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ABSTRACT

In recent years, there is growing interest in using quantum computers for solving combinatorial optimization problems. In this work, we
developed a generic, machine learning-based framework for mapping continuous-space inverse design problems into surrogate quadratic
unconstrained binary optimization (QUBO) problems by employing a binary variational autoencoder and a factorization machine. The fac-
torization machine is trained as a low-dimensional, binary surrogate model for the continuous design space and sampled using various
QUBO samplers. Using the D-Wave Advantage hybrid sampler and simulated annealing, we demonstrate that by repeated resampling and
retraining of the factorization machine, our framework finds designs that exhibit figures of merit exceeding those of its training set. We
showcase the framework’s performance on two inverse design problems by optimizing (i) thermal emitter topologies for thermophotovoltaic
applications and (ii) diffractive meta-gratings for highly efficient beam steering. This technique can be further scaled to leverage future devel-
opments in quantum optimization to solve advanced inverse design problems for science and engineering applications.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0060481

I. INTRODUCTION

Combinatorial optimization has recently seen tremendous pro-
gress with new algorithms and heuristics, such as simulated annealing,
genetic algorithms, and adiabatic optimization.1 Specifically, the qua-
dratic unconstrained binary optimization (QUBO) formalism of com-
binatorial optimization has attracted significant interest due to its
applicability to a broad range of physical and NP-hard (i.e., non-
deterministic polynomial-time hard) combinatorial optimization
problems.2–4 For example, it has been demonstrated that QUBO can
be used for factoring integers,5 electronic structure calculations,6 capi-
tal budgeting,7 solving the maximum cut problem,8,9 graph coloring,10

traffic flow optimization,11 number partitioning,12 etc. Another key
aspect that boosted interest in the QUBO formalism is its equivalence
to Ising Hamiltonians, commonly used in physics and chemistry.13

This equivalence goes both ways, enabling the direct conversion of
many physics/chemistry problems into the combinatorial optimization

domain. Likewise, various physical platforms can perform highly effi-
cient QUBO-based combinatorial optimization via physical processes
involving Ising Hamiltonians.14–16

Recent progress in the development of various near-term quan-
tum computing platforms opens up more efficient ways for addressing
the aforementioned optimization problems in terms of time and com-
putational resource requirements by leveraging the power of physical
mechanisms, specifically, quantum mechanics, in the processing unit.
For example, the D-Wave’s quantum annealers are actively used for
solving QUBO problems via encoding the QUBO parameters into a
system of coupled superconducting qubits and retrieving the lowest
energy configuration via quantum annealing.17,18 Surmounting evi-
dence shows that quantum annealing offers a so-called quantum
speedup over classical QUBO sampling methods.19,20 The QUBO-
based optimization consists of three main steps: (i) reformulating the
optimization problem into a QUBO model; (ii) embedding the
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retrieved QUBO model parameters into the QUBO sampler; and (iii)
retrieving the global solution of the problem. In most cases, the first
step in QUBO-based optimization is realized by exploiting a one-to-
one correspondence between the combinatorial problem under con-
sideration and the architecture of the QUBO-solver.21,22 On the one
hand, this correspondence makes retrieving corresponding QUBO
parameters of the problem trivial. On the other hand, it significantly
reduces the types of problems considered, especially those outside the
combinatorial domain.

Another important subfield of optimization problems is continu-
ous optimization. Continuous optimization is built on a continuous
domain, real-space parameters with differential, calculus-based rela-
tionships. Some simple continuous optimization problems can be
solved exactly with simple functions. However, many problems do not
have these analytic solutions and are solved numerically by employing
search algorithms such as stochastic gradient descent and various heu-
ristics, which cannot guarantee optimality. Many problems exist for
which these search algorithms do not work well because of the vast
continuous domain. Novel techniques that enable invertible mapping
from continuous space optimization problems to QUBO problems
may provide a way to take advantage of recent and future advance-
ments in QUBO, including quantum optimization algorithms.
Therefore, there is an apparent demand for a universal method of
mapping continuous optimization problems into the QUBO formal-
ism to generate better continuous space solutions.

Within this work, we developed a novel machine-learning
assisted framework that maps a broad range of continuous optimiza-
tion problems into QUBO problems and samples their optimized solu-
tions using any available classical or quantum QUBO solver.
Specifically, we demonstrated a binary variational autoencoder
(bVAE) assisted QUBO framework (bVAE-QUBO) that encodes a
continuous optimization problem into a binary, compressed space and
samples this compressed space with quantum-assisted QUBO sam-
plers. We showcase the performance of the developed framework on
two practical, continuous optimization problems of nanophotonics:
Sec. III (B) optimization of the topology of a thermal emitter for ther-
mophotovoltaics (TPV) and Sec. III (C) optimization of the topology
of a dielectric, diffractive meta-grating for beam steering. Although the
developed technique is showcased on inverse design problems of
nanophotonics, it can be directly applied to a broad range of practical
continuous optimization problems, e.g., in mechanical engineering,
chemistry, and material synthesis. By employing a quantum-assisted
algorithm for continuous optimization, our framework provides a
long-sought-after example of a quantum-assisted, machine learning
algorithm that has potential for quantum-supremacy,23 uses noisy
intermediate-scale quantum platforms for practical engineering prob-
lems,24 and could fully leverage future developments in quantum and
classical QUBO sampling.25,26

II. METHODS
A. bVAE-QUBO general framework

Motivated by the increasing number of qubits in D-Wave quan-
tum annealers14,17,18 and the recent work by Hastings in proving a rel-
ativized speedup for “stoquastic” adiabatic quantum computing,27 we
developed a framework to map highly constrained continuous optimi-
zation problems into the QUBO model, which can be minimized by
quantum annealers and other QUBO samplers. The first step of the

developed technique is compressing a problem dataset from a discre-
tized, continuous optimization problem onto a binary, compressed
space by training a binary variational autoencoder (bVAE). We then
map the binary, compressed space into an equivalent QUBO problem
by training a second-order factorization machine and retrieving corre-
sponding parameters of the QUBO model.28 Finally, we optimize the
retrieved QUBO problem to find an optimal binary vector via a
QUBO sampler like the D-Wave quantum annealer. The factorization
machine is retrained and resampled repeatedly using a QUBO sampler
until it converges to produce good, continuous space solutions. Below
we highlight each step of the process in more detail (Fig. 1).

Step #1 of the developed framework is to train the bVAE network
and construct a binary, compressed representation of the optimization
problem. This step maps the continuous optimization problem onto
the binary domain and substantially reduces the dimension of the con-
tinuous space problem. Conventionally used variational autoencoders,
which consist of two coupled neural networks (encoder and decoder),
construct an invertible mapping between a lower-dimensional encod-
ing of a dataset to the continuous-space solution.29,30 Here, we use a
limiting case of variational autoencoders—binary variational autoen-
coder, which constructs a binary, compressed space representation of
the complex datasets.33 More details of the bVAE structure and the
training process can be found in Appendix A.

Step #2 of the bVAE-QUBO framework maps the bVAE’s com-
pressed space into a QUBO problem or Ising Hamiltonian via training
a second-order factorization machine. This step exploits the fact that
second-order factorization machines are equivalent to QUBO
objective functions and Ising Hamiltonians. Factorization machines,
introduced by Rendle for learning sparse feature interactions,28 are
low-capacity models that infer coupling coefficients, vi; vjh i, by a fac-
torization matrix, V 2 Rn�k. The coupling coefficients, vi; vjh i, are
determined by taking the dot product of the ith and jth rows in V ,
which is equivalent to multiplying the factorization matrix by its trans-
pose, VVT . A factorization machine acts on an input binary vector,
x 2 f0; 1gn, and returns a figure of merit y 2 R:

y xð Þ ¼ w0 þ
Xn
i¼1

wixi þ
Xn
i¼1

Xn
j¼iþ1

vi; vjh ixixj: (1)

w0 2 R is a global bias and w 2 Rn defines the weights for the dis-
crete components of x. All free parameters, w0;w, and vi; vjh i, are
optimized via supervised training of the factorization machine.
Specifically, the factorization machine is trained on a randomly sam-
pled dataset of binary vectors X and their corresponding figure of
merit labels Y from the binary, latent space of the bVAE. The figure of
merit labels are calculated by passing a binary vector, x 2 X, through
the bVAE’s decoder and calculating the figure of merit on its
continuous-space solution.

A crucial benefit to restricting the factorization machine to a
second-order model is that QUBO objective functions are only
second-order polynomials. A QUBO sampler finds the minimum
input binary vector to a second-order pseudo-boolean function via
classical or quantum sampling algorithms:

argmin
x2f0;1gn

Xn
i¼0

Qixi þ
Xn
i1¼0

X
i2>i1

Qi1;i2xi1xi2 : (2)

Here, x 2 f0; 1gn and Q is a n� n matrix containing local biases
(diagonal terms) and coupling coefficients (off diagonal terms).
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Comparing Eqs. (1) and (2), we can see a similarity between the
parameters of the factorization machine and QUBO objective
function,

wi $ Qi; vi; vjh i $ Qi;j: (3)

Hence, by training the factorization machine regression model
and retrieving w0;w, and coupling matrix vi; vjh i, we can create an
equivalent QUBO model for a classical or quantum QUBO sampler.
See Appendix D for a discussion on the relationship between QUBO
and Ising Hamiltonians.

Step #3 embeds the retrieved QUBO/Ising problem from the fac-
torization machine in Step #2 into a sampler and retrieves optimized
solutions. While this step depends on the type and architecture of the
QUBO sampler, we used the D-Wave quantum annealers and classical
simulated annealing in our work. Nevertheless, we include more
details of these topics in Appendix E.

Once the factorization machine’s parameters are embedded into
the QUBO sampler, the sampler will return a set of optimized binary
vectors, xnew . The corresponding figure of merit labels ynew for the
sampled vectors are assessed by generating their continuous-space sol-
utions via the bVAE’s decoder and retrieving the corresponding figure
of merit values through a direct solver. Finally, the ðX;YÞ set initially
used for training the factorization machine during the previous itera-
tion is updated with ðxnew; ynewÞ by appending the new vectors to the
dataset. Step 3 concludes one iteration of the bVAE-QUBO, while the

next iteration starts with retraining the factorization machine on the
updated set ðX [ xnew;Y [ ynewÞ. Steps #2 and #3 are looped until
the figure of merit of the sampled solutions reaches saturation or the
desired number of iterations is achieved. The main idea is that retrain-
ing the factorization machine on sampled vectors increases the vari-
ance of the model and forces it to be a better surrogate model for the
continuous solution space. Sampling the newly trained factorization
machine should not give any previous binary solution unless the sam-
ple has a high enough figure of merit, indicating a saturated factoriza-
tion machine. In Sec. III, we showcase the performance of the
developed bVAE-QUBO framework on the optimization of meta-
structure designs for nanophotonic applications.

III. RESULTS
A. bVAE-QUBO for nanophotonic inverse
design problems

Recently, new optimization frameworks, such as topology opti-
mization36–40 and metaheuristics,41,42 for nanophotonics have
emerged as powerful design algorithms. However, these techniques
require significant computational resources and have exponential
asymptotic complexity with respect to problem constraints and the
dimensions of the optimization parametric space. In response, various
machine learning and deep learning algorithms have been adapted to
address optimization problems in nanophotonics.43–52 For example,
generative adversarial networks53,54 and adversarial autoencoders

FIG. 1. The developed general bVAE-QUBO framework steps: (step 1) training of the binary variational autoencoder (bVAE) and construction of binary compressed space rep-
resentation of the dataset (inset); (step 2) mapping the resulting binary compressed space into the QUBO/Ising model via training of the second order factorization machine;
and (step 3) embedding the retrieved Ising/QUBO model parameters into the hardware and sampling the optimized data from the QUBO sampler.
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coupled with adjoint topology optimization techniques for optimizing
meta-structures produced nonintuitive designs. It was also demon-
strated that adversarial autoencoder-based optimization frameworks
coupled with metaheuristic algorithms could perform global optimiza-
tion searches within the compressed design spaces of a pre-trained
adversarial autoencoder network.55,56 However, due to the general
complexity of the inverse design problems, such approaches may not
be effective in the case of highly constrained problems, which demand
multi-objective optimization within the high-dimensional latent
spaces.

Within this section, we show empirical evidence that the devel-
oped bVAE-QUBO framework can address the aforementioned chal-
lenges. Specifically, we demonstrate that by using the bVAE-QUBO
framework, it is possible to construct a binary, compressed space
representation of meta-devices with complex shapes and topologies
and map it into a QUBO sampler for optimized, free-form design
sampling. In the remainder of this section, we show the results from
applying our framework to two case studies of optimizing (i) thermal
emitters for thermophotovoltaics and (ii) dielectric, free-form diffrac-
tive grating for beam steering.

B. Thermal emitter for TPV application

The TPV engine generates electrical power via radiative heat
transfer between a heater and an array of photovoltaic cells [Fig. 2(a)].
High-efficiency power generation in a TPV system requires maximiz-
ing the portion of the emission that overlaps with the working band of
the photovoltaic cell [in-band radiation, green area in Fig. 2(b)] and
minimizing the rest of the spectra [out-of-band radiation, red area in
Fig. 2(b)].57–59 There are three main requirements for implementing a
high-efficiency TPV engine: (i) high temperature of the heater
(>1000 �C), (ii) refractory material platform for the elements of the
TPV system to ensure stable performance of the device at high tem-
peratures, and (iii) pre-optimized emissivity properties of the heater.

While the first two constraints can be addressed by choosing a
suitable refractory material platform,60–62 the third requirement can
be fulfilled by patterning the surface with a properly designed thermal
emitting metasurface. In the ideal case, the emissivity should
completely overlap the working band of the photovoltaic cell [black
dotted step-function, Fig. 2(b)]. Such surface emissivity ensures total
cancelation of the parasitic out-of-band radiation, which leads to the
reduction of the photovoltaic efficiency due to the heating while

FIG. 2. Simulated annealing assisted bVAE-QUBO for thermal emitter design optimization. (a) Schematic of a thermophotovoltaic engine: a heater patterned with a thermal
emitter array and a photovoltaic cell. The inset shows the base structure under consideration consists of a 300-nm-thick TiN back reflector, a 30-nm-thick Si3N4 dielectric
spacer, and a 120-nm-thick top TiN patterned layer in 280� 280 nm2 unit cell. The top TiN layer is set to be the optimization region. (b) Blackbody radiation of the bare heater
(solid black curve) corresponding to emission of blackbody at 1800 �C. The gray rectangular region highlights the GaSb photovoltaic cell working band. Only in-band radiation
is converted into electrical power (green area), while out-of-band radiation causes heating of the photovoltaic cell (red area). Black dashed contour corresponds to an ideal
thermal emitter’s emissivity/absorption spectrum. (c) Two examples of input and reconstructed emitter designs by the trained bVAE network (top) and examples of randomly
sampled thermal emitters (bottom). Patterns are top view of the optimization area, white color corresponds to TiN, while black corresponds to air. (d) Convergence plot of 30
iterations of the bVAE-QUBO framework. (e) Efficiency distribution of the training set used for bVAE training (5000 designs, blue histogram) and 100 designs generated via
bVAE-QUBO (orange). (f) Emissivity/absorption spectra of the best design sampled with bVAE-QUBO. Vertical dashed line shows the upper bound of the GaSb photovoltaic’s
working band. Inset shows the schematic of the thermal emitter design.
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maintaining the maximum possible free-carrier generation rate. We
consider TPV systems utilizing GaSb photovoltaic cells with a working
band ranging from kmin to kmax [shaded area in Fig. 2(b)].

Within this work, we consider a gap plasmon metasurface63,64

configuration consisting of an optically thick back titanium nitride
(TiN) reflector, a 30-nm-thick silicon nitride (Si3N4) spacer, and a
120-nm-thick top layer (optimization region), with a fixed 280-nm lat-
eral periodicity [inset, Fig. 2(a)]. The main goal of the optimization is
to determine the topological shape of the material distribution (TiN
and air) within the optimization region, which ensures spectral emis-
sivity matching the emissivity of the ideal emitter. For quantification
of the device performance, we define the efficiency of the thermal
emitter as a product of in-band ðeff in) and out-of-band efficiencies
(eff out). eff in is an in-band radiance of the emitter normalized to the
in-band radiance of ideal emitter at 1800 �C, while out-of-band effi-
ciency eff out is defined as a ratio of the out-of-band radiance of the
back reflector and radiance of the optimized design.

The first step of bVAE-QUBO is realized by training the bVAE
network on topology optimized thermal emitter designs. The training
set consists of 5000 topology optimized designs obtained via a previ-
ously developed adversarial autoencoder-based optimization frame-
work. A VGGnet regression model trained on the same dataset for
rapidly estimating the thermal emitter’s efficiency based on its design.
More information on training set generation is in Appendix F. During
the training of the bVAE, the encoder takes 64� 64 binary, grayscale
topology images [top view of the antenna, Fig. 2(c)] as an input and
trains to compress it into the 500-dimensional binary space. Likewise,
the decoder trains to reconstruct the topology of the antenna design
based on an inputted 500-dimensional binary vector. After training,
the encoder can compress antenna designs into the compressed latent
space while the decoder can act as a generator that maps latent vectors
to novel meta-structures. Two examples of the reconstructed antenna
designs are shown in Fig. 2(c). Here, one can see that the bVAE net-
work ensures precise reconstruction of complicated antenna designs.
Additionally, Fig. 2(c) shows some examples of the randomly sampled
antenna designs using the bVAE’s decoder. Note that the Gaussian fil-
tering with 20nm blur size is applied to the generated patterns to elim-
inate small features introduced by the bVAE noise.

The second step of the bVAE-QUBO framework starts by
training the factorization machine on the binary vectors (X) and
efficiency labels (Y) generated by the bVAE network. This data set
is constructed by randomly sampling 11 250 binary vectors from
the binary, compressed space and calculating their corresponding
efficiency labels. The efficiency labels are retrieved by generating
their thermal emitter design using the decoder and calculating their
efficiency using a pre-trained VGGnet. The ðX;Y) set is con-
strained such that half of it corresponds to low-efficiency designs
(70–80% efficiency), 30% of the designs in the set have moderate
efficiencies (between 80% to 90%), and 20% of them have more
than 90% efficiency. The supervised training of the factorization
machine is done using the adaptive gradient descent optimization
with the mean square error loss function. 70% of the ðX;YÞ dataset
is used for training, while 10% for validation and 20% is used for
testing. The trained factorization machine ensures r2 ¼ 72% and a
mean square error of 0.001. Additional information on the struc-
ture of the bVAE network and training the factorization machine
can be found in Appendixes A and C.

1. Simulated annealing-assisted
bVAE-QUBO framework

Using simulated annealing as the QUBO sampler, the bVAE-
QUBO framework executed 30 iterations. Thermal emitter design effi-
ciencies sampled during each of the bVAE-QUBO runs are shown in
Fig. 2(d). The data points and error bars show the mean efficiencies
and corresponding standard deviations of ten designs sampled during
each of the bVAE-QUBO runs. We can see that updating QUBO
parameters via retraining the factorization machine on the newly sam-
pled vectors will significantly increase the quality of sampled designs
(from �40% of the initially trained factorization machine up to
>90%). Figure 2(e) shows the efficiency distributions of the dataset
used for bVAE training (5000 designs, blue bars) and the best 100
designs sampled with bVAE-QUBO (orange bars). Finite difference
time domain analysis (Lumerical FDTD) is used to assess the final effi-
ciencies of each of the sets after running the framework. The best
design in the training set ensures 94.3% efficiency, while one sampled
via the simulated annealing-based bVAE-QUBO framework approach
ensures 96.7%. The emissivity spectra of the best design in the bVAE-
QUBO set are shown in Fig. 2(f), while the inset shows the corre-
sponding design of the thermal emitter.

2. Quantum-classical hybrid-assisted
bVAE-QUBO framework

Along with the simulated annealer, we tested the bVAE-QUBO
framework based on the quantum-classical hybrid sampler. The
hybrid sampler is a high-quality server-side sampler hosted in the
D-Wave Leap ecosystem that uses a mix of quantum annealing and
classical sampling to sample from large QUBO’s. Figure 3(a) shows
the convergence plot of emitter efficiencies generated with hybrid sam-
pling. As in the previous case, retraining the factorization machine
with a refined dataset substantially increases the bVAE-QUBO frame-
work’s performance. We note that the main limitation of this
approach is that the hybrid sampler returns one sample per bVAE-
QUBO run. To augment the sampled dataset during the bVAE-
QUBO run, we copied the sample ten times and flipped a single bit for
each copy. This allows us to expand the number of samples per epoch
while sacrificing variance in the resulting designs. The comparison of
the efficiency distributions obtained via the hybrid and simulated
annealing-assisted bVAE-QUBO framework is shown in Fig. 3(b).
Here, we can see that using the hybrid sampler ensures narrower effi-
ciency distribution with the median at 96% and interquartile range
(25th to 75th percentile) between 95.5% and 96.2%. For the compari-
son, the efficiency distribution of the simulated annealing-based sam-
pling has a 95.4% median and interquartile range between 94.2% and
96.2%. Both approaches provide almost identical maximum efficien-
cies, 96.5% (hybrid sampler) and 96.7% (simulated annealing).
Corresponding thermal emitter designs are shown in Fig. 3(c).
Interestingly, both samplers lead to the designs with identical topolo-
gies, with slightly different lateral dimensions of the antenna compo-
nents. Such narrow distribution of the sampled design efficiencies in
the hybrid case might be a consequence of a better optimization search
provided by the quantum annealing part of the sampler, which ensures
a higher probability of locating an optimum in comparison with the
classical simulated annealing algorithm.
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C. Inverse design of diffractive meta-gratings

In the second case study, we optimize dielectric, free-form dif-
fractive gratings for beam steering. Different types of dielectric meta-
structures, metasurfaces, and meta-gratings have been used for various
imaging applications,65 spectroscopy,66 as well as integrated optics
applications.67–69 The development of the dielectric antenna designs is
one of the major steps in the meta-structure design pipeline. It has
recently been demonstrated that advanced optimization frameworks,
such as genetic algorithms70 and adjoint topology optimization,71 can
be used to develop various types of dielectric meta-devices. We apply
the bVAE-QUBO framework to optimize silicon nitride (SiN) meta-
gratings for deflecting normally incident light to a pre-defined angle h.
The main goal of the optimization is to determine binary (SiN and air)
material distribution within the optimization region, which maximizes
the transmitted energy of the normally incident plane wave into þ1
diffraction order at a 60� deflection angle [Fig. 4(a)].

1. Training the bVAE network on topology optimized
meta-grating designs

Adjoint topology optimization is used to generate 2000 SiN free-
form meta-gratings (Appendix F).71 Figure 4(b) shows the best three
designs in the training set. The bVAE network is trained on 100� 100
pixelated patterns to compress the continuous-space representation of
meta-grating into 500-dimensional binary compressed space. Some of
the generated meta-grating designs by the trained bVAE network are
shown in Fig. 4(b). The figure of merit labels are assessed with S4, a
rigorous coupled-wave analysis (RCWA) solver.72,73 The evolution of
the efficiencies of the meta-grating sampled by the bVAE-QUBO
framework is shown in Fig. 4(c). Similar to the previous example,
gradual refinement of the QUBO parameters through retraining of the
factorization machine significantly increases efficiencies of sampled
designs. Within each iteration, the bVAE-QUBO samples �10 meta-
grating designs, generating 500 designs in total. Figure 4(d) shows a
comparison of efficiencies of the bVAE training set (2000 topology
optimized designs, blue bars) and the most efficient 100 designs

sampled with the simulated annealing-assisted bVAE-QUBO frame-
work (orange bars). The best designs in the topology optimized train-
ing set ensure 83% beam deflection efficiency, while the best design in
the bVAE-QUBO set ensures 87.1%. Figure 4(e) shows the meta-
grating designs of the four highest efficiency designs sampled via the
bVAE-QUBO framework. The figure indicates that similar to the
previous case study, the bVAE-QUBO framework samples high-
efficiency designs and produces significantly better designs than con-
ventional topology optimization. Comparing the generated design
quality from bVAE-QUBO to those in Ref. 71, we note that the 95%
efficiency achieved at a similar diffraction angle (75�) is the “relative
efficiency,” defined as a deflected light normalized to the total power
transmitted through the device. While in our case, we have considered
diffraction efficiency, i.e., the power in the diffraction order normal-
ized to the incident light. The equivalent metric from Ref. 71 is the
“absolute efficiency,” which is the power of the deflected light beam
normalized to the power of light transmitted through a bare SiO2 sub-
strate. In this case, the result achieved in Fig. 3(b) of Ref. 71 is 79%,
while bVAE-QUBO achieved 90.1%. To convert diffractive efficiency
into absolute efficiency, we use the transmission coefficient through a
SiO2–air boundary at normal incidence (96.6%) for a 1000nm wave-
length. However, it should be noted that there are some differences
between our diffractive meta-grating designs and those in Ref. 71
which may account for the large gap in theoretical, absolute efficien-
cies, e.g., meta-grating material (Si vs SiN), diffraction angle (75� vs
60�), and wavelength (1050nm vs 1000nm).

With regard to runtime performance, we highlight time require-
ments for each of the bVAE-QUBO’s steps in our case studies.
Training the bVAE network takes �20min using PyTorch, while
training of the VGGnet regression model requires �24min on a stan-
dard desktop (Intel Core i7, 2.8GHz CPU, 16 GB, and Nvidia
GeForce GTX 1050 GPU). Both the factorization machine training
and execution of the bVAE-QUBO sampling are realized on the
Google Colab platform. While the simulated annealing-assisted
bVAE-QUBO requires only 3 s to sample at least one design, the
hybrid sampler has a preset minimum annealing time of 10 s required

FIG. 3. bVAE-QUBO assisted with a hybrid (quantum-classical) sampler for optimizing high-efficiency thermal emitter designs. (a) Convergence plot of 50 iterations of
quantum-classical hybrid sampler assisted bVAE-QUBO. (b) Efficiency distribution comparison of the top 100 thermal emitter designs sampled via the hybrid (left) and simu-
lated annealing (right) samplers. The Box plot shows the median (red line), interquartile range (box) and outliers (red markers). Here, labeling indicates maximum efficiencies
within each set. (c) Top view of the best thermal emitter designs sampled via the hybrid sampler (top) and simulated annealing (bottom) assisted bVAE-QUBO (white color cor-
responds to TiN, while black corresponds to air).
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to sample one design. The main bottlenecks come from the QUBO
sampling time and determining the figure of merit of the device. More
details are available in Appendix E.

D. Topology optimization algorithm comparison

The bVAE-QUBO algorithm can readily be compared to more
tailored algorithms for solving the TPV problem from Sec. III B. The
two main points of comparison are runtime, Fig. 5(a), and design
quality, Fig. 5(b). The clear advantage of bVAE-QUBO over other
methods is that it can generate high-quality designs at a fraction of the
time without relying on gradient descent methods like adjoint optimi-
zation for deciding the next sample. When compared to the fastest
gradient descent-based algorithm for TPV, AAEþVGGnet, bVAE-
QUBO is able to generate higher-quality designs (þ1.2%) while only
taking slightly longer (þ4 min). When compared to the algorithm that
generates higher-quality designs, AAEþTO, bVAE-QUBO is able to
find a slightly lower efficiency design (�1.2%) while being 540 times
faster. However, because bVAE-QUBO uses quantum optimization to
perform global optimization, we predict the algorithm will outperform
these classical algorithms in both computation time and result quality
as the problem of interest becomes more difficult, and QUBO sam-
pling technology improves. At present, it is unknown whether bVAE-

QUBO has a quantum speedup over adjoint optimization methods.
To show such a speedup experimentally, one would need to show an
asymptotic advantage with bVAE-QUBO over classical sampling
methods, such as quantum Monte Carlo, on progressively larger
instances of a tailored quantum problem. Similar work was done by
King et al.20 to show an asymptotic speedup for quantum annealing
on frustrated magnets. We will explore this potential speedup and
design quality improvement in future work.

E. Variance in sampled solutions during bVAE-QUBO

Looking at Figs. 2(d) and 4(c), we note that there is variance in
the sampled efficiencies during bVAE-QUBO. For each epoch of
bVAE-QUBO, the training dataset increases by up to twenty vectors
(depending on the parameters of the QUBO sampler). Retraining the
factorization machine on these new vectors and the original training
set will increase the variance of the factorization machine. As the vari-
ance of the factorization machine increases, the variance of the QUBO
problem also increases. We believe that as the variance of the QUBO
increases, several different minima may diverge from the global
extremum of the original problem. We have tested this by plotting the
convergence of bVAE-QUBO for 100 epochs with the diffractive
meta-grating problem.

FIG. 4. bVAE-QUBO based diffractive meta-grating optimization. (a) Schematics of the meta-grating optimization domain. The main goal of topology optimization is to deter-
mine material distribution inside the optimization region (highlighted by white box) placed on the silicon dioxide substrate that ensures highest possible deflection efficiency at
h deflection angle. The inset shows the configuration of the unit cell. (b) Best designs in the topology optimized training set and examples of bVAE sampled metagrating
designs (white color %—SiN, black—air). (c) Convergence plot for 50 runs of the simulated annealing-assisted bVAE-QUBO framework. (d) Efficiency distributions of the train-
ing set used for bVAE training (2000 designs, blue histogram) and 100 designs generated via the bVAE-QUBO framework (orange). (e) Designs of best designs sampled by
the bVAE-QUBO.
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As shown in Fig. 6, when the training dataset grows too large
compared to the factorization machine’s capacity, it must sacrifice
accuracy to compensate for learning so many vectors. This deteriorates
the potential global maximum of the factorization machine, so the
sampled solutions begin to deteriorate in quality. The first considered
approach to compensate for this is to limit the size of the dataset and
replace the current dataset’s minimum vectors with any newly sam-
pled high-efficiency vectors that exceed these minimum vectors. This
solution does not lead to improved results in practice. The factoriza-
tion machine does not learn from the minimum vectors that are not

added to the training set. So, it can become stuck and repeatedly pro-
duce low-efficiency vectors. We are interested in employing dataset
manipulation in future work to overcome these limitations.
Specifically, we will focus on reducing this variance in the dataset to
obtain better convergence over longer bVAE-QUBO runs.

IV. CONCLUSION

Within this work, we developed a unique framework that maps a
broad range of continuous optimization problems into QUBO prob-
lems, which can be optimized by any available QUBO sampler. The
developed binary variational autoencoder-assisted QUBO framework
reformulates a continuous-space problem into a QUBO problem and
maps the constructed binary, compressed space into a QUBO sampler
through a factorization machine model. The performance of the devel-
oped technique is demonstrated on two case studies of inverse design
problems in nanophotonics, (i) thermal emitter topologies for TPV
applications and (ii) diffractive meta-gratings for high-efficiency beam
steering. This work is inspired by a recent factorization machine-
assisted QUBO framework applied for optimization of “checkerboard”
type multi-layer metamaterial structures by setting “one to one” map-
ping of material pixels of the structure into the system of qubits of the
D-Wave machine.21 In contrast to,21 the bVAE-QUBO framework
can (i) map continuous-space optimization problems without impos-
ing the one-to-one mapping from the QUBO solver to the problem
solution space, and hence, (ii) reduce the dimension of the parametric
space of the continuous domain by constructing a compressed binary
space representation. By using a bVAE to map into the optimization
space, our method can impose structural constraints such as manufac-
turability and symmetry without manipulating the cost functions.
Additionally, this framework can easily be extended to continuous

FIG. 5. Comparison of four topology optimization algorithms for generating optimal metasurfaces for the TPV application, see Sec. III B. Direct topology optimization (Direct
TO)36–40 is a gradient optimization technique that refines the topology of a metasurface by iteratively following the gradient vector. The machine learning based algorithms,
such as Adversarial Autoencoder assisted TO (AAE þ TO),55,56 bVAE-QUBO, and Adversarial Autoencoder assisted TO with a VGGnet (AAE þ VGGnet),55,56 all employ an
autoencoder to compress metasurface designs into a latent space and then perform a global optimization algorithm, e.g., adjoint optimization, quantum annealing, or simulated
annealing, within the compressed latent space of the autoencoder. (a) Computation time (hours) for each of the aforementioned algorithms to produce 100 metasurface
designs. (b) Highest efficiency metasurface generated from each algorithm for the TPV application.

FIG. 6. Maximum efficiency sampled vector for each epoch during bVAE-QUBO. As
the factorization machine begins to reach saturation, it first achieves its global maxi-
mum and keeps producing high efficiency solutions until the dataset size grows too
large. The gold line shows the maximum efficiency vector in the original training set.
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space datasets where optimization can be performed on classes of con-
tinuous vectors with similar properties. Such generic formalism of the
bVAE-QUBO framework opens up the possibility for mapping a
broad range of highly constrained optimization problems of optics,
chemistry, mechanics, finance, and computer science into any available
QUBO sampler. While the current study showcased the quality of gen-
erated designs from the bVAE-QUBO-based framework on classical
and quantum-classical hybrid samplers, we are not claiming an asymp-
totic speedup for the quantum-classical hybrid sampler or quantum
annealing for inverse-design or “untailored” problems when compared
to state-of-the-art heuristic solvers as discussed in Ref. 74. However,
we are planning to address this important scaling issue in our future
work via a theoretical study in quantum machine learning and an
experimental head-to-head competition between a quantum Monte
Carlo sampler and a quantum annealer during an instance of bVAE-
QUBO. Additionally, this work will be extended to similar frameworks
with general, non-stoquastic Hamiltonians for adiabatic optimization.
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APPENDIX A: STRUCTURE AND TRAINING OF A
BINARY VARIATIONAL AUTOENCODER

Within this work, we map the continuous design space found
in many physically constrained problems into a binary design space.
Recently, it has been demonstrated that variational autoencoders

can be generalized for categorical compression of complex 1D and
2D datasets, where the compressed space coordinates are discrete
variable vectors.31,32 Here, we use a limiting case of such categorical
variational autoencoders—binary variational autoencoder, which
allows the construction of binary, compressed space representation
of the complex datasets.33 A properly trained bVAE can be consid-
ered an invertible map, g : f0; 1gn ! Rm�m, between the binary,
compressed space vectors of size n and the discretized, continuous
space solutions of dimensionality m�m. This maps each binary
vector, x 2 f0; 1gn, in the domain to only one design for the prob-
lem of interest in a discretized space Rm�m. Constructing g can be
done via training of a binary variational autoencoder (bVAE) on
samples from the image of g. The bVAE is a deep neural network
consisting of an encoder and a decoder. The encoder is a network
with one input layer of m�m dimensions and two hidden dense
layers with 512 and 256 neurons and ReLU activation functions.
The decoder has an inverted structure to the encoder, two layers
with 256 and 512 neurons, and one output layer. The structure of
the network is shown in Fig. 6(a). Specifically, the bVAE network
learns how to compress continuous space designs into a binary,
latent space and then reconstruct them. Naturally, the bVAE
decoder acts as g; and the bVAE encoder acts as the inverse of g.
The bVAE is trained by minimizing both the reconstruction loss for
a design and the Kullback–Leibler divergence loss, LbVAE:31 The lat-
ter defines the deviation of the recognition distribution (obtained
with the model data) from the pre-defined prior (Fig. 7),

LbVAE ¼ KL q zjymð Þjp zð Þ
� �

� log p ymjzð Þ½ �: (A1)

The main difference between the bVAE and the typical VAE
network is that the priors, pðzÞ, and recognition model, qðzjyÞ, are
under different distributions. The bVAE is under a Bernoulli distri-
bution, while the typical VAE’s distribution is assumed to be
Gaussian. The main problem with the bVAE, like with the VAE, is
that a latent variable x needs to be stochastically sampled with a
pre-defined distribution to properly backpropagate the error for
training the stochastic nodes in the network. This can be circum-
vented if we express the sample x � phðzÞ such that the gradient
can flow from the cost function to the set of the parameters h (out-
put of the encoder) without encountering stochastic nodes.
For example, in a VAE network, the sampling of a latent variable
with Gaussian distribution is realized by re-parameterization
x � Nðl;rÞ as x ¼ lþ r � e, where e � Nð0; 1Þ and ðl;rÞ are
parameters of the encoder. This re-parameterization allows us to
calculate their derivatives with respect to l and r and use e as an
additional input parameter sampled during each training epoch. We
used the Gumbel-softmax re-parameterization trick to backpropa-
gate the error in the bVAE, which is a similar re-parameterization
to the standard VAE.31,32 Specifically, Gumbel-softmax is a re-
parameterization trick for a distribution that we can smoothly
deform into the categorical distribution during the training process.
Gumbel-softmax samples the latent space vectors ~xi based on the
class probabilities p1; p2;…pn of the categorical representation as

~xi ¼
exp

log pið Þ þ Gi

s

� �
Pn
j¼1

exp
log pjð Þ þ Gj

s

� � ; i ¼ 1;…; n; (A2)
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here Gi are independent and identically distributed variables sam-
pled from Gumbel distribution Gumbelð0; 1Þ. s is a “temperature”
parameter that controls how closely samples from Gumbel-softmax
distribution approximates those from the true categorical distribu-
tion. During the training process, s is gradually “annealed” from
smax down to smin, which is a good approximation to a categorical
latent space distribution. We swept the s parameter from smax ¼ 5
to smin ¼ 0:4 with annealing rate c ¼ 0:0003. The evolution of the
temperature follows an iterative form, sepochþ1 ¼ sepoch
expð�c � epochÞ. We used a stochastic gradient descent optimiza-
tion method, Adam (Adaptive Moment Estimation),75 available
through the Keras, and TensorFlow Python API during the training
loop of the bVAE. The evolution of the training and validation
losses of the bVAE network trained on 5000 thermal emitter
designs is shown in Fig. 6(b). 85% of the design set is used for train-
ing and 15% for validation.

APPENDIX B: PSUEDO-BOOLEAN STRUCTURE OF
THE FACTORIZATION MACHINE

Introduced by Rendle for learning sparse feature interactions,
factorization machines are very useful, low-capacity models.28

Consider a map, h : Rm�m ! R; that calculates the figure of merit
of a discretized, continuous space design. Then, h gð Þ : f0; 1gn
! R, where g is the bVAE decoder, maps a binary vector in the
compressed space of the bVAE to its figure of merit. Let
~y xð Þ ¼ h gðxÞ½ �, then ~y xð Þ is a pseudo-boolean function. If we
restrict the domain of the factorization machine to a binary space,
then its model equation is isomorphic to an exhaustive pseudo-
boolean function,

y xð Þ ¼
Xn
i¼0

v 1ð Þ
i

D E
xi þ

Xn
i1¼0

X
i2>i1

v 2ð Þ
i1 ; v

2ð Þ
i2

D E
xi1xi2

þ
Xn
i1¼0

X
i2>i1

…
X

in>in�1

v 2ð Þ
i1 ;…; v nð Þ

in

D E
xi1…xin : (B1)

For each polynomial degree, d, there exists a factorization
matrix v dð Þ. Given a factorization matrix v dð Þ 2 Rn�k, we can define
a coefficient for the polynomial xi1…xid of degree d as
v dð Þ
i1 ;…; v dð Þ

id

D E
, which is a dot product between rows i1; i2;…; id in

v dð Þ. The advantage of factorization machines is that their polyno-
mial coefficients are determined by row interactions in their factori-
zation matrix, which couples a change in one coefficient to a change
in all the rows associated with that coefficient. This makes them a
lower capacity model than a model where each polynomial coeffi-
cient is unique and decoupled from every other coefficient.
However, this means that the model can infer coefficients under
sparse training sets.

If a factorization machine is trained to approximate ~y xð Þ, then
we can treat it as a surrogate model to ~y xð Þ and sample its global
optimum in place of ~y xð Þ, thereby sampling globally optimal
designs within its highly compressed space. Naturally, this model’s
space complexity can be exponentially large with respect to the size
of x if ~y xð Þ is a full pseudo-boolean function. We can make a calcu-
lated cut in the number of terms by noticing that given any polyno-
mial of degree, d, the number of input strings where the coefficient
of the polynomial contributes is 2n�d . So, we argue that the highest
priority coefficients are the low order polynomials where the proba-
bilities of any coefficient from first-order terms or second-order
terms contributing to the output value are 2n�1

2n ¼ 1
2 and 2n�2

2n ¼ 1
4,

respectively. Additionally, sampling a second-order factorization
machine as a surrogate model is much more feasible because
QUBO solvers can minimize second-order/quadratic pseudo-
boolean functions without special quadratization transformations.
By restricting the factorization machine to first and second-order
terms, its model equation becomes

y xð Þ ¼
Xn
i¼0

v 1ð Þ
i

D E
xi þ

Xn
i1¼0

X
i2>i1

v 2ð Þ
i1 ; v

2ð Þ
i2

D E
xi1xi2 : (B2)

A crucial benefit to restricting the factorization machine to a
second-order model is that QUBO objective functions are only
second-order polynomials. A QUBO sampler finds the minimum
input string to a second-order pseudo-boolean function via classical
or quantum sampling algorithms:

arg min
x2f0;1gn

Xn
i¼0

Qixi þ
Xn
i1¼0

X
i2>i1

Qi1;i2xi1xi2 : (B3)

If we used a higher-order factorization machine, it would need
to be quadratized to a second-order polynomial before being

FIG. 7. Binary variational autoencoder training. (a) Structure of the bVAE network and Gumbel-softmax re-parameterization of the binary latent variable. (b) Evolution of training
and validation loss of bVAE network during training on thermal emitter design set.
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minimized by a QUBO sampler.76 The scaling for this process can
introduce an exponential number of variables or take an exponen-
tial amount of time with respect to the degree or input size of the
QUBO. So, we restricted our framework to second-order factoriza-
tion machines. Then we can directly map it to a QUBO without
quadratization, where Qi ¼ hv 1ð Þ

i i and Qi1;i2 ¼ hv
2ð Þ
i1 ; v

2ð Þ
i2 i.

APPENDIX C: TRAINING THE FACTORIZATION
MACHINE

For both nanophotonic applications, we found that binary vec-
tors of size 500, i.e., x 2 f0; 1g500, and factorization matrices of size
500� 40, i.e., v 2ð Þ 2 R500�40, were sufficient to find good designs.
For factorization machine training, we constructed a training set of
11 250 unique vectors by randomly sampling from the binary,
compressed space of the bVAE and assessing the performance of
the design via a pre-trained convolutional neural network (thermal
emitters) or a rigorous coupled-wave analysis (diffraction gratings).
The evolution of the loss function of the factorization machine for
the thermal emitter showcase example is shown in Fig. 2. It is also
important to note for training that QUBO samplers minimize an
objective function while we want to maximize the figure of merit
for a problem. One can circumvent this issue by training the factor-
ization machine on c� ~y xð Þ, where 8x 2 f0; 1gn : c > ~y xð Þ. Then,
the minimization of the factorization machine corresponds to the
maximization of ~y xð Þ.

APPENDIX D: MAPPING A QUBO INTO AN
ISING MODEL

The restricted Ising Hamiltonian HðrÞ used by quantum
annealers contains local biases h and a quadratic term proportional
to a qubit coupling matrix J as

H rð Þ ¼
XN
i¼1

hir
zð Þ
i þ

XN
i;jh i

Jijr
zð Þ
i r zð Þ

j : (D1)

rðzÞi is a Pauli-Z matrix acting on the ith qubit’s spin state. The spin
state must collapse to an eigenvalue of �1 or þ1 upon measure-
ment. So, one can loosely consider this collapsed measurement
value as a binary variable, si 2 �1;þ1f g:

H sð Þ ¼
XN
i¼1

hisi þ
XN
i;jh i

Jijsisj: (D2)

Comparing Eqs. (B2) and (D2), we can see the isomorphism between
the parameters of the factorization machine and Ising model,

hi $ wi; Jij $ vi; vjh i: (D3)

However, the domain of the Ising Hamiltonian is the spin vec-
tors {�1;þ1gn, and the domain of the factorization machine is
Boolean, f0; 1gn. There does exist a trivial transformation between
the two domains, namely, the invertible substitution si ¼ 2xi � 1.
Hence, by training the factorization machine regression model and
retrieving w0;w; and coupling matrix vi; vjh i, it is possible to con-
struct an equivalent Ising or QUBO model.

APPENDIX E: RETRIEVING OPTIMAL VECTORS
FROM A QUBO SAMPLER

1. QUBO connectivity graph

Once the factorization machine equation is mapped into an
equivalent QUBO or Ising form, we employ a QUBO sampler to
find an input vector that minimizes the model’s output. One thing
to keep in mind is that the coupling matrix in a QUBO, Qi;j, forms
an undirected graph. Let G ¼ fV ; Eg be the connectivity graph for
a QUBO coupling matrix, Q, where V ¼ f1; 2;…; ng is the set of
nodes in the graph, i.e., input bits, and E ¼ ffi; jg j i; j 2 V andQi;j

6¼ 0 and i 6¼ jg is the set of edges in the graph. One would assume
that the connectivity graph of a QUBO and its sampler must match
to be compatible. However, this limitation only exists for QUBO
samplers that use physical processes for sampling, such as quantum
annealers. Additionally, minor-embedding techniques can convert
Q to another graph, Q’, that is compatible with the QUBO sampler
and has the same minimum input vectors as Q. Unfortunately, this
process introduces many more nodes and edges, and it is possible
that the number of nodes and edges in Q’ exceeds that of the physi-
cal QUBO sampler.

A special case for this embedding is when considering fully
connected graphs. If Q is fully connected, such as with our factori-
zation machine’s QUBO, then the maximum number of nodes for
which a Q’ exists for a given physical sampler is known as the
“clique” size. The clique size for a QUBO sampler depends on the
topology of the QUBO sampler and the number of available nodes.
There are two available topologies for the D-Wave quantum
annealer connectivity: Pegasus (D-Wave Advantage)34 and
Chimera (D-Wave 2000Q).35 The D-Wave Advantage quantum
annealer has a Pegasus connectivity graph with a maximum clique
size of 180 qubits, while the D-Wave 2000Q’s Chimera graph clique
size is 64 qubits. Along with quantum annealing, the D-Wave Leap
ecosystem supports simulated annealing and quantum-classical
hybrid samplers, which can handle any clique size. Naturally, the
quantum annealer may ensure asymptotic speedup over classical
computers with respect to the QUBO size.

2. Handling larger QUBO sizes

Unfortunately, we found in practice that our factorization
machines required 500-dimensional input vectors to be good mod-
els, which exceeds the maximum clique size of the D-Wave
Advantage. To address this, we considered two main options which
extend to any optimization problem whose compressed solution
space exceeds the clique size of the QUBO solver: (i) classical sam-
pling techniques and (ii) hybrid quantum-classical decomposition
sampling techniques.77 The benefit of using classical sampling tech-
niques, such as simulated annealing or quantum Monte Carlo, is
that the QUBO size can be as large as the computer’s memory will
allow and the problem can often be parallelized. The trade-off is
that the algorithm loses any advantage given by a quantum sam-
pling scheme. Alternatively, one can use a hybrid quantum-classical
decomposition solver that decomposes the problem into sub-
problems for the quantum annealer to solve. These algorithms have
been shown to provide better solutions in faster time than popular
classical sampling methods. It is also worth noting that it may be
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possible to reduce the size of the final QUBO by additional regulari-
zation of the bVAE training process, which can adapt the distribu-
tion of the binary, compressed space to better match the
factorization machine model. Due to the aforementioned restriction
of maximum clique size, we resorted to using D-Wave’s simulated
annealer and quantum-classical hybrid sampler for our problems.

APPENDIX F: GENERATING A TOPOLOGY
OPTIMIZED TRAINING SET

1. Thermal emitter

Within this work, we have used a previously developed adver-
sarial autoencoder-based optimization framework to generate the
training set for the bVAE-QUBO algorithm. The adversarial
autoencoder network is initially trained on 200 topology optimized
designs of a three-layered gap-plasmon structure. 200 topology
optimized designs have been enlarged via a data argumentation
technique developed in Ref. 55.

The adversarial autoencoder consists of three coupled neural
networks: the encoder, the decoder/generator, and the discrimina-
tor.78 The encoder takes a 4096-dimensional input vector (that cor-
responds to a 64� 64 binary design pattern). The input is fed into
the first of two fully connected, hidden layers with 512 neurons
each and a ReLU activation function on the output of both layers.
One batch normalization layer is coupled to the second hidden
layer. The output is a 15-neuron layer. The decoder has the same
architecture as the encoder but with the reversed sequence. The
decoder generates a 4096-element output vector based on
15-dimensional, binary input. For the output layer, we use the
hyperbolic tangent activation function. The discriminator takes a
15-dimensional latent vector as an input and has one output neuron
for binary classification (fake/real). Here, we use two hidden linear
layers with 512 and 256 neurons. The two hidden layers use a ReLU
activation function, and the output layer uses a sigmoid function.

Once the adversarial autoencoder network is trained, the
decoder generates an additional 5000 designs. Moreover, to avoid
time-consuming full-wave analysis during the execution of the
bVAE-QUBO, a VGGnet convolutional neural network is trained
for rapid estimation of a thermal emitter’s efficiency based on its
design. The VGGnet takes 64� 64 images of the design as an input
and passes it through three hidden layers, consisting of convolu-
tional layers with ReLU activation functions. Each hidden layer is
followed by a max-pooling layer, which ensures the down-sampling
of the feature maps. The stack of convolutional layers is followed by
one fully connected layer. The final layer has a linear activation
function with a mean squared error loss function for efficiency pre-
diction. The supervised training of the VGGnet is realized on the
same 5000 designs. The VGGnet regression model ensures �93%
accuracy (r2 coefficient) of predicting the design efficiency.
Training the adversarial autoencoder and VGG networks is done
similarly to Ref. 55.

2. Diffractive meta-grating

For the diffractive meta-grating example, we developed a
topology optimized dataset by the adjoint topology optimization

method. Here, we follow the optimization framework developed in
Ref. 71. The main goal of the optimization is to determine binary
material distribution (SiN in air) within the optimization region,
which maximizes transmission into a þ1-diffraction order at a 60�

angle of a normally incident plane wave. The optimization region is
set to be a 1� 0:34lm2 region with a thickness of 0:8lm placed on
top of the SiO2 substrate. A 1 lm wavelength plane wave excitation
occurs from the substrate side. Topology optimization attempts to
maximize the transmission efficiency of the incident light into a
pre-defined diffraction order via maximization of the overlap inte-
gral between total field induced by the incident ½Efwd, Hfwd� and the
field induced by backward propagating adjoint field ½Ebwd; Hbwd�.
The overlap integral is calculated above the optimization region
(z ¼ z1):

F ¼
ðymax

ymin

ðxmax

xmin

Efwd x; y; z1ð Þ �Hbwd x; y; z1ð Þ�
Ebwd x; y; z1ð Þ �Hfwd x; y; z1ð Þ

 !
� nzdxdy

�����
�����
2

:

(F1)

The main goal of the adjoint formalism is to express the
gradient @Fðx; yÞ=@e as a function of field distributions inside
the optimization region induced by forward and backward
(adjoint) excitation. Such formalism obtains gradients at each
location of the optimization region via only two full-wave
analyses. More details of the adjoint topology optimization for-
malism for dielectric meta-grating optimization can be found in
Ref. 71.
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E. N. Wang, Nat. Energy 1, 16068 (2016).

59Y. X. Yeng, M. Ghebrebrhan, P. Bermel, W. R. Chan, J. D. Joannopoulos, M.
Soljacic, and I. Celanovic, Proc. Natl. Acad. Sci. 109, 2280 (2012).

60H. Reddy, U. Guler, Z. Kudyshev, A. V. Kildishev, V. M. Shalaev, and A.
Boltasseva, ACS Photonics 4, 1413 (2017).

61M. Chirumamilla, A. Chirumamilla, Y. Yang, A. S. Roberts, P. K. Kristensen, K.
Chaudhuri, A. Boltasseva, D. S. Sutherland, S. I. Bozhevolnyi, and K. Pedersen,
Adv. Opt. Mater. 5, 1700552 (2017).

62L. Gui, S. Bagheri, N. Strohfeldt, M. Hentschel, C. M. Zgrabik, B. Metzger, H.
Linnenbank, E. L. Hu, and H. Giessen, Nano Lett. 16, 5708 (2016).

63F. Ding, Y. Yang, R. A. Deshpande, and S. I. Bozhevolnyi, Nanophotonics 7,
1129 (2018).

64H.-H. Hsiao, C. H. Chu, and D. P. Tsai, Small Methods 1, 1600064 (2017).
65P. Genevet and F. Capasso, Rep. Prog. Phys. 78, 024401 (2015).
66A. Pors, M. G. Nielsen, and S. I. Bozhevolnyi, Optica 2, 716 (2015).
67C. J. Chang-Hasnain and W. Yang, Adv. Opt. Photonics 4, 379 (2012).
68O. Quevedo-Teruel, H. Chen, A. D�ıaz-Rubio, G. Gok, A. Grbic, G. Minatti, E.
Martini, S. Maci, G. V. Eleftheriades, M. Chen, N. I. Zheludev, N. Papasimakis,
S. Choudhury, Z. A. Kudyshev, S. Saha, H. Reddy, A. Boltasseva, V. M.
Shalaev, A. V. Kildishev, D. Sievenpiper, C. Caloz, A. Al�u, Q. He, L. Zhou, G.
Valerio, E. Rajo-Iglesias, Z. Sipus, F. Mesa, R. Rodr�ıguez-Berral, F. Medina, V.
Asadchy, S. Tretyakov, and C. Craeye, J. Opt. 21, 073002 (2019).

69N. Yu and F. Capasso, Flat Optics with Designer Metasurfaces (Nature
Publishing Group, 2014), pp. 139–150.

70S. D. Campbell, D. Sell, R. P. Jenkins, E. B. Whiting, J. A. Fan, and D. H.
Werner, Opt. Mater. Express 9, 1842 (2019).

71D. Sell, J. Yang, S. Doshay, R. Yang, and J. A. Fan, Nano Lett. 17, 3752 (2017).
72V. Liu and S. Fan, Comput. Phys. Commun. 183, 2233 (2012).
73C. M. Roberts, S. Inampudi, and V. A. Podolskiy, Opt. Express 23, 2764 (2015).
74S. Mandr�a, Z. Zhu, W. Wang, A. Perdomo-Ortiz, and H. G. Katzgraber, Phys.
Rev. A 94, 022337 (2016).

75F. Chollet, keras, GitHub (2015); available at https://github.com/fchollet/keras.
76N. Dattani, arXiv:1901.04405 (2019).
77M. Booth, S. P. Reinhardt, and A. Roy, Report No. 14-1006A-A (D-Wave
Technical Report Series, 2017).

78A. Makhzani, J. Shlens, N. Jaitly, I. Goodfellow, and B. Frey, arXiv:1511.05644
(2015).

Applied Physics Reviews ARTICLE scitation.org/journal/are

Appl. Phys. Rev. 8, 041418 (2021); doi: 10.1063/5.0060481 8, 041418-13

Published under an exclusive license by AIP Publishing

https://doi.org/10.1038/s41467-021-20901-5
https://doi.org/10.1103/PhysRevResearch.2.013319
https://doi.org/10.1103/PhysRevResearch.2.013319
https://doi.org/10.1103/PRXQuantum.1.020320
https://doi.org/10.1088/2058-9565/aab859
https://doi.org/10.1088/2058-9565/aab859
https://doi.org/10.22331/q-2018-08-06-79
http://arxiv.org/abs/1907.12724
http://arxiv.org/abs/2006.06267v3
http://arxiv.org/abs/1901.07636v1
http://arxiv.org/abs/1508.05087
http://arxiv.org/abs/2009.14276
https://doi.org/10.1063/1.1688450
https://doi.org/10.1038/s41566-018-0246-9
https://doi.org/10.1364/OE.21.021693
https://doi.org/10.1364/OE.21.021693
https://doi.org/10.1364/OE.27.015765
https://doi.org/10.1038/s41598-018-29275-z
https://doi.org/10.1021/acsphotonics.9b00717
https://doi.org/10.1021/acsnano.8b03569
https://doi.org/10.1126/sciadv.aar4206
https://doi.org/10.1038/s41467-019-12637-0
https://doi.org/10.1364/OE.27.027523
https://doi.org/10.1002/aisy.201900132
https://doi.org/10.1038/s41524-020-0276-y
https://doi.org/10.1038/s41378-019-0069-y
https://doi.org/10.1002/adma.201904790
https://doi.org/10.1038/s41566-020-0685-y
https://doi.org/10.1038/s41566-020-0685-y
https://doi.org/10.1038/s41578-020-00260-1
https://doi.org/10.1021/acsnano.9b02371
https://doi.org/10.1021/acs.nanolett.9b01857
https://doi.org/10.1063/1.5134792
https://doi.org/10.1063/1.5134792
https://doi.org/10.1515/nanoph-2020-0376
https://doi.org/10.1038/nnano.2013.286
https://doi.org/10.1038/nenergy.2016.68
https://doi.org/10.1073/pnas.1120149109
https://doi.org/10.1021/acsphotonics.7b00127
https://doi.org/10.1002/adom.201700552
https://doi.org/10.1021/acs.nanolett.6b02376
https://doi.org/10.1515/nanoph-2017-0125
https://doi.org/10.1002/smtd.201600064
https://doi.org/10.1088/0034-4885/78/2/024401
https://doi.org/10.1364/OPTICA.2.000716
https://doi.org/10.1364/AOP.4.000379
https://doi.org/10.1088/2040-8986/ab161d
https://doi.org/10.1364/OME.9.001842
https://doi.org/10.1021/acs.nanolett.7b01082
https://doi.org/10.1016/j.cpc.2012.04.026
https://doi.org/10.1364/OE.23.002764
https://doi.org/10.1103/PhysRevA.94.022337
https://doi.org/10.1103/PhysRevA.94.022337
https://github.com/fchollet/keras
http://arxiv.org/abs/1901.04405
http://arxiv.org/abs/1511.05644
https://scitation.org/journal/are

	s1
	s2
	s2A
	d1
	d2
	d3
	s3
	s3A
	f1
	s3B
	f2
	s3B1
	s3B2
	s3C
	s3C3
	f3
	s3D
	s3E
	f4
	s4
	f5
	f6
	l
	app1
	dA1
	dA2
	app2
	dB1
	dB2
	dB3
	f7
	app3
	app4
	dD1
	dD2
	dD3
	app5
	s7A
	s7B
	app6
	s8A
	s8B
	dF1
	c1
	c2
	c3
	c4
	c5
	c6
	c7
	c8
	c9
	c10
	c11
	c12
	c13
	c14
	c15
	c16
	c17
	c18
	c19
	c20
	c21
	c22
	c23
	c24
	c25
	c26
	c27
	c28
	c29
	c30
	c31
	c32
	c33
	c34
	c35
	c36
	c37
	c38
	c39
	c40
	c41
	c42
	c43
	c44
	c45
	c46
	c47
	c48
	c49
	c50
	c51
	c52
	c53
	c54
	c55
	c56
	c57
	c58
	c59
	c60
	c61
	c62
	c63
	c64
	c65
	c66
	c67
	c68
	c69
	c70
	c71
	c72
	c73
	c74
	c75
	c76
	c77
	c78

