2]. He pointed
out that if you have enough control over the states of
some quantum system, you can create an analogy to some
other quantum system. Using the example of spin in
a lattice imitating many properties of bosons in quan-
tum field theory, he conjectured that if you have enough
individual quantum systems you could simulate any arbi-
trary quantum mechanical system. Simulation of the
electronic structure Hamiltonian works very similar to
this. Using the Jordan-Wigner or Bravyi-Kitaev trans-
formation [3–5] you can map an electronic structure
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Hamiltonian to a spin-type Hamiltonian which preserves
energy eigenvalues [6]. Evolution under this spin-type
Hamiltonian, e−iHt , can then be approximately simulated
on quantum computers.

Quantum simulation provides a new and efficient way
to calculate eigenenergies of a given molecule. Clas-
sically the problem would have a computational cost
which grows exponentially with the system size, n, the
number of orbital basis functions [7]. However, based
on the phase estimation algorithm [8,9], the molecu-
lar ground state energies can be calculated with gate
depth O(poly(n)) [10–12]. The quantum circuit for the
Hamiltonian is generally approximated through a Trot-
ter–Suzuki decomposition. It is shown that the Hamilto-
nian dynamics can also be simulated through a truncated
Taylor series [13]. Thismethod is generalised as quantum
signal processing [14]. Babbush et al. [15] further shows
that it is possible to reduce the gate depth of the circuit to
O(n) by using plane wave orbitals. Recently, a direct cir-
cuit implementation of the Hamiltonian within the phase
estimation (Direct-PEA) is presented by authors of paper
[16–18]: the circuit designs are provided to the time evo-
lution operator by using the truncated series such as
U = I − iH/κ and U = tH + i(I − t2H2/2), in which κ
and t are parameters to restrict truncation error. These
unitary operators are much simpler to implement than
those of a Trotter decomposition, and can be also used
to calculate ground state energies of molecular Hamil-
tonians. Another approach called variational quantum
eigensolver (VQE) has been introduced byAspuru-Guzik
and coworkers [19,20]: This method combines classi-
cal and quantum algorithms together and significantly
reduces the gate complexity at the cost of a large amount
of measurements. It has also been applied on real-world
quantum computers to solve ground state energies of
molecules such as: H2, LiH and BeH2 [21,22].

This paper explores all these above mentioned meth-
ods for calculating the ground state energies of the water
molecule and presents a comparison study, in terms of
both the accuracy and the gate complexity dependent on
error. The next section explains the method by which
the electronic Hamiltonian for water is calculated and
the method by which to reduce the number of qubits
required to simulate the transformed spin-type Hamilto-
nian. Then, Section 3 discusses fivemethods of electronic
structure simulation on quantum computers: the phase
estimation using first-order Trotter–Suzuki decomposed
propagator (Trotter PEA), two direct implementations of
the spin-type Hamiltonian (Direct PEA), a direct mea-
surement and a specific variational quantum eigensolver
method(Pairwise VQE). Section4 shows results for these
methodswith comparison to the exact energy fromdirect
diagonalisation of the spin-type Hamiltonian. It also

gives qubit requirement and gate complexity for differ-
ent methods asymptotically. Spin-type Hamiltonian for
H2O at equilibrium bond length is derived in Appendix
1. Details of both error and complexity analyses are given
in Appendices 2 and 3.

2. Hamiltonian derivation

In this section we provide details for calculating the spin-
type Hamiltonian describing electronic structures of the
water molecule using STO-3G basis set that will be used
in later methods. This derivation can be generalised to an
arbitrary molecular Hamiltonian.

To obtain the Hamiltonian of the water molecule, we
start by considering the 1s orbital of each hydrogen atom
along with the 1s, 2s, 2px, 2py, 2pz orbitals for the oxy-
gen atom. This leads to a total of 14 molecular orbitals
considering spin. Tomake our simulationsmore efficient,
the number of qubits is reduced by considering orbital
energies and exploiting the symmetry of the system [22].

It can be initially assumed that the two molecu-
lar orbitals of largest energies are unoccupied. Conse-
quently, the calculation of the Hamiltonian of the water
molecule then only requires the consideration of 12 spin-
orbitals. After second quantisation, the Hamiltonian can
be expressed as [23]:

H =
12∑

i,j=1
hija

†
i aj +

1
2

12∑
i,j,k,l=1

hijkla
†
i a

†
j akal. (1)

Here a†
i and ai are fermionic creation and annihilation

operators, and hi,j and hi,j,k,l are one-body and two-
body interaction coefficients. In this work the molecular
orbitals are calculated from the Hartree-Fock method
and represented by the STO-3G basis functions. The
numerical integration obtaining the one and two elec-
tron integrals for molecular water is performed by the
PyQuante package [24]. The expressions for these inte-
grations are:

hij =
∫

d�r1χ∗i (�r1)
(
−1
2
∇2
1 −

∑
σ

Zσ
|�r1 − �Rσ |

)
χj(�r1),

(2)

hijkl =
∫

d�r1d�r2χ∗i (�r1)χ∗j (�r2)
1
r12
χk(�r2)χl(�r1). (3)

Here we have defined χi(�r) as the ith spin-orbital, which
is calculated from a spatial orbital obtained by the
Hartree-Fock method and the electron spin states. Zσ is
the σ th nuclear charge, �ri is the position of electron i, r12
is the distance between the two points r1 and r2, and �Rσ
is the position of σ th nucleus.
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We have ordered our spin-orbitals from 1 to 12 as fol-
lows: {1 ↑, 2 ↑ . . . , 6 ↑, 1 ↓, 2 ↓, . . . 6 ↓}, with first spin-
up orbitals ordered from lowest to highest energy and
continuing into spin-down orbitals ordered from low-
est to highest energy. Now introduce an ad hoc set F =
{1, 2, 7, 8} corresponding to the 4 lowest energy spin
orbitals {1 ↑, 2 ↑, 1 ↓, 2 ↓}. For the H2O ground state, it
can be assumed the spin orbitals in the set F will be filled
with electrons. The following one-body single electron
interaction operators then become:

a†
1a1 = 1, a†

2a2 = 1, a†
7a7 = 1, a†

8a8 = 1,

a†
i aj = 0, if i �= j and i ∈ F or j ∈ F. (4)

This assumption also allows us to simplify the two-
electron interaction terms under certain conditions:

a†
i a

†
j akal =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a†
j ak, i = l, i ∈ F, {j, k} /∈ F,
a†
i al, j = k, j ∈ F, {i, l} /∈ F,
−a†

j al, i = k, i ∈ F, {j, l} /∈ F,
−a†

i ak, j = l, j ∈ F, {i, k} /∈ F.

(5)

Moreover, this ability to neglect creation or annihilation
operator with subscript from {1, 2, 7, 8}, along with the
ability to neglect two-body operators containing an odd
number of modes in F, allows us to relabel our orbital
set 1 to 8, corresponding to spin-orbitals: {3 ↑, 4 ↑, 5 ↑,
6 ↑, 3 ↓, 4 ↓, 5 ↓, 6 ↓}

Using the parity basis and taking advantage of particle
and spin conversation, the required qubit number can be
further reduced [25]. In the parity basis:

a†
j = X←j+1 ⊗ 1

2 (Xj ⊗ Zj−1 − iYj), (6)

aj = X←j+1 ⊗ 1
2 (Xj ⊗ Zj−1 + iYj), (7)

where

X←i ≡ Xn−1 ⊗ Xn−1 ⊗ · · · ⊗ Xi+1 ⊗ Xi, n = 8. (8)

This fermionic Hamiltonian can now be mapped to an 8-
local Hamiltonian represented as a weighted sum of ten-
sor products of Pauli matrix {Ii,Xi,Yi,Zi}, which almost
preserves the ground state energy value. The newHamil-
tonian in the electronic occupation number basis set can
be mapped to the parity basis set as:

| f1f2 · · · f8〉 →| q1〉⊗ | q2〉 ⊗ · · ·⊗ | q8〉, (9)

where

qi =
i∑

k=1
fk mod 2 ∈ {0, 1}. (10)

Here fk represents the number of electrons occupying the
kth spin-orbital, and qk represents the sum of electron
numbers from 1st to kth spin-orbital.

We can now assume that half of the left 6 electrons
are spin-up and the other half are spin-down. If this is
the case, | q4〉 =| 1〉, and | q8〉 =|0〉, which means only
Z4, I4,Z8, I8 will apply on these states [26]. Since Z4 |
q4〉 = − | q4〉,Z8 | q8〉 =| q8〉, all Z4,Z8 can be substi-
tuted by −I4 and I8, with this assumption we can now
reduce this problem to a 6-local Hamiltonian.

3. Methods of simulation

After the parity transformation and simplifications made
above we now have a reduced 6-local Hamiltonian
describing H2O in the form: H =∑L

i=1 αihi, where {αi}
is a set of coefficients, and {hi} is a set of tensor prod-
ucts of the Pauli matrices {Ii,Xi,Yi,Zi}. Method A,B,C
tries to evolve quantum system state by approximating
the propagator e−iHt , and then extract the ground state
energy from the phase.MethodD implements theHamil-
tonian, H, directly into quantum circuit, and evaluate
ground state energy by multiple measurements. Method
E produces the ground state energies by iterations.

3.1. Trotter phase estimate algorithm (Trotter-PEA)

For each term in a Hamiltonian, H, the propagator,
e−iαihit , can be easily constructed in a circuit. However,
since most of the time the set of hi do not commute,
the propagator cannot be implemented term by term:
i.e. e−iHt �=∏L

i=1 e−iαihit . The first-order Trotter–Suzuki
decomposition [27–29] provides an easy way to decom-
pose a propagator for the spin-type Hamiltonian given as
a sum of non-commuting terms into a product of each
non-commuting term exponentiated for a small time t:

U =
L∏
i=1

e−iαihit = e−iHt + O(A2t2). (11)

Here A =∑L
i=1 |αi|, and we have an error of order

O(A2t2). Here we don’t consider time slicing as the orig-
inal Trotter–Suzuki decompositoin does, as t can be
adjusted to be as small as necessary for error control.
This method requires only multi-qubit rotations, and
thereforeU can be implemented easily on a state register.

After U is obtained PEA can be applied to extract
the phase. We can use extra ancilla qubits to achieve
wanted accuracy by iterative measurements [10,30,31].
We call this PEA based on first-order Trotter–Suzuki
decomposition Trotter-PEA.

Higher order Trotter–Suzuki decompositions are also
available, however they have more complicated formu-
lations, especially for order higher than 2. Here we only
discuss first-order case for simplicity. For simulation, a
forward iterative PEA [18] – which estimates the phase
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Figure 1. Forward iterative PEA circuit with initial state |0〉 |
ψ〉s. Here | ψ〉s is the ground state of the Hamiltonian, H is the
Hadamardgate,U is the approximatepropagator andRz(−(π/2))
is a Z rotation gate.

starting from the most significant bit-can be used to
save more time. The circuit for the forward iterative
PEA is shown in Figure 1 which needs only 1 qubit for
measurement. Then the generated state before the mea-
surement is:

1+ ei2π(0.φk+1φk+2···−0.01)

2
ei(π/4) |0〉 | ψ〉s

+ 1− ei2π(0.φk+1φk+2···−0.01)

2
ei(π/4) | 1〉 | ψ〉s. (12)

Note decimals above are in binary. It can be checked if
themeasurement qubit has a greater probability of output
1, φk+1 = 1, otherwise φk+1 = 0. Then the ground state
energy can be calculated as E = −2π × 0.φ1φ2φ3 . . ..

3.2. Direct implementation of hamiltonian in
first-order (Direct-PEA ( 1st order))

It was proposed [17] that given a Hamiltonian H and
large κ we can construct an approximated unitary opera-
tor U such that:

U = I − i
H
κ
, κ �

L∑
i=1
|αi| ≥ ||H||. (13)

If | ψ〉s is an eigenvector ofH and E is the corresponding
eigenvalue, then:

U | ψ〉s =
(
I − i

H
κ

)
| ψ〉s

≈ e−i(H/κ) | ψ〉s = e−i(E/κ) | ψ〉s. (14)

The eigenvalue of | ψ〉s would be encoded directly in the
approximate phase. This is themotivation behinddirectly
implementing the Hamiltonian in quantum simulation.

To implement this non-unitary matrix U, we can
enlarge the state space and construct a unitary operator
Ur [13]. Rewrite U as:

U = I − i
κ

L∑
j=1

αjhj =
L∑
j=0

βjVj, (15)

in which βj ≥ 0 and Vj is unitary. By introducing a m-
qubit ancilla register, where m = �log2 L�, we can con-
struct a multi-control gate, V, such that:

V | j〉a | ψ〉s =| j〉aVj | ψ〉s. (16)

Define βj = 0 when L < j ≤ 2m and B as a unitary oper-
ator that acts on ancilla qubits as:

B |0〉a = 1√
s

2m∑
j=0

√
βj | j〉a, s =

2m∑
j=0

βj. (17)

Define Ur and
 such that:

Ur = (B† ⊗ I⊗n)V(B⊗ I⊗n), (18)


 =|0〉a〈0|a ⊗ I⊗n. (19)

Apply Ur on input state |0〉a | ψ〉s:

Ur |0〉a | ψ〉s = (B† ⊗ I⊗n)V(B⊗ I⊗n) |0〉a | ψ〉s

= (B† ⊗ I⊗n)V
1√
s

2m∑
j=0

√
βj | j〉a | ψ〉s

= (B† ⊗ I⊗n)
1√
s

2m∑
j=0

√
βj | j〉aVj | ψ〉s

= 
(B† ⊗ I⊗n)
1√
s

2m∑
j=0

√
βj | j〉aVj | ψ〉s

+ (I⊗m+n −
)(B† ⊗ I⊗n)
1√
s

×
2m∑
j=0

√
βj | j〉aVj | ψ〉s

= (B |0〉a〈0 |a)† 1√
s

2m∑
j=0

√
βj | j〉aVj | ψ〉s

+
j=2m∑
j=1
| j〉a | uj〉s

= 1
s
|0〉aU | ψ〉s+ | �⊥1 〉, (20)

where | �⊥1 〉 is orthogonal to |0〉a | ψ〉s. Then the
approximated unitary operatorU is implemented by uni-
tary operator Ur, which can be seen in Figure 2.Since
κ � ||H|| ≥ E, energy of eigenstate | ψ〉s is successfully
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Figure 2. Gate Ur indirect PEA circuit, gates V and B are shown in
Equations (16) and (17).

implemented in phase:

Ur |0〉a | ψ〉s =
1− i E

κ

s
|0〉a | ψ〉s+ | �⊥1 〉

=
√
1+ E2

κ2

s
e−i tan

−1(E/κ) |0〉a | ψ〉s+ | �⊥1 〉

= pe−i tan
−1(E/κ) |0〉a | ψ〉s +

√
1− p2 | �⊥〉.

(21)

Here p is defined by
√
1+ E2/κ2/s, and | �⊥〉 is nor-

malised.
This Ur gate would then be used for PEA or itera-

tive PEA process. For an accurate output, p is required
to be as close to 1 as possible. Using oblivious ampli-
tude amplification [32], we can amplify that probability
without affecting phase. Define the operator U0 = 2 |
0〉a〈0a − I⊗m and rotational operator:

Q = Ur(U0 ⊗ I⊗n)U†
r (U0 ⊗ I⊗n). (22)

Iterating this operator N times, we can achieve Uq =
QNUr which brings p close to 1 by performing rotations
within the space span{|0〉a | ψ〉s, | �⊥〉}. The details are
in Supplementary Materials. Take the same circuit and
the same procedure in Trotter-PEA, except replacing U
by Uq, we are able to get ground state energy of water
molecule.

3.3. Direct implementation of hamiltonian in
second-order (Direct-PEA (2nd order))

Propagator e−iHt can also be approximated up to second
order [18]:

U = I − iHt − H2t2

2
= e−iHt + O((At)3). (23)

WhenAt is very small,U would be a good approximation.
Since U is non-unitary, we have to construct a unitary
operatorUr2 to implement it into a quantumcircuit.With
Ur in method B, B2 defined with the property:

B2 | 00〉 =
√
t | 00〉+ | 01〉 + t√

2
| 10〉√

1+ t + t2
2

, (24)

Figure 3. Gate Ur2 insecond-order direct PEA circuit, with B2 and
P defined in Equations (24) and (25).

and gate P constructed as:

P =

⎡
⎢⎢⎣
I⊗n 0 0 0
0 0 I⊗m 0
0 I⊗m 0 0
0 0 0 I⊗n

⎤
⎥⎥⎦ . (25)

We can construct Ur2 as in Figure 3:which satisfies:

Ur2 | 00〉 |0〉a | ψ〉s

= 1− i EtA + E2t2
2A2

1+ t + t2
2

| 00〉 |0〉a | ψ〉s +
2m+2∑
j=1
| j〉 | vj〉s

=
√
1+ E4t4

4A2

1+ t + t2
2

e−i tan
−1((Et/A)/(1+E2t2/2A))

| 00〉 |0〉a | ψ〉s+ | �⊥1 〉. (26)

In the formula, A =∑2m−1
i=1 βi =

∑L
i=1 |αi| ≥ |E|, and

| �⊥1 〉 is perpendicular to | 00〉 |0〉a | ψ〉s. Just as in last
section, we can rotate the final state to make the pro-
portion of | 00〉 |0〉a | ψ〉s as close to 1 as possible. Then
we can apply PEA or iterative PEA to get the phase,
− tan−1((Et/A)/(1+ E2t2/2A)), which leads to ground
state energy corresponding to ground state | ψ〉s.

3.4. Direct measurement of Hamiltonian

Another way to calculate the ground state energy is by
direct measurement after implementing a given Hamil-
tonian as a circuit. Since Direct-PEA (1st order) method
has already introduced a way to implement non-unitary
matrix U into circuit, Hamiltonian implementation is
straightforward. We can just replace U in method B by
U ′ = H =∑L

j=1 αjhj, and obtain U ′r such that:

U ′r |0〉a | ψ〉s =
1
s′
|0〉aU ′r | ψ〉s+ | �

′⊥
1 〉

= E
A
|0〉a | ψ〉s+ | �′⊥1 〉. (27)

Bymeasuring ancilla qubitsmultiple times, we can get the
energy of the ground state | ψ〉s by multiplying A by the
square root of probability of getting all 0s.
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Figure 4. Circuit for state preparation and corresponding energy evaluation. G(θ i) is entangling gate, in this paper we are taking the
gate like Figure 5. U(ϕk) is an arbitrary single-qubit rotation and is equal to Rz(ϕk,1)Rx(ϕk,2)Rz(θk,3) with parameters ϕk,1,ϕk,2 and ϕk,3
that can be manipulated. By increasing the number of layers, d, of our circuit, we are able to produce more complex states.

Figure 5. Example entangling circuit G(θ i) for 4-qubit system. There are 12 arbitrary single-qubit gates Uj , a simplified written way
for U(θ i,j), which is Rz(θi,j,1)Rx(θi,j,2)Rz(θi,j,3) with parameters θi,j,1,θi,j,2 and θi,j,3 that can be manipulated. Each 2 qubits are entangled
sequentially. Entangling gate G(θ i) for n-qubit system is similar to this gate, but then it has n(n− 1) arbitrary single-qubit gates and θ i
has 3n(n− 1) parameters.

This method can also be used for non-hermitian
Hamiltonians. If now the eigenvalue for | ψ〉s is a com-
plex number E = |E|eiθ , by replacing U by U ′ = H in
method B, we would have:

U ′r |0〉a | ψ〉s =
|E|eiθ
A
|0〉a | ψ〉s+ | �′⊥1 〉, (28)

and can obtain |E| through measurements. Then by
replacing U by U ′′ = (|E|/A)I +H in method B, we
would have:

U ′′r |0〉a | ψ〉s =
|E|
A
(1+ eiθ ) |0〉a | ψ〉s+ | �′⊥1 〉, (29)

and can measure the absolute value of (|E|/A)(1+ eiθ ),
which is 2(|E|/A) cos θ . This helps determine the phase
of a complex eigenenergy.

3.5. Variational quantum eigensolver

Recently the variational quantum eigensolver method
has been put forward by Aspuru-guzik and cowork-
ers to calculate the ground state energies [19–22,33],
which is a hybrid method of classical and quantum
computation. According to this method, an adjustable
quantum circuit is constructed at first to generate a
state of the system. This state is then used to cal-
culate the corresponding energy under the system’s
Hamiltonian. Then by a classical optimisation algorithm,
like Nelder–Mead method, parameters in circuit can
be adjusted and the generated state will be updated.
Finally, the minimal energy will be obtained. The
detailed circuit for the quantum part of our algorithm

is shown in Figure 4. To make the expression more
clear, we represent parameters in vector form, as fol-
lows: θ = (θ1, θ2 . . . , θD), θi = (θi,0, θi,1 . . . , θi,11), θi,j =
(θi,j,1, θi,j,2, θi,j,3, ), ϕ = (ϕ1,ϕ2 . . . ,ϕn), ϕk = (ϕk,1,ϕk,2,
ϕk,3). We are using d layers of gate G(θ i) in Figure 4
to entangle all qubits together. Here we introduce a
hardware-efficient G(θ i), and we call this method Pair-
wise VQE. The example gate of G(θ i) for 4 qubits is
shown in Figure 5. The entangling gate for 6-qubit system
H2O is similar: every 2 qubits are modified by single-
qubit gates and entangled by CNOT gate. By selecting
initial value of all θ i and ϕk, system state can be prepared
by d layers G(θ i) gates and arbitrary single gates U(ϕj).
Then average value of each term in Hamiltonian H, 〈hj〉,
can be evaluated by measuring qubits many times after
going through gates like I or Rxj(π/2) or Ryj(−(π/2)).
For example, if hj = I0X1Y2Z3, then

〈hj〉 = 〈I0X1Y2Z3〉ψ = 〈ψI0X1Y2Z3 | ψ〉
=

(
〈ψRy1

(π
2

)
Rx2

(
−π

2

))
I0

(
Ry1

(
−π

2

)
X1

Ry1
(π
2

)) (
Rx2

(π
2

)
Y2Rx2

(
−π

2

))
Z3

(
Ry1

(
−π

2

)
Rx2

(π
2

)
| ψ〉

)
= 〈I0Z1Z2Z3〉ψ ′ , where | ψ ′〉
= Ry1

(
−π

2

)
Rx2

(π
2

)
| ψ〉,

So we can let the quantum state after U(ϕj) go through
gates Ry1(−(π/2)) and Rx2(π/2) and then measure the
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Figure 6. Ground State Energy Curve for H2O, as a function of the bond length O–H in a.u. for (a) the Trotter-PEA, (b) the Direct-PEA (1st
order), (c) the Direct-PEA (2nd order) and (d) Direct Measurement method (1.6× 108 measurements), compared with the exact diago-
nalisation. Errors are shown in the window of each figure. One thing to mention is that we can not tell whether one method have better
property over another directly from these figures, because they have different parameters, gates etc. For comparison, we have to turn to
gate complexity analysis in Table 1.

result state multiple times to get 〈hj〉. The energy cor-
responding to the state can be obtained by 〈H〉(θ ,ϕ) =∑L

j=1 αj〈hj〉(θ ,ϕ). Then θ and ϕ can be updated by clas-
sical optimisation method and 〈H〉(θ ,ϕ) can reach the
minimal step by step.

4. Results andmethod comparison

The Hamiltonian of the water molecule is calculated for
O–H bond lengths ranging from 0.5 a.u. to 2.9 a.u., using
the methods introduced in Section2. This Hamiltonian
is used in all five of the methods discussed within this
paper. For the methods A-D, the input state of system is
the ground state of the H2O molecule. For each of these
methods, the resulting ground state energy curve can be
calculated to arbitrary accuracy (for details of error anal-
ysis see Appendix 2). The results from each method is
compared with result from a direct diagonalisation of the
Hamiltonian, as shown below. From Figure 6 it can be
seen that all of these methods are effective in obtaining
the ground state energy problem of the water molecule.

We also use method E (Pairwise VQE) to obtain the
ground state energy. These results can be seen in Figure 7.
Energy convergence at 1.9 a.u. can be seen in Figure 7(a)
and the ground state energy curve calculated by this
method is in Figure 7(b). In this simulation, d is selected
to be 1, and G(θi) is constructed as described above, and
it can already give a very accurate result. This shows Pair-
wise VQE a very promisingmethod for solving electronic
structure problems. Furthermore, Pairwise VQE has only
O(n2d) gate complexity and doesn’t require initial input
of the ground state, which makes it more practical for
near-term applications on a quantum computer.

Qubit requirement, gate complexity and number of
measurements of different methods are analysed in
Appendix 3 and shown in Table 1. When counting gate
complexities, we decompose all gates into single qubit
gates and CNOT gates.While Pairwise VQE needs only n
qubits, the othermethods require extra number of qubits.
In terms of gate scaling, Pairwise VQE also needs the
least gates, which enables it to better suit the applications
on near and intermediate term quantum computers.
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Figure 7. Result from Pairwise VQE using the entangling gates in Figure 5.We take |0〉s as initial input, d= 1 layer and use Nelder–Mead
algorithm for optimisation. (a) Convergence of ground state energy of H2O for fixed O–H bond length = 1.9 a.u., as number of iterations
increases. The lines for exact ground state energy and for the limit almost overlap and (b) Ground state energy curve for H2O, as a function
of O–H bond length in a.u. for variational quantum eigensolver. Errors are shown in the window of the figure.

Table 1. Complexity of different methods.

Method
Qubits

requirement
Gate

complexity
Number of

measurements

Trotter-PEA O(n) O( n5

(ε/A)2
) O(1)

Direct-PEA(1st order) O(n) O( n5

(ε/A)2.5
) O(1)

Direct-PEA(2nd order) O(n) O( n5

(ε/A)1.3
) O(1)

Direct measurement O(n) O(n5) O( E
2

ε2
)

Pairwise VQE n O(n2d) O( A
2n8

ε2
Niter)

Notes: n is the number of qubits formolecular system, 6 for water in this paper.
A =∑L

i=1 |αi| can serve as the scale of energy. E is the exact value of ground
energy. ε is the accuracyof energywewant to reach.d is thenumberof layers
we used in Pairwise VQE. Niter is the number of iterations for optimisation in
Pairwise VQE. See Appendix 3 for details.

Among the remaining four methods, Direct Measure-
ment requires less number of gates than the others. PEA-
type methods have an advantage that they can give an
accurate result under only O(1) measurements. How-
ever, they need more qubits compared with the previous
two methods and demands many more gates if smaller
error is required.Due to huge gate complexity, these PEA-
type algorithms would be put into practice only when
the decoherence problem has been better solved. Among
these three PEA-based methods, in terms of the gate
complexity, Direct-PEA(2nd order) requires less number
of gates than the traditional Trotter-PEA and Direct-
PEA(1st order) which is proved in Appendix 3. One
more thing to mention is that here the second quantisa-
tion form Hamiltonian is based on STO-3G, so there are
O(n4) terms. If a more recent dual form of plane wave
basis [15] is used, the number of terms can be reduced to
O(n2), and the asymptotic scaling in Table 1 would also
be reduced. To be specific, for PEA-type methods, upper
bounds of gate complexities would be proportional to n3

rather than n5, and Number of Measurements for Pair-
wise VQE would be proportional to n4 rather than n8.
As can be seen, these reductions wouldn’t influence the
comparison made above.

5. Excited states and resonances

All the aforementioned methods can also be applied for
the excited state energy calculation. For PEA-type meth-
ods and Direct Measurement method, it can be simply
done by replacing the input system state by an excited
state. The complexity for the calculation is the same.
The energy accuracies for excited states are also similar
to that for the ground state. For VQE, a recent publi-
cation [34,35] presents a quantum subspace expansion
algorithm (QSE) to calculate excited state energies. They
approximate a ‘subspace’ of low-energy excited states
from linear combinations of states of the form Oi | ψ〉s,
where | ψ〉s is the ground state determined by VQE and
Oi are chosen physically motivated quantum operators.
By diagonalising the matrix with elements 〈ψsO

†
i HOj |

ψ〉s calculated by VQE, one is able to find the energies
of excited states.

Figure 8 shows the simulation of the first six excited
states’ energy curves of the water molecule from our 6-
qubit Hamiltonian, calculated by PEA-type methods and
Direct Measurement method. It can be seen that the 5th
excited energy curve indicates a shape resonance phe-
nomenon, which can be described by a non-Hermitian
Hamiltonian with complex eigenvalues. The life time
of the resonance state is associated with the imaginary
part of the eigenvalues. In this way, to solve the reso-
nance problem, we can seek to solve the eigenvalues of
non-Hermitian Hamiltonians.
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Figure 8. Excited states’ energy curves for H2O, as a function of the bond length O–H in a.u.. Markers with different colours represent
data points calculated from different methods. Only a few points for each method are drawn for illustration. Energy curves in different
line styles are calculated from exact diagonalisation of Hamiltonian matrix.

Some work has been done on this track to solve the
resonance problem by quantum computers. By design-
ing a general quantum circuit for non-unitary matrices,
Daskin et al. [36] explored the resonance states of amodel
non-Hermitian Hamiltonian. To be specific, he intro-
duced a systematic way to estimate the complex eigen-
values of a general matrix using the standard iterative
phase estimation algorithm with a programmable cir-
cuit design. The bit values of the phase qubit determines
the phase of eigenvalue, and the statistics of outcomes
of the measurements on the phase qubit determines
the absolute value of the eigenvalue. Other approaches
for solving complex eigenvalues can also be applied for
this resonance problem. For example, Wang et al. [37]
proposed a measurement-based quantum algorithms for
finding eigenvalues of non-unitary matrices. Terashima
and Ueda [38] introduced a universal non-unitary quan-
tum circuit by using a specific type of one-qubit non-
unitary gates, the controlled-NOT gate, and all one-qubit
unitary gates, which is also useful for finding the eigen-
values of a non-hermitian Hamiltonian matrix.

Method D in Section 3 can also be used for solving
complex eigenvalues and the complexity is polynomial
in system size. After applying complex-scaling method
[39] to water molecule’s Hamiltonian and obtaining a
non-HermitianHamiltonian, we canmake enough quan-
tum measurements to get an accurate resonance width
�, which is actually the imaginary part of Hamiltonian’s
eigenvalue [40]. Another easier way to solve this reso-
nance problem is, we can first choose proper a and J to

fit the potential energy in a widely studied Hamiltonian
[41–43]:

H(x) = p2

2
+

(
x2

2
− J

)
e−ax

2
(30)

to our energy curve. Then by complex-scaling method,
the internal coordinates of the Hamiltonian is dilated by
a complex factor η = αe−iθ such thatH(x)→ H(x/η) ≡
Hη(x). We can solve the complex eigenvalue of Hη(x) by
the method D or using our previous method [36].

6. Conclusion

In this studywe have compared several recently proposed
quantum algorithms when used to compute the elec-
tronic state energies of the water molecule. These meth-
ods include first-order Trotter-PEA method based on
the first-order Trotter decomposition, first- and second-
order Direct-PEA methods based on direct implemen-
tation of the truncated propagator, Direct Measurement
method based on direct implementation of the Hamilto-
nian and Pairwise PEA method, a VQE algorithm with a
designed ansatz.

After deriving the Hamiltonian of the water molec-
ular using the STO-3G basis set, we have explained in
detail how each method works and derived their qubit
requirements, gate complexities and measurement scal-
ings. We have also calculated the ground state energy of
the watermolecular and shown the ground energy curves
from all five methods. All methods are able to provide
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an accurate result. We have compared these methods
and concluded that the second-order Direct-PEA pro-
vides the most efficient circuit implementations in terms
of gate complexity. With large scale quantum compu-
tation, the second-order direct method seems to better
suit large molecule systems. In addition, since Pairwise
VQE requires the least qubit number, it is the most prac-
tical method for near-term applications on the current
available quantum computers.

Moreover, we have applied our PEA-type methods
and Direct Measurement method to solve excited state
energy curves for water molecule. The fifth excited state
energy curve implies shape resonance. We have intro-
duced recent work on quantum algorithms for solving
themolecular resonance problems and given twopossible
ways to solve the water molecule resonance properties,
including our Direct Measurement method which is able
to solve the problem efficiently.
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Appendices

Appendix 1. H2O Hamiltonian at equilibrium

Table A1. Spin-type Hamiltonian of the water molecule at
equilibrium when O–H is 1.9 a.u.

IIIIII −72.008089 IIIIIZ 0.373979 IIIIXX −0.050755
IIIIYY 0.113535 IIIIZI 0.002526 IIIIZZ 0.779273
IIIZII −0.771553 IIIZIZ 0.043092 IIIZXX 0.113535
IIIZYY −0.050755 IIIZZI 0.785287 IIIZZZ −0.030367
IIXIIX 0.009295 IIXIXI 0.000158 IIXIZX −0.009295
IIXZXZ −0.000158 IIZIII −0.373979 IIZIIZ −0.148141
IIZIYY −0.011744 IIZIZZ −0.146285 IIZZII 0.141059
IIZZXX −0.011744 IIZZZI −0.136887 IXIIIX 0.000158
IXIIXI 0.013400 IXIIZX −0.000158 IXIZXZ −0.013400
IXXIII −0.050755 IYYIII 0.113535 IYYIIZ 0.011744
IYYIYY 0.019371 IYYIZZ 0.031747 IYYZII −0.011216
IYYZXX 0.019371 IYYZZI 0.031561 IZIIII −0.002526
IZXIIX 0.009295 IZXIXI 0.000158 IZXIZX −0.009295
IZXZXZ −0.000158 IZZIII 0.779273 IZZIIZ 0.146285
IZZIYY 0.031747 IZZIZZ 0.220040 IZZZII −0.154863
IZZZXX 0.031747 IZZZZI 0.179396 XIIXII 0.012412
XIIXXX −0.007950 XIIXZI 0.012412 XIIYXY 0.007950
XXXXII −0.007950 XXXXXX 0.018156 XXXXZI −0.007950
XXXYXY −0.018156 XXZXXZ −0.006979 XXZYYI 0.006979
XZIXII −0.012412 XZIXXX 0.007950 XZIXZI −0.012412
XZIYXY −0.007950 YXYXII 0.007950 YXYXXX −0.018156
YXYXZI 0.007950 YXYYXY 0.018156 YYIXXZ −0.006979
YYIYYI 0.006979 ZIIIII 0.771553 ZIIIIZ 0.141059
ZIIIYY 0.011216 ZIIIZZ 0.154863 ZIIZII −0.154860
ZIIZXX 0.011216 ZIIZZI 0.146877 ZIZIII 0.043092
ZXXIII −0.113535 ZXXIIZ −0.011744 ZXXIYY −0.019371
ZXXIZZ −0.031747 ZXXZII 0.011216 ZXXZXX −0.019371
ZXXZZI −0.031561 ZXZIIX −0.000158 ZXZIXI −0.013400
ZXZIZX 0.000158 ZXZZXZ 0.013400 ZYYIII 0.050755
ZZIIII 0.785287 ZZIIIZ 0.136887 ZZIIYY 0.031561
ZZIIZZ 0.179396 ZZIZII −0.146877 ZZIZXX 0.031561
ZZIZZI 0.189343 ZZZIII 0.030367

Notes: There are 95 terms, and listed are each operator and corresponding
coefficient. X,Y,Z,I stand for the spin matrices σ x , σ y , σ z and the identity
operator on a single qubit subspace.

Appendix 2. Error analysis

A.2.1 Trotter PEA

The Trotter decomposition is

e−iHt =
L∏

i=1
e−iαihit + O(A2t2). (A1)

Suppose our input is an eigenstate of | ϕ〉s of the Hamiltonian
and has H | ϕ〉s = E | ϕ〉s, then:

L∏
i=1

e−iαihit | ϕ〉s

= (e−iHt − O(A2t2)) | ϕ〉s
= (e−iEt − O(A2t2)) | ϕ〉s + O(A2t2) | ϕ⊥〉
= e−iEt(1− O(A2t2)eiE) | ϕ〉s + O(A2t2) | ϕ⊥〉
= e−iEt(1− O(A2t2)− iO(A2t2)) | ϕ〉s + O(A2t2) | ϕ⊥〉
= (1− O(A2t2))e−iEtei tan

−1(O(A2t2)/(1−O(A2t2))) | ϕ〉s
+ O(A2t2) | ϕ⊥〉
= (1− O(A2t2))e−i(Et+O(A

2t2)) | ϕ〉s + O(A2t2) | ϕ⊥〉.
(A2)

It should be noticed that in this equation,O(A2t2) is an operator
before being applied to | ϕ〉s.

In this way, the possibility that we can measure the correct
ground state energy is 1− O(A2t2). After 2D gates, in which D
represents the number of digits we want to measure by PEA,
the probability of state |0〉 | ψ〉s should be still large. By setting
the final coefficient to be 1− 1

8 , then:

(1− O(A2t2))2
D = 1− 1

8 , (A3)

2−D = O(A2t2). (A4)

The error of the energy resulting from the phase is: ε1 =
O(A2t2). If we use PEA until D digits, the error of the energy
resulting from PEA is: ε2 = O(2−D/t) = O(A2t). Then totally
we have an error: ε = O(ε1 + ε2) = O(A2t).

Since the error for the first-order Trotter–Suzuki decompo-
sition is:

e−iHt −
L∏

i=0
e−(iαihit/2)

0∏
i′=L

e−(iα
′
ihi′ t/2) = O(A3t3), (A5)

by a similar analysis the total error after PEA based on Trot-
ter–Suzuki decomposition would be ε = O(A3t2).

A.2.2 Direct PEA ( first order )

From the main part, after gate Ur , we obtain:

Ur |0〉a | ψ〉s =
√
1+ E2

κ2

s
e−i tan

−1(E/κ) |0〉a | ψ〉s+ | �⊥1 〉

=
√
1+ E2

κ2

1+ A
κ

e−i tan
−1(E/κ) |0〉a | ψ〉s+ | �⊥1 〉
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= pe−i tan
−1(E/κ) |0〉a | ψ〉s +

√
1− p2 | �⊥〉

= cos θe−i tan
−1(E/κ) |0〉a | ψ〉s + sin θ | �⊥〉.

(A6)

Here A =∑2m−1
i=1 βi =

∑L
i=1 |αi| ≥ |E|, θ =

arccos
(√

1+ E2/κ2/(1+ A/κ)
)
.

To increase the probability of |0〉a | ψ〉s, we use Q =
Ur(U0 ⊗ I⊗n)U†

r (U0 ⊗ I⊗n) to do oblivious amplitude ampli-
fication:

QNUr |0〉a | ψ〉s = (−1)N cos((2N + 1)θ)e−i tan
−1(E/κ) |0〉a | ψ〉s

+ sin((2N + 1)θ) | �⊥〉

= pf |0〉a | ψ〉s +
√
1− p2f | �⊥〉. (A7)

The idea is, if κ is large,
√
1+ E2/κ2/(1+ A/κ) ≈

1/(1+ A/κ), and θ ′ = cos−1(1/(1+ A/κ)) ≈ θ . By choosing
large N and κ to satisfy (2N + 1)θ ′ = π , which means A/κ =
1/cos(π/2N + 1)− 1, we are able to get cos((2N + 1)θ)
≈ −1.

Since:

θ − θ ′ = cos−1
⎛
⎝

√
1+ E2

κ2

1+ A
κ

⎞
⎠− cos−1

(
1

1+ A
κ

)

=
√
2
4
η2

(
A
κ

)3/2
+ O

((
A
κ

)5/2
)
. (A8)

In which η = |E/A| ≤ 1. Then after N rotations

|pf | = | cos((2N + 1)θ)|
= cos((2N + 1)(θ ′ − θ))

= 1− (2N + 1)2

16
η4

(
A
κ

)3
+ O

((
A
κ

)4
)

= 1− π6

211
η4

1
N4 + O

(
1
N5

)
. (A9)

This means if we set large enough N, and then set κ =
A cos(π/(2N + 1))/(1− cos(π/(2N + 1))), we are able to
amplify the probability of |0〉a | ψ〉s to be as close to 1 as we
want.

Now we are taking Uq = QNUr to encode the energy into
the phase. For the next PEA step, if we would likeD digit accu-
racy, we have to make sure after 2D gates of Uq, the probability
of state |0〉a | ψ〉s is still large. To make the analysis easier,
we set the final coefficient for that state 1− 1/23. Then the
following formula should be satisfied:

|pf |2D = 1− 1
23

(A10)

2−D = π6η4

211 ln( 87 )
1
N4 + O

(
1
N5

)
(A11)

D=min

{
log2

(
211 ln( 87 )
π6η4

)
+ 4 log2 N

}
≈−1.81+ 4 log2 N.

(A12)

Since D-digit output from PEA gives us the phase ϕ to approx-
imate (1/2π) tan−1(−E/κ), and the error of the phase is 2−D,
we get the error of the energy to be:

ε = tan(2π ∗ 2−D)× κ = π5η4

27 ln( 87 )
1
N2 + O

(
1
N3

)

≈ 17.90η4A
N2 ≤ 17.90

N2 A. (A13)

We can see that, by taking large N and set corresponding κ
(which is also large), we are able to control the accuracy of PEA
process.

A.2.3 Direct PEA ( second order )

From the main part, after gate U2r , we obtain:

Ur2 | 00〉 |0〉a | ψ〉s

=
√
1+ E4t4

4A2

1+ t + t2
2

e−i tan
−1((Et/A)/(1+E2t2/2A))

| 00〉 |0〉a | ψ〉s+ | �⊥1 〉
= pe−i tan

−1((Et/A)/(1+E2t2/2A))

| 00〉 |0〉a | ψ〉s +
√
1− p2 | �⊥〉

= cos θe−i tan
−1((Et/A)/(1+E2t2/2A))

| 00〉 |0〉a | ψ〉s + sin θ | �⊥〉. (A14)

Here A =∑2m−1
i=1 βi =

∑L
i=1 |αi| ≥ |E|, θ = cos−1

(
√
1+ E4t4/4A2/(1+ t + t2/2)).
Apply Q2 = U2r(U+0 ⊗ I⊗n)U†

2r(U
+
0 ⊗ I⊗n), in which U+0

= 2 | 00〉 |0〉a〈0a〈00− I⊗m+2, to do obivious amplitude
amplification:

QN
2 U2r | 00 |0a | ψs

= (−1)N cos((2N + 1)θ)e−i tan
−1((Et/A)/(1+E2t2/2A))

|0a | ψs + sin((2N + 1)θ) | �⊥a+s+2
= pf | 00 |0a | ψs +

√
1− p2f | �⊥a+s+2. (A15)

Let θ ′ = cos−1(1/(1+ t + t2/2)) and choose largeN and small
t to satisfy (2N + 1)θ ′ = π , which leads to

t = −1+
√

2
cos π

2N+1
− 1 = π2

8N2 + O
(

1
N3

)
. (A16)

Then:

θ − θ ′ = cos−1

√
1+ E4t4

4A2

1+ t + t2
2

− cos−1
1

1+ t + t2
2

=
√
2

16
η4t7/2 + O

(
t9/2

)
. (A17)
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In wihch η = |E/A| ≤ 1. Then after N rotations

|pf | = | cos((2N + 1)θ)|
= cos((2N + 1)(θ ′ − θ))

= 1− (2N + 1)2

162
η8t7 + O(t8)

= 1− π
14

227
η8

1
N12 + O

(
1

N13

)
. (A18)

This means if we set large enough N, and then set t = −1+√
2/cos (π/(2N + 1))− 1, we are able to amplify the probabil-

ity of | 00〉 |0〉a | ψ〉s to be as close to 1 as we want.
Now we are taking Uq2 = QN

2 Ur2 to encode the energy into
the phase, if we would like D digit accuracy, we have to make
sure after 2D gates of Uq2, the probability of state |0〉a | ψ〉s
is still large. By setting the final coefficient is 1− 1

23 , then the
following formula should be satisfied:

|pf |2D = 1− 1
23

(A19)

2−D = π14η8

227 ln( 87 )
1

N12 + O
(

1
N13

)
(A20)

D = min

{
log2

(
227 ln( 87 )
π14η8

)
+ 12 log2 N

}

≈ 0.974+ 12 log2 N. (A21)
Since D-digit output from PEA gives us the phase ϕ to approx-
imate−(1/2π) tan−1((Et/A)/(1+ E2t2/2A)) and the error of
phase is 2−D, we get the error of the energy E to be:

ε = π13η8

223 ln 8
7

A
N10 + O

(
A
N11

)
≈ 2.59η8A

N10 ≤ 2.59
N10 A. (A22)

We can see that by taking large N and set corresponding small
t, we are able to control the accuracy of PEA process.

A.2.4 Direct measurement

After applying the gate U ′r :

U ′r |0〉a | ψ〉s =
E
A
|0〉0 | ψ〉s+ | �′⊥1 〉. (A23)

We obtain eigenenergy of state | ψ〉s by calculating probability
of the wanted state: |0〉a | ψ〉s. The standard error of E by X
measurements is:

σ = |E|√
X

√
1− E2

A2 . (A24)

Appendix 3. Complexity

A.3.1 Trotter PEA

We need n qubits for the state and at least 1 qubit for PEA
process, so totally we need O(n) qubits.

If we measure the ground state energy toD bit precision, we
need O(2DLn) standard gates to implement PEA, in which by
saying standard gates we mean single qubit gates and CNOT
gates. Since 2D = O(1/A2t2) = O(A2/ε2), and for molecular

system, L = n4, so the gate complexity of Trotter PEA would
be O(n5/(ε/A)2).

For PEA based on the second-order Trotter–Suzuki decom-
position, we still need O(2DLn) standard gates. Now 2D =
O(1/A3t3) = O(A1.5/ε1.5), so the gate complexity would be
O(n5/(ε/A)1.5).

A.3.2 Direct PEA ( first order )

To do Direct PEA, we need n qubits to represent the system
state andm = �log2(L)� qubits to represent the ancilla state.We
also need at least 1 qubit formulti-control Toffoli gates in B gate
construction [44]. Towards molecular system of L = O(n4), so
the number of required qubits is O(n).

To meet properties of B, we can use Householder transfor-
mation and set it as:

B = I − 2
〈u|ua

〉 | u〉〈ua, (A25)

where | u〉a = B |0〉a− |0〉a. The complexity of constructing
this gate has been analysed before [17,45–47]. Since Givens
rotation GL−2,L−1(θL−1) can nullify B0,L−1, it can also nullify
all Bj,L−1 for j �= L− 1 and update BL−1,L−1 to 1 due to B’s spe-
cial form. And GT

L−2,L−1(θL−1) would nullify all BL−1,j except
BL−1,L−1. For index smaller than L−1 but larger than 1, we can
do the same thing. Finally we can chooseG1,1(θ1) to update last
4 elements of B and obtain an identity matrix. Thus we have:

G1,1(θ1)

L−1∏
i=2

Gi−1,i(θi)B
2∏

i=L−1
GT
i−1,i(θi) = I, (A26)

B =
2∏

i=L−1
GT
i−1,i(θi)G

T
1,1(θ1)

L−1∏
i=2

Gi−1,i(θi). (A27)

In this way, B gate can be obtained as a product of 2L−3
Givens rotation matrices. Since each Givens rotation matrix
can be achieved by at most m m-control Toffoli gates,
which would cost O(m2) standard gates [44,48] each, totally
O(Lm3) = O(L log3 n) gates are required. For select(V) gate,
we need O((n+m)L) standard gates. In this way, Ur requires
O(L log3 n+ (n+m)L) = O(n5) gates. U0 only needs O(m)
standard gates, so Q also requires O(n5) standard gates, which
leads the gate complexity of Uq to be O(Nn5). Since N =
O(1/(ε/A)1/2), PEA forD digit accuracy would result in a total
of O(2DNn5) = O(n5/(ε/A)2.5) standard gates.

A.3.3 Direct PEA ( second order )

We need n qubits to represent the system state, m′ =
�log2(L)� + 2 qubits to represent the ancilla state. So the num-
ber of required qubits is still O(n) as the first-order direct
PEA.

When constructingUr2, gateUr takesO(n5) standard gates,
gate P takes O(L) = O(n4) standard gates, B2, B

†
2 and phase

gate e−i(π/2) only takes a small constant of standard gates. So
the gate complexity ofUr2 is stillO(n5).Q2 also requiresO(n5)
standard gates sinceU+0 needs O(m) standard gates. SinceN =
O(1/(ε/A)0.1), PEA forD digit accuracy would result in a toltal
of O(2DNn5) = O(n5/(ε/A)1.3) standard gates.
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A.3.4 Direct measurement

The number of required qubits for Direct Measurement
Method is the sum of system and ancilla qubits: O(n). Since
only oneUr gate is enough, the compexity of the standard gates
is O(n5). Since now the result of measurements is a binomial
distribution, to measure the Energy E to accuracy(standard
deviation) ε, we have to make X = E2/ε2 measurements.

A.3.5 Variational quantum eigensolver

The number of qubits required for Pairwise VQE is n, and
the gate complexity is O(n2d), where d is the number of

entangling gate layers. Assume we made Xi measurements for
calculating 〈hi〉, its accuracy (standard deviation) would be
εi = 1/Xi. With X =∑L

i=1 Xi measurements, the accuracy of
Hamiltonian would be

ε =
L∑

i=1

ai√
Xi
≤

√√√√ L∑
i=1

a2i

√√√√ L∑
i=1

1
Xi
≤ A

√√√√ L∑
i=1

1
Xi

. (A28)

If Xi = X/L, we have ε ≤ AL/
√
X, then we need X =

A2L2/ε2 = A2n8/ε2 measurements to achieve accuracy ε.
Considering the number of iterations for optimisation, Niter,
the total number of measurements is (A2n8/ε2)Niter.
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