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Magnetic flux noise 
in superconducting qubits 
and the gap states continuum
Dominik Szczęśniak1,2* & Sabre Kais1

In the present study we investigate the selected local aspects of the metal-induced gap states 
(MIGSs) at the disordered metal–insulator interface, that were previously proposed to produce 
magnetic moments responsible for the magnetic flux noise in some of the superconducting qubit 
modalities. Our analysis attempts to supplement the available studies and provide new theoretical 
contribution toward their validation. In particular, we explicitly discuss the behavior of the MIGSs 
in the momentum space as a function of the onsite energy deviation, that mimics random potential 
disorder at the interface in the local approximation. It is found, that when the difference between the 
characteristic electronic potentials in the insulator increases, the corresponding MIGSs become more 
localized. This effect is associated with the increasing degree of the potential disorder that was earlier 
observed to produce highly localized MIGSs in the superconducting qubits. At the same time, the 
presented findings show that the disorder-induced localization of the MIGSs can be related directly to 
the decay characteristics of these states as well as to the bulk electronic properties of the insulator. As 
a result, our study reinforces plausibility of the previous corresponding investigations on the origin of 
the flux noise, but also allows to draw future directions toward their better verification.

At present, the superconducting quantum interference devices (SQUIDs) constitute promising platform for the 
quantum information processing, that allows to build tunable  qubits1,2. However, although the superconducting 
approach satisfies all of the DiVincenzo’s criteria, it still suffers from some important  drawbacks2,3. One of such 
limitations concerns the universal low-frequency (1/f) magnetic flux noise that occurs in  SQUIDs2,4,5 and greatly 
influences all related qubit  modalities6,7 i.e. qubits based on closed superconducting loops such as the tunable 
 phase8 and flux  qubits9,10. As a result, the magnetic flux noise visibly limits dephasing times of the mentioned 
qubit  types8–10, hampers down their  scalability6, and reduces rate of coherently tunneling qubits in terms of the 
quantum  annealers11,12.

Over the years, various attempts to tackle the magnetic flux noise were proposed, that can be grouped into 
two main research strategies. First scenario concentrates on modifications of the superconducting qubit design, 
toward archetypes inherently insensitive to the magnetic  noise13–15. In general, these are the non-tunable qubits 
that base on different modalities, including relatively new ones such as the quantronium (introduced via pro-
cesses at noise unsusceptible bias points)13, transmon (based on shunt capacitive effect)14 or xmon (defined by the 
alternative capacitor geometries)15. However, despite being highly successful in some areas, this approach comes 
with still noticable trade-offs e.g. the intrinsic qubit anharmonicity or crowding in multi-qubit  systems16–19. At 
the same time, it does not provide detailed understanding of the discussed magnetic noise, but rather attempts 
to bypass this issue. On the other hand, the second strategy aims at the in-depth elucidation of the magnetic 
flux noise in already existing superconducting qubit types, in order to suppress this negative phenomenon and 
improve performance of the related qubit  solutions20–25. In these terms, hitherto not fully explained origin of 
the magnetic noise in SQUIDs is still an intriguing and important aspect within the domain of superconduct-
ing qubits.

Interestingly, the magnitude of the magnetic flux noise is known to weakly depend on the SQUID area, as well 
as on the superconductor or substrate  type8,25. According to that, local effects can be argued to play important 
role in producing the discussed noise. In this regard, several theories were presented to explain the origin of the 
flux noise at the microscopic level. Specifically, Koch et al. proposed that the noise arises due to the electrons with 
random magnetic moments, that stochastically hop between defect centers at the surface of the  superconductor20. 
On the other hand, Faoro et al. attempted to explain this noise via dynamics of the spins that are strongly-coupled 
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by the Ruderman–Kittel–Kasuya–Yosida (RKKY) interactions at the superconductor–insulator  interface21,22. In 
what follows, the RKKY interactions were also adopted in the spin-cluster model by  De23. Yet another proposal 
by Wu and Yu suggested that the noise emerges from the hyperfine interactions of the relaxing surface  spins24. 
To this end, Choi et al. claimed increased role of the metal-induced gap states that become localized at the 
superconductor-insulator interface by the potential  disorder25.

In general, the described above theories follow the most important experimental findings on the magnetic 
flux noise. Specifically, they render the universal and weak scalability of the noise with the overall size of the 
 SQUID8,25. However, they also independently tackle other aspects of the discussed effect. In details, the model of 
Koch et al.20 is supported by the recent experimental studies that consider qubit coherence optimization based 
on SQUID  geometry26. Some other models emphasize the interactions between surface  spins21–24, in agreement 
with the experimental observations provided  in27. The model of Choi et al.25, concentrates on describing correctly 
the areal spin density from the susceptibility  measurements28. Finally, the latest theoretical approaches attempt 
to include the role of an extrinsic effects coming from the surface  adsorbents29,30. As a result, they altogether 
suggest complex nature of the noise that may arise from the interplay of a various intrinsic and extrinsic effects.

In this context, there is a strong motivation to verify each of the theoretically postulated contributions to 
the origin of the flux noise. This will allow to account for the most important physical parameters that govern 
the noise, toward its further reduction. In the present study, of special interest is the role of the metal-induced 
gap states (MIGSs), as proposed by Choi et al.  in25. The importance of the MIGSs steams from the fact that they 
are considered to inevitably appear whenever metal–insulator junction (MIJ) is  created31,32. Thus, they should 
be also present at the Josephson junctions that build SQUIDs. Moreover, the MIGSs are likely to localize at the 
discussed interface, as they constitute direct continuum of the metal states that decay into the first few layers of 
the  insulator33. According to Choi et al.25, the mentioned localization of the MIGSs notably contributes to the flux 
noise (giving rise to the paramagnetic local moments with the observed areal  density28) and should occur due 
to the presence of the potential disorder at the metal–insulator interface. Such interplay between the interfacial 
disorder and the MIGSs localization is the central point of the approach presented by Choi et al.25. However, we 
argue here that the universal and inherent nature of this relation has not been yet explicitly recognized, in order 
to further reinforce importance of the MIGSs concept in explaining the magnetic flux noise origin.

With respect to the above, in this study we attempt to present new insight into the localization of the MIGSs, 
as compared to the study already presented in Choi et al.25. In particular, contrary to the supercell approach by 
Choi et al.25, our theoretical analysis is intended to directly examine relation between the potential disorder at 
the unit cell level and the MIGSs localization, near the metal–insulator interface. To do so, we use the so-called 
complex band structure method, instead of following the isotropically-averaged (in the momentum space) den-
sity of states scenario similar to the Cardona-Christiansen  approximation34 and adopted by Choi et al.25. In this 
manner, we are able to directly investigate the behavior of the MIGSs in the momentum space, when the onsite 
potentials varies. Hence, the behavior of interest is determined in terms of the insulator band structure (not 
the entire interface like in case of Choi et al.25), so that the localization effect is explicitly related to the intrinsic 
properties of the interface. Note that this approach follows in spirit considerations presented by Tersoff for the 
Fermi level pinning at the metal–semiconductor  junctions33. Moreover, since our calculations are employed at 
the local level they demonstrate importance of the relative energy difference and its fluctuations within unit cells, 
in correspondence to the fundamental features of the insulating layer. Therefore, the presented here study can be 
viewed not only as a supplementary analysis to the investigations conducted by Choi et al.25, but also first step 
in developing fully-anisotropic theoretical approach that explains disorder-induced MIGSs localization at the 
MIJs, in direct relation to the main characteristics of these states (e.g. their decay characteristics not considered 
in the study of Choi et al.25).

Theoretical model
To investigate the localization effect of the MIGSs near the MIJ, we concentrate our attention on the insulator 
region in a benchmark CsCl structure. The electronic properties of such structure are described in the framework 
of the mean-field Hubbard Hamiltonian given as:

where εi is the electronic potential of the s-type orbital at the ith site, equal to -4 and 2 eV for the undisturbed Cs 
and Cl atoms, respectively. In what follows, the ci,σ ( c†i,σ ) operator creates (anihilates) electron at the ith site with 
the spin σ =↑,↓ , whereas j denotes nearest-neighbors (NN) or next-nearest-neighbors (NNN) of i. Hence, the 
ti,j is the hopping energy set to − 0.5 eV for both the NN and NNN cases. Note that the tight-binding parameters 
are adopted here directly from the study of Choi et al.25, where above values were chosen in order to set the van 
Hove singularity away from the conduction band edge at the MIJ, therefore keeping the density of states relatively 
realistic in the vicinity of the insulators band gap. To this end, the U parameter describes the on-site Coulomb 
repulsion, with ni,σ = c†i,σ ci,σ being the number operator. We take U = 3.25 eV, to account for the well localized 
electrons, as suggested  in25. Note, that above assumptions allow us to conduct our analysis on the same footing 
with the discussion provided by Choi et al.  (see25 for more details). Moreover, the assumed U value is much 
greater than the superconducting pairing gap, hence our approach is expect to be valid also in the case when the 
attached metal is superconducting. Nonetheless, it is instructive to note here that we do not explicitly consider 
attached metal, by arguing the fact that MIGS should constitute intrinsic property of the insulator, according to 
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the previous similar  studies32,33,35–37. This is to say, the interfacial behavior of MIGS is described by the insulator 
complex band structure (CBS), that can be generalized to the  interface32. Such approach is possible, since MIGS 
constitute direct analytical continuation of the propagating states in a  metal37,38. It also allows to trace, hitherto 
not considered, canonical aspects of the MIGS localization at the MIJ.

In particular, the MIGSs are calculated here by adopting the CBS method, that requires us to solve the fol-
lowing generalized eigenvalue  problem32,39:

In Eq. (2), the Hn and Hn+1 matrices are the component Hamiltonian terms for the reference unit cell and 
its coupling to the neighboring cells, respectively. In this manner, the ψn and ψn+1 describes the wave function 
coefficients accordingly associated with the n and n+ 1 cell. These coefficients are chosen so that they satisfy 
the following phase relation ψn+1 = ϑψn , where ϑ denotes the generalized Bloch phase factor. The problem of 
Eq. (2) is solved in the self-consistent iterative manner, to match the paramagnetic solutions of Eq. (1). Note, 
that the paramagnetic behavior of the insulator is dictated by the experimental results of Sendelbach et al.28. For 
more technical details on the CBS method we refer to the studies already mentioned above i.e.32,39.

In general, the Eq. (2) produces the pairs of ϑ and 1/ϑ eigenvalues that are related to each other by the time-
reversal symmetry. Herein, we consider the behavior of such solutions in the momentum space ( k ). When 
|ϑ | = 1 the solutions correspond to the typical propagating states. On the other hand, when |ϑ | < 1 some of 
these eigenvalues can be interpreted as a MIGSs. Specifically, the MIGSs are the states with |ϑ | < 1 that appear 
in the energy gap and create characteristic complex band loops, joining the maximum of the valence band with 
the conduction band minimum. Of particular importance to the present discussion, is the point in energy space 
where the MIGSs exhibit the largest density. According to Choi et al., these are the states most susceptible to the 
localization that should provide biggest contribution to the flux noise. By recalling the sum rule on the density 
of  states40,41, the density of MIGSs must be derived from the contributions of the conduction and valence bands 
of the insulator. In this context, the highest density of MIGSs is expected at the point where the conduction and 
valence bands contributes equally to the MIGSs (the charge neutrality point, also called the branch point). By 
following  Allen42,43 and  Tersoff33, this point can be located within the energy gap by using the following cell-
averaged Green’s function:

where the parameter N gives the number of the unit cells in the considered system, n counts all the accessible 
eigenvalues in the momentum space ( En,k ), and η takes infinitesimal positive value to differentiate between the 
advanced and retarded Green’s function. Moreover, the R is the lattice vector of the CsCl crystal structure. Since 
the function of Eq. (3) varies its sign along with the bonding character of the considered eigenvalues, it yields the 
location of the charge neutrality point at the value of 0. The Im[k] value at this energy level is then interpreted 
as a characteristic decay rate ( κ ) of the MIGSs within the insulator energy gap; according to the wave function 
decay defined as e−κa , with a being the lattice constant. Hence, it provides the effective measure of how well given 
decaying states are localized near the MIJ.

In the context of the above, the present study attempts to analyze how the characteristic κ value changes as a 
function of the potential disorder at the interface. However, to provide the most in-depth insight into the analyzed 
processes, their behavior is related here to the fundamental aspects of the potential disorder at the local level. In 
particular, when the random potential disorder is induced it varies the onsite energies ( εi ) at the two inequivalent 
sites (the Cs and Cl atoms) within each of the unit cells that build the insulator. To characterize such potential 
deviations at the local level, we introduce energy deviation parameter:

where ε′Cs ( ε′Cl ) is the unperturbed onsite energy at the Cs (Cl) atom, as given above, and ε′′Cs ( ε′′Cl ) denotes its per-
turbed counterpart. In this manner, the above parameter describes respective differences between perturbed and 
unperturbed potentials at the Cs and Cl atoms within the unit cell. In particular, when � = 0 eV, it corresponds 
to the unperturbed CsCl structure. On the other hand, when � is positive (negative) and takes on increasing 
values, the potential distribution is perturbed and the asymmetry between Cs and Cl sites decreases (increases).

We note that � parameter, in our opinion, is of particular importance to the behavior of the MIGSs, since 
mentioned energy difference models region in the vicinity of the energy gap, as well as the gap itself. Therefore, it 
can be expected that this difference has particular influence on the behavior of the MIGSs. This fact is additionally 
reinforced by already mentioned observations made by Choi et al., that suggest states located within the band 
gap or at its edges to be most susceptible to the localization. Note, however, that the presented approach is not 
limited to the local picture and can be extended further to analyze processes of interest in the framework of a 
large scale calculations e.g. within the approach derived from the Anderson localization model, as presented  in25.
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Numerical results
In Fig. 1A we depict the CBS solutions in the complex plane of ϑ , that has been calculated for the unperturbed 
CsCl structure by using Eq. (2). For convenience, the projection of these results on the Re[k] (left panel) and 
Im[k] axes is presented in the right and left panel of Fig. 1B, respectively. Altogether these are the reference 
results where deviations of the onsite energies within the insulator unit cell ( � ) are set to zero (the CsCl structure 
is assumed to be ideal). This is to say, 

∣

∣ε′Cs
∣

∣ =
∣

∣ε′′Cs
∣

∣ and 
∣

∣ε′Cl
∣

∣ =
∣

∣ε′′Cl
∣

∣ in case of the results depicted in Fig. 1A,B.
The purpose of Fig. 1A,B is to conveniently introduce reader to the employed CBS representation and briefly 

discuss its characteristics, prior to the main discussion. In general, the CBS, like the one in Fig. 1A,B, presents set 
of three different types of states, that are characterized by the complicated functional behavior. The propagating 
states correspond to the solutions for |ϑ | = 1 and real k, composing characteristic unit circles in the complex 
plane of ϑ (see Fig. 1A). For clarity, in Fig. 1A we depict only states for Re[ϑ] ∈ �−1, 1� ∩ Im[ϑ] ∈ �0, 1� , due to 
the symmetry of the CBS solutions about the Im[ϑ] axis. Note that these states are valid only deep into the bulk of 
the ideal periodic system and correspond to the typical electronic band structure with its characteristic features, 
e.g. the indirect band gap of the CsCl structure as visible in Fig. 1B. For the purpose of this study, however, we are 
only interested in the evanescent states that appear when the perfect periodicity of the system is broken e.g. at the 
surfaces, scattering incidents or the discussed here  interfaces44. In what follows, we distinguish two major types of 
the evanescent states that can be observed within our theoretical model. First, we note the evanescent states that 
appear at the boundaries of the adopted Brillouin zone and are depicted by the green color ( |ϑ | < 1 ∩ Im[ϑ] = 0 
and k is real). These states exhibit exponentially decaying character inside the unit circles defined by the propa-
gating states. Next, we observe the gap states of interest, that are given in the red color ( |ϑ | < 1 ∩ Im[ϑ] �= 0 
and k is complex). Contrary to the boundary states they decay in the oscillatory manner and compose already 
mentioned complex band loops, that join maximum of the valence band with the minimum of the conduction 
band and can be interpreted as the MIGSs. To elucidate the presented results even further we remind that each 
of the above solutions appears in pairs i.e. the pairs of ϑ and 1/ϑ eigenvalues. In details, the gap states are sym-
metric about the Im[ϑ] axis (like the propagating states), whereas the edge states exhibit symmetry about the 
Re[ϑ] axis (see Fig. 1A). The component solutions of a given pair are interpreted as the right and left propagating 

Figure 1.  (A) The complex band structure of the unperturbed CsCl insulator ( � = 0 eV) in the complex plane 
of ϑ for Re[ϑ] ∈ �−1, 1� ∩ Im[ϑ] ∈ �0, 1� . (B) The complex band structure of the unperturbed CsCl insulator 
projected on the Re[k] (left panel) and Im[k] axes (right panel). The propagating, edge and gap states are 
distinguished by the blue, green and red color, respectively. Moreover, the zero energy level is set at the top of the 
valence band.
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(decaying) states, respectively. These solutions are related to each other by the time-reversal symmetry and holds 
the same information about given state, except of the propagation (decay) direction.

In Figs. 2 and 3 we present the main numerical results in the complex plane and on the k-axes (the Re[k] and 
Im[k] axes), respectively. The first rows of the sub-figures depict solutions for the selected positive values of � 
(Figs. 2A–D, 3A–D), whereas the second rows present solutions obtained for the negative � values (Figs. 2E–H, 
3E–H). As mentioned earlier, we argue here that the deviation � is the local manifestation of the potential dis-
order at the interface.

By inspecting the results given in Figs. 2 and 3, we can observe that the functional behavior of all states in the 
energy-, ϑ - and k-space changes notably as the � parameter varies. Of particular importance to our discussion 
is the behavior of the gap states. One can notice that, as the � parameter decreases toward lower negative values, 
the total magnitude of the complex band loops increases. In details, the size of the complex loops increases in 
the energy-, ϑ - and k-space. This behavior occurs due to the fact that the onsite energies at the Cs and Cl atoms 
determine the upper and lower energy limits of the complex band loops. Therefore, when their relative energy 
difference changes the size of the complex band loops changes accordingly. It can be then qualitatively argued 
that � strongly influences the MIGSs at the MIJ, including the pivotal position of the branch points associated 
with the complex band loops (see Eq. 3). However, to investigate how the � parameter is related to the localiza-
tion strength of the MIGSs, their behavior must be analyzed in the momentum space.

In the context of the above, we adopt the cell-averaged Green’s function method of Eq. (3) to elucidate the 
relation between the MIGSs localization strength and the � parameter. Herein, we use the numerical techniques 
previously adopted  in37. Specifically, by solving the Eq. (3) for each of the presented cases, we search for the 
energy level ( EB ) that corresponds to the location of the mentioned branch point at the given complex band loop. 
Next, we extract the corresponding value of the characteristic decay rate parameter, in each of the considered 
� cases, by using the following relation κ = −

∣

∣Re[log(ϑ(EB))/a]
∣

∣ . The values of κ , determined in the described 
way, are presented in Fig. 4A as a function of � ∈ [− 5 eV, 5 eV] . Note that the decay rate parameter is expressed 
there in the units of the inverse unit cell size of the CsCl structure (1/d). In correspondence to the behavior of 
the complex band loops, the decay rate κ decreases, almost linearly, along with the increase of the � parameter. 
In this manner, the highest values of κ are obtained for the gap states with the biggest magnitude in the ϑ - and 
k-space (see Figs. 2 and 3, respectively). However, to derive the localization characteristics of the MIGSs from 
the results presented in Fig. 4A, it is instructive to recall the fact that the wave function decay is given by e−κa . 
With respect to this relation, the most localized states are the ones described by the the highest values of κ . 
This statement is additionally reinforced by the fact that decay rate is simply the inverse of the decay length ( � ), 
namely � = 1/κ as depicted in Fig. 4B. In other words, the MIGSs characterized by the largest κ values, exhibit 
the shortest decay lengths (see Fig. 4).

The results presented in Fig. 4A,B allow us to draw several important observations regarding the localization of 
the MIGSs at the MIJ. Of particular importance is the fact that the provided results explicitly show direct relation 

Figure 2.  The complex band structures of the CsCl insulator in the complex plane of ϑ for the selected values 
of the onsite energy deviation ( � ). The first row of the sub-figures (A–D) depicts solutions for the positive 
values of � , whereas the second row (E–H) presents results obtained for the negative � values. Note that for 
clarity we depict only solutions for Re[ϑ] ∈ �−1, 1� ∩ Im[ϑ] ∈ �0, 1� . The propagating, edge and gap states are 
distinguished by the blue, green and red color, respectively. Moreover, the zero energy level is set at the top of the 
valence band.
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between the MIGSs localization strength and the onsite energy deviation parameter ( � ). By arguing the fact that 
� parameter is the local manifestation of the potential disorder at the MIJ, one can observe that certain inter-
facial variations of the potential may cause MIGSs to become more localized. In reference to the study of Choi 
et al.25, the energy distribution at the perturbed MIJ can be given as P(E) = (1/

√
2πδ)× exp

[

−(E − E0)
2/2δ2

]

 , 
where E0 denotes the unperturbed onsite energy and δ is the standard deviation. In his work Choi et al. defines 
additionally the disorder degree as R = 2δ/W , with W being the metal bandwidth. In the context of these rela-
tions, Choi et al. show that the localization of the MIGSs increases together with the increase of the R parameter, 
that is proportional to the standard deviation. This observations can be related to our study, by saying that � 
represents selected changes of the potential distribution within given unit cell, when the δ parameter increases. 

Figure 3.  The complex band structures of the CsCl insulator on the Re[k] and Im[k] axes for the selected values 
of the onsite energy deviation ( � ). The first row of the sub-figures (A–D) depicts solutions for the positive 
values of � , whereas the second row (E–H) presents results obtained for the negative � values. The propagating, 
edge and gap states are distinguished by the blue, green and red color, respectively. Moreover, the zero energy 
level is set at the top of the valence band.

Figure 4.  (A) The characteristic decay rate ( κ ) and (B) corresponding decay length ( � ) of the metal-
induced gap states in the CsCl insulator structure, for the selected values of the onsite energy deviation 
( � ∈ [− 5 eV, 5 eV] ). Note, that the κ and � parameters are presented in the units that base on the primitive unit 
cell size (d) of the CsCl insulator structure.
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It can be then qualitatively argued that the highly localized MIGSs, observed by Choi et al., correspond to the 
negative values of the � parameter in our analysis. On the other hand, the MIGSs described by the positive values 
of � are the states that decay over relatively large distances, and potentially do not contribute to the flux noise.

Summary and conclusions
In summary, by using the complex band structure method we have determined the localization behavior of 
the MIGSs in the momentum space, with respect to the local onsite energy deviation ( � ) at the MIJs and bulk 
properties of the benchmark CsCl insulator. The analysis was performed to supplement findings by Choi et al.25 
on the origin of flux noise in superconducting qubits. Specifically, we have found that the MIGSs localization 
increases along with the increase of the energy deviation. This behavior is related in our analysis to the fact that 
difference between the Cs and Cl onsite energies increases with respect to the unperturbed case. In terms of the 
MIJs, the described localization increase corresponds directly to the potential barrier growth at the interface. 
This is to say, higher difference of the onsite energies causes bigger energy separation between the band edges 
of the propagating states that give rise to a given MIGS. As a result, the discussed � parameter has been related 
here to the standard deviation within the disorder degree defined by Choi et al.25. This allows to suggest that the 
calculated MIGSs correspond to the highly localized states observed by Choi et al.25 under substantial degree 
of the interfacial disorder.

In what follows, in our analysis we confirm that the variations of the potential at the interface can cause 
stronger localization of the MIGSs, that appears as an effect directly related to the inherent electronic properties 
of the insulator material. At the same time, the obtained results validate, to some extent, the proposal of Choi 
et al., saying that the MIGSs can play an important role in describing the magnetic flux noise in superconducting 
qubits. However, it should be noticed that further investigations are desirable, in order to combine our approach 
with the large scale modeling techniques, toward more comprehensive analysis of the discussed processes. In 
particular, it should be possible to adapt our theoretical techniques within the calculations that tackle realistic 
metal–insulator junctions with the random potential disorder. As least two directions in this respect can be 
listed: (1) the Anderson-derived scenario as considered by the Choi et al.25 or (2) the technique based on the 
renormalization group  approach45. Such investigations are expected to allow to relate the decay characteristics 
of the MIGSs, not only to the potential fluctuations, but also the experimentally observed areal density of the 
paramagnetic spins in SQUIDs. As a result, further verification of the flux noise origin in terms of MIGSs should 
be feasible. Simultaneously, we note that the described improvement of the theoretical techniques may allow to 
consider still open problems such as the role of interactions between the paramagnetic spins in producing the 
flux noise. To this end, the presented results indicate potential experimental routes toward suppression of the 
noise. In particular, they suggest avenues aimed at the reduction of the potential disorder at the MIGSs (e.g. by 
producing interfaces via epitaxial growth) or engineering Fermi level position within insulator toward regions 
less sensitive against disorder (the band gap edges).
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