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Abstract: We present a hybrid quantum-classical neural network that can be trained to perform
electronic structure calculation and generate potential energy curves of simple molecules.
The method is based on the combination of parameterized quantum circuits and measurements.
With unsupervised training, the neural network can generate electronic potential energy curves
based on training at certain bond lengths. To demonstrate the power of the proposed new method,
we present the results of using the quantum-classical hybrid neural network to calculate ground state
potential energy curves of simple molecules such as H2, LiH, and BeH2. The results are very accurate
and the approach could potentially be used to generate complex molecular potential energy surfaces.

Keywords: quantum neural network; quantum machine learning; electronic structure calculation

1. Introduction

Quantum computing has shown its great potential in advancing quantum chemistry research [1].
Many quantum algorithms have been proposed to solve quantum chemistry problems [2–4],
such as the Phase Estimation Algorithm; Aspuru-Guzik et al. [5–8] to calculate eigenstate energies
of simple molecules; the Variational Quantum Eigensolver (VQE) [9–11] to solve electronic structure
problems; quantum algorithms for open quantum dynamics [12]; and benchmark calculations
for two-electron molecules conducted on quantum computers [13]. Using quantum computing
techniques to perform machine learning tasks [14] has also received much attention recently including
quantum data classification [15,16], quantum generative learning [17,18], and quantum neural network
approximating nonlinear functions [19]. So far, applying the various quantum machine learning
techniques to quantum chemistry is a natural extension [20,21]. However, previous studies focused
solely on quantum circuits with only a few nonlinear operations, which are introduced by data
encoding [19,22] or repeated measurements until success [23]. Moreover, recently Sim et al. [24] shows
increasing the number of layers of the parameterized quantum circuit (PQC) would reach saturation
and may not improve the performance when the number of layers is large enough. Furthermore,
the nonlinearity is the most important part for the classical neural network [25] which makes neural
networks able to produce complex results [23,26,27]. Therefore, quantum machine learning should not
solely focus on PQC and nonlinear operations are needed for the quantum neural network.

To solve this problem, here we introduce a new hybrid quantum-classical neural network,
by combining quantum computing and classical computing with measurements between the
parameterized quantum circuits. In this paper, we first give a detailed description of the whole structure
of the hybrid quantum-classical neural network. We then present numerical simulations by using the
new hybrid quantum-classical neural network to calculate ground state energies of different molecular
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systems. The calculated ground state energies are very accurate, which demonstrate the potential of
the proposed hybrid quantum-classical neural network to generate potential energy surfaces.

2. Results

We propose a new structure of quantum-classical hybrid neural network by connecting the
quantum part (quantum layer) with the classical part (classical layer). For a classical neural network,
each artificial neuron is normally constructed by linear connected layers, with nonlinear activation
functions connected at the end, as shown in the left part of Figure 1. In this work, we replace the
linear part by the quantum circuit as shown in the right side of Figure 1 to take advantage of possible
speedup in quantum computation. In the meantime, we use expectation values of operators by
measurements, which are nonlinear operations, to serve as the activation function. In this neural
network set-up, the quantum circuit can be viewed as the quantum layer and the expectation values
by measurements can be viewed as the classical layer. The input data is first encoded into quantum
states and calculated by the quantum layer. The outputs are extracted as the expectation values
by measurements. The two steps can be repeated several times to construct a hybrid multi-layer
neural network. In our construction, the quantum layer is enabled by parameterized quantum
circuits (PQC) [28]. We will give details about the hybrid quantum-classical neural network in the
following sections.

Figure 1. In the proposed quantum-classical hybrid neural network, the linear part in the classical
neural network is replaced by the quantum circuits and the nonlinear part is replaced by measurements.

2.1. Quantum Layer

The quantum layer is enabled by a parameterized quantum circuit consisting of parameterized
quantum gates, which allows the PQC to be optimized by adjusting the parameters to approximate
wanted results. PQC has been widely used in many areas of quantum computing and quantum
machine learning, such as in VQE [9–11], quantum autoencoder [20], and quantum generative
learning [17]. In the following section, we will provide details of the quantum layer including
encoding classical data into quantum circuits and parameterized quantum circuits.

2.1.1. Data Encoding

To implement the quantum layer, the first step is to encode the input classical data into a quantum
state. Variational encoding [22] has been proposed to reduce the depth of quantum circuits and has
been widely used in many quantum machine learning techniques [19,22,29,30]. Variational encoding is
used to prepare a set of quantum gates with parameters generated by the input data and then initialize
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the state from the basic state with all qubits as |0〉 with these gates. For an array of data {a0, a1, ...an−1},
an example of variational encoding to encode n qubits is to prepare the gate G as

G = ⊗n−1
i=0 gi( fi(ai)) (1)

where gi is a set of single qubit quantum gates on qubits i and fi is a classical function to encode
ai as the parameter of gi. The encoded state would be G|0〉⊗n. One simple example is given in our
numerical simulations: we take the bond length, a, as the encoding data for each qubit. We choose fi
as the identity function and gi as RyH, where Ry is the rotation-y gate and H is the Hadamard gate.
Thus, the encoded quantum state would be (⊗n−1

i=0 Ry(a)H)|0〉⊗n.
In most variational encoding the depth of the circuit needed to encode the data would be O(1) [29]

for that the number of quantum gates to initialize the quantum state is fixed, which makes variational
encoding more suitable for Noisy Intermediate-Scale Quantum (NISQ) devices [31]. Furthermore,
recently it has been shown how the variational encoding may help to introduce nonlinearity features
in quantum circuits [22,32]. Variational encoding can only be implemented at the beginning of
the quantum circuit, but connections between multiple PQC also need to be nonlinear. To enable
nonlinear connections, we introduce measurements as connections between multiple PQC. In the
numerical simulations, we will be using the variational encoding to perform the simulation and discuss
implementing the quantum circuits on NISQ device.

2.1.2. Parameterized Quantum Circuit

A parameterized quantum circuit, also known as a variational quantum circuit [10,28],
is a quantum circuit consisting of parameterized gates with fixed depth. This is the main part of
the quantum layer to perform the calculation. The parameterized quantum circuit consists of one-qubit
gates as well as CNOT. Some more complicated gates may also be used in PQC which can be
decomposed into one qubit gates and CNOT [33]. In general, an n qubits PQC can be written as

U(~θ)|ψ〉 = (
m

∏
i=1

Ui)|ψ〉 (2)

where U(~θ) is the set of universal gates and m is the number of quantum gates. ~θ is the set of parameters
{θ0, θ1....θk−1}, where k is the total number of parameters and |ψ〉 is the encoded quantum state after
data encoding. For each unitary gate Ui, it may be a quantum gate which does not require a parameter
or a quantum gate which takes parameters. Examples of the unitary gate taking parameters are
rotational gates, Rx(θ), Ry(θ), and Rz(θ), which are given by

Rx(θ) = e−i θ
2 σx Ry(θ) = e−i θ

2 σy Rz(θ) = e−i θ
2 σz (3)

where σx, σy, and σz are Pauli matrices. The operation of U can be modified by changing parameters~θ.
Thus, the output state can be optimized to approximate the wanted state by changing parameters~θ.
By optimizing the parameters used in U(~θ), PQC approximates the wanted quantum states.

2.2. Classical Layer

The classical layer in our construction of the quantum-classical hybrid neural network is to serve as
the activation function connecting different quantum layers. To achieve nonlinearity, the classical layer
is enabled by measurements—expectation values of operators on each qubit of the PQC, for example,
〈σi

z〉 of each qubit i as the classical layer, which would also serve as nonlinear operations. Expectation
values of operators can save complexity because quantum tomography is exponentially hard. Though
the expectation values of operators may lose some information compared to quantum tomography,
some work used expectation values of operators as connections between quantum computation and
classical computation and showed great success [34], which indicates expectation values of operators
are capable of extracting useful information from quantum circuits.
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2.3. Numerical Simulations

To demonstrate the power of the proposed quantum-classical hybrid neural network, we present
results for calculating the ground state energies of simple molecular systems: H2, LiH, and BeH2.
The inputs for the unsupervised learning are bond lengths and the outputs are the ground state energies.
The whole procedure consists of first training the neural network with some bond lengths and then
testing the neural network with other bond lengths to generate the whole potential energy curve.

2.3.1. Constructions of the Quantum Layer

The quantum layer consists of two parts: the variational encoding part and PQC part. We choose to
use the variational encoding to decrease the depth of the quantum circuit so that it can be implemented
on NISQ devices. The construction of the quantum layer follows [29,34]. The input state is initialized
as (⊗n−1

i=0 Ry(a)H)|0〉⊗n, where a is the bond length, H is the Hadamard gate, and Ry is the rotation-y
gate. We only have one bond length while the number of qubits of the PQC is n; we decided to follow
the variational encoding in [29] to encode each qubit with same value. The number of qubits n is equal
to the number of qubits of the corresponding Hamiltonian. The quantum computation part is to use
a simple PQC consisting of Ry and CNOT gates, which can be written as

n−1

∏
j=0

(⊗n−1
i=0 Ry(wi+n×j))(CNOTn−3,n−2...CNOT3,4CNOT1,2)(CNOTn−2,n−1...CNOT2,3CNOT0,1) n is even

n−1

∏
j=0

(⊗n−1
i=0 Ry(wi+n×j))(CNOTn−2,n−1...CNOT3,4CNOT1,2)(CNOTn−3,n−2...CNOT2,3CNOT0,1) n is odd

(4)

where w are adjustable parameters, Ry represents rotation-y gate, and CNOTm,n represents CNOT
gate with m as the control qubit and n is the target qubit. To achieve better entanglement of the qubits
before appending nonlinear operations, the n qubits PQC has n repeated layers in our simulation.
By optimizing the parameters, the general PQC tries to approximate arbitrary states so that it can be
used for different specific molecules. The construction of the PQC for three qubits is illustrated in the
blue part of Figure 2, and the construction of the PQC for four qubits is illustrated in the blue part
of Figure 3.

Figure 2. The example constructions of the proposed hybrid quantum-classical neural network for
3 qubits (odd qubits number). The orange parts are the data encoding, the blue parts are parameterized
quantum circuits, and the yellow parts are measurements. The first measurements serve as nonlinear
operations connecting two PQC. a is the input bond length, bs are the expectation values of σz, and ws
are adjustable parameters.
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Figure 3. The example constructions we use for the 4 qubits H2 calculation (even qubits number).
The orange parts are the data encoding, the blue parts are parameterized quantum circuits, and the
yellow parts are measurements. The first measurements serve as nonlinear operations connecting two
PQC. a is the input bond length, bs are the expectation values of σz, and ws are adjustable parameters.

2.3.2. Constructions of the Classical Layer

The classical layer is enabled by expectation values of the operators. In our numerical simulations,
we are using 〈σi

z〉 for qubit i as the classical layer. The outputs from the classical layer will be encoded
into another quantum layer. The second quantum layer is the same as the first one except for the data
encoding part it would be ⊗n−1

i=0 Ry(biπ)H, where bi is the measured expectation value from qubit i.
We multiply each bi with π when encoding to change the range of the encoding data from [−1, 1] to
[−π, π] [35]. The construction of our proposed hybrid quantum-classical neural network is illustrated
in Figure 3.

2.3.3. Cost Function

The cost function is defined as

f = ∑
j
〈φj|Hj|φj〉 (5)

where j represents the jth input bond length of the training bond lengths. |φj〉 is the final state of the
proposed hybrid quantum-classical neural network with the input as the jth input bond length and Hj
is the Hamiltonian corresponding to the jth input bond length. The idea of the cost function is similar
to VQE: by optimizing the parameters, the expectation energy of |φj〉 is minimized to approximate
the ground state energy. The evaluation of the Hamiltonian can be done by techniques in [11].
The Hamiltomian can be written as the sum of tensor products of Pauli matrices H = ∑i ciPi, where
ci is the coefficient and Pi is the tensor product of Pauli matrices. Instead of evaluating the whole
Hamiltonian, we can evaluate each term of the Hamiltonian and the expectation of the Hamiltonian
can be obtained by 〈H〉 = ∑i ci〈Pi〉, which does not need quantum tomography or take exponential
complexity. The whole training procedure is done by taking a set of bond lengths and corresponding
Hamiltonian and minimizing the cost function as equation (5). After the training, we test the model
with other bond lengths.
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2.3.4. Simulation Results

The Hamiltonian of the molecule systems can be derived by transforming the corresponding
second quantization Hamiltonian into sum of tensor products of Pauli matrices. For H2, we use the
Jordan–Wigner transformation [36] to get a 4-qubit Hamiltonian. We decided to apply the complete
active space (CAS) approach [37,38], which divides the orbitals into inactive orbitals such as always
occupied low energy orbitals and always unoccupied high energy orbitals, and active orbitals, to reduce
the number of qubits of LiH and BeH2 Hamiltonian [4,11] and the reduced Hamiltonian is only of
the active orbitals. For LiH, we assume the first two lowest energy spin orbitals are always occupied
and use the binary code transformation [39] considering spin symmetry to save two qubits. We get
an 8-qubit LiH Hamiltonian. For BeH2, we assume the first two lowest energy spin orbitals are
always occupied and the first two highest energy spin orbitals are never occupied, and use the
binary code transformation [39] considering spin symmetry to save two qubits. We get an 8-qubit
BeH2 Hamiltonian.

In the simulation, H2 used four qubits and 32 parameters. LiH and BeH2 both used eight qubits
and 128 parameters. The gate and parameter complexity of the proposed hybrid quantum-classical
neural network in this simulation is O(n2), where n is the number of qubits of the Hamiltonian.
Here, we present the results using our proposed hybrid quantum-classical neural network for
ground state energies of H2, LiH, and BeH2 in Figures 4 and 5. We can see from these figures
that the training data points converge very close to the diagonalization results without pre-known
ground state information of the transformed Hamiltonian in Pauli matrices format. Furthermore,
after training, by inputting the other bond lengths we can also get good approximating ground
state energies with optimized parameters. BeH2 has some deviation when the bond length is large,
which may be solved by improving the parameterized quantum circuit. For example, the work in [24],
which discusses expressibility and entangling capability of parameterized quantum circuits for hybrid
quantum-classical algorithms, shows that increasing the depth of PQC will increase the expressibility
and different constructions of PQC have also different expressibility.

Furthermore, to show that the intermediate nonlinear measurements improve the performance,
we present the comparison of the results of our proposed hybrid quantum-classical neural network
and quantum neural network removing intermediate measurements. The setting of the quantum
neural network removing intermediate measurements is illustrated in Figure 6.

In Figure 7, we present the comparison of the results of our proposed hybrid quantum-classical
neural network and quantum neural network removing intermediate measurements. The proposed
hybrid quantum-classical neural network and quantum neural network, removing intermediate
measurements, are trained with same set of bond lengths as in Figure 4. We can see without the
intermediate nonlinear measurements, the quantum neural network can only achieve bad results.
However, by adding the intermediate nonlinear measurements, the results converge closely to the
diagonalization results.

The parameters of the proposed hybrid quantum-classical neural network and quantum neural
network removing intermediate measurements, are initialized from a Gaussian distribution with
standard deviation as 0.1 and mean as 0. Because different initialization of parameters will result in
different starting of the optimization and may lead to different final results, to eliminate the effects
of parameter initializations, here we present the quantitative comparison of the two constructions
with four different parameter initialization from same Gaussian distribution with different random
seeds. All are trained with the same set of the training bond lengths as in Figure 4. In the Table 1,
we can see that our proposed quantum neural network performs better than the quantum neural
network without intermediate measurements. Our simulation results show that adding intermediate
nonlinear measurements would help to improve the expressibility of the PQC. Furthermore, adding
intermediate measurements would also decrease the circuit depth which makes it more suitable for
current NISQ devices.
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(a)

(b)

(c)

Figure 4. Ground state energies of H2, LiH, and BeH2 calculated by the proposed hybrid quantum-
classical neural network. (a) Ground state energies of H2 calculated by the proposed hybrid
quantum-classical neural network; (b) Ground state energies of LiH calculated by the proposed
hybrid quantum-classical neural network; (c) Ground state energies of BeH2 calculated by the proposed
hybrid quantum-classical neural network.
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(a)

(b)

(c)

Figure 5. Errors of ground state energies of H2, LiH, and BeH2 calculated by the proposed hybrid
quantum-classical neural network. (a) Errors of ground state energies of H2 calculated by the proposed
hybrid quantum-classical neural network; (b) Errors of ground state energies of LiH calculated by
the proposed hybrid quantum-classical neural network; (c) Errors of ground state energies of BeH2

calculated by the proposed hybrid quantum-classical neural network.

Figure 6. Constructions of the quantum neural network removing intermediate measurements for H2.
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(a)

(b)

(c)

Figure 7. Results of H2, LiH, and BeH2 by the proposed hybrid quantum-classical neural network and
the quantum neural network removing intermediate measurements. With intermediate measurements
represents the results by our proposed hybrid quantum-classical neural network. Without intermediate
measurements represents the quantum neural network removing the intermediate measurements.
Both are trained with same set of bond lengths as in Figure 4 and same parameter initialization.
(a) Ground state energies of H2 calculated by the proposed hybrid quantum-classical neural network
and the quantum neural network removing intermediate measurements; (b) Ground state energies
of LiH calculated by the proposed hybrid quantum-classical neural network and the quantum neural
network removing intermediate measurements; (c) Ground state energies of BeH2 calculated by
the proposed hybrid quantum-classical neural network and the quantum neural network removing
intermediate measurements.
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Table 1. Results for the proposed hybrid quantum-classical neural network and the quantum neural
network removing intermediate measurements. With intermediate measurements represents the
proposed hybrid quantum-classical neural network. Without intermediate measurements represents
the quantum neural network removing intermediate measurements. ∑training Error represents the sum
of the error of the calculated ground state energies on the training set. ∑testing Error represents the
sum of the error of the calculated ground state energies on the testing set. Each result is calculated
by 4 different parameter initialization and presented as means and standard deviations. It can be
seen that adding intermediate measurements to introduce nonlinear options would help to improve
the performance.

Constructions ∑training Error ∑testing Error

With intermediate measurements (H2) 0.0271± 0.0246 0.1178± 0.1061
Without intermediate measurements (H2) 0.6296± 0.0151 2.2755± 0.0677
With intermediate measurements (LiH) 0.0287± 0.0038 0.1178± 0.0190
Without intermediate measurements (LiH) 4.7638± 1.4444 19.1479± 5.7715
With intermediate measurements (BeH2) 0.1253± 0.0552 0.5613± 0.2483
Without intermediate measurements (BeH2) 3.7280± 0.6497 14.8440± 2.3747

3. Materials and Methods

Orbital integrals in the second quantization Hamiltonian are calculated by STO-3G minimal basis
using PySCF [40] and the transformation is done by OpenFermion [41]. The simulation is done by
Qiskit [42]. The tensor production orders in OpenFermion and Qiskit are opposite. For a n qubits,
the tensor production order in OpenFermion is q0 ⊗ q1...⊗ qn−1, while the tensor production order
in Qiskit is qn−1 ⊗ qn−2...⊗ q0. We decided to follow the tensor production order in OpenFermion.
In simulation, we treat the qubit indexed in Qiskit reversely. For n qubits, the qubit indexed as q0

in Qiskit is treated as qn−1, the qubit indexed as q1 in Qiskit is treated as qn−2, etc. By doing this,
we change the tensor production order in Qiskit same as OpenFermion. The optimization is performed
by the Broyden–Fletcher–Goldfarb–Shanno algorithm [43] with maximum 500 iterations and gradient
norm tolerance to stop as 10−5. In the simulation, the expectation of the operator is simulated by matrix
production of the operator matrix and the Hamiltonian can be treated as a single operator. To save the
simulation time, instead of evaluating each 〈Pi〉 to get 〈H〉 = ∑i ci〈Pi〉, we treat H as a single operator
and only evaluate once.

4. Conclusions

In this work, we proposed a new hybrid quantum-classical neural network by combing PQC
and measurements to achieve nonlinear operations in quantum computing. We have shown that the
proposed hybrid quantum-classical neural network can be trained to obtain the electronic energies
at certain bond lengths and then generate the whole potential energy curve. The results of H2, LiH,
and BeH2 are very accurate and demonstrate the power of the proposed hybrid quantum-classical
neural network.

Furthermore, we show that the intermediate nonlinear measurements are very important in
comparison with quantum neural network removing the intermediate measurements. The intermediate
nonlinear measurements can reduce the circuit depth and are more suitable for NISQ devices. Although
the method is used to generate one-dimensional potential energy curves, the approach is general and
could be generalized to generate multidimensional potential energy surfaces, for example, changing
the inputs from the bond lengths to multidimensional coordinates. This will be done in future work.
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