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Quantum communication is an important application that derives from the burgeoning field of quantum
information and quantum computation. Focusing on secure communication, quantum cryptography has two
major directions of development, namely quantum key distribution and quantum encryption. In this work we
propose a quantum encryption protocol that utilizes a quantum algorithm to create blocks of ciphertexts based
on quantum states. The main feature of our quantum encryption protocol is that the encryption configuration of
each block is determined by the previous blocks, such that additional security is provided. We then demonstrate
our method by an example model encrypting the English alphabet, with numerical simulation results showing
the large error rate of a mock attack by a potential adversary. The safety of the encryption method is further
demonstrated against several possible attack models. With the improvements against noises, our quantum
encryption protocol is a capable addition to the toolbox of quantum cryptography.
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I. INTRODUCTION

Utilizing quantum technologies for communication has
been a major focus of the field of quantum computation
and quantum information [1-4]. In particular, with emphasis
on secure communication, quantum cryptography has seen
enormous progress with both theoretical and experimental ad-
vances [5—7]. One major direction of quantum cryptography,
quantum key distribution (QKD) [7-10], enables secure key
generation and distribution by exploiting the nonlocality of
quantum entanglement. The other major direction of quantum
cryptography, quantum encryption [11-13], uses quantum
computing techniques to create quantum states that carry the
ciphertext.

The development of physical realizations of qubit systems
and quantum circuits has led to a variety of breakthroughs
including the success of ground-to-satellite communication
[14,15], which enables reliable ultralong-distance quantum
key distribution, and electron spin state teleportation with
high fidelity, which proclaims the feasibility to achieve quan-
tum teleportation in molecular systems [16]. There also arise
pioneers of quantum teleportation in various systems such
as atomic ensembles [17], electron spins in quantum dots
[18], trapped ions [19], and superconducting circuits [20].
With these state-of-the-art advances in experimental tech-
niques, one can envision the near-future realization of highly
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complex and sophisticated quantum communication protocols
protected by quantum encryption methods.

In this work, we propose a quantum communication proto-
col with quantum encryption. As a block cipher, the plaintexts
and the corresponding ciphertexts are sent in sequential blocks
encrypted by a fixed number of qubits. The main feature
that makes our quantum encryption method different from
others is that the encryption configuration of each block is
determined by the previous blocks, such that adjacent blocks
are more likely to use different encryption configurations.
This makes the encryption more difficult to break for a po-
tential adversary. In the first section, we present the basic
communication process in detail, where an example setup
for the encryption and decryption processes is discussed. In
the second section we discuss the security of the quantum
encryption protocol against a potential adversary. In partic-
ular, we demonstrate the encryption of the English alphabet
with an example model, showing the large error rate of a
mock attack in a numerical simulation. We then give potential
improvements of the quantum encryption that aim to reduce
noises and further increase security. In the last section, we will
discuss the protection against other possible attacks, and the
appropriate length of a single piece of message for the best
performance of the method.

II. THEORETICAL FRAMEWORK

Consider a scenario shown in Fig. 1: Alice is nearly iso-
lated from the outside environment, and the only connection
with the outside environment is N qubits {qi, g2, ..., gn}-
Alice attempts to communicate with her friend Bob via
these qubits. Alice works periodically: (1) At t = kT, k =
0,1,2,..., she will prepare {g;, g2, ...,gn} to be the state
|Wy), where k means the state is prepared at time kT.
(2) During t € (kT,kT +t;], Bob can perform arbitrary
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FIG. 1. Communication strategy between Alice and Bob. Alice is isolated from the outside environment. Alice’s friend Bob attempts to
communicate with Alice. The only connection between Alice and Bob is some shared qubits. Both Alice and Bob can apply arbitrary operations

on the qubits, and Bob can apply Z measurement on every single qubit. When t = kT, where k = 0,1,2,3 ...,
be set at state |0). Alice will start preparing the qubits at state |d;) =

IM\M, ..

all qubits ¢, q2, . . ., gy Will
.My), and X represents the Pauli-X operation. Later, these

qubits will be encoded into state |W;) via the encoding circuit (the green box). Alice needs to finish these processes before t = kT + ¢;, and
t; < T. Then Bob will start to decode the qubits, and then apply Z measurements on each qubit. Measurements are required to be done before

t = kT + T, after which all qubits will be reset at state |0).

operations and measurements on the qubits, while during
t € (kT + 11, kT + T], only Alice herself can operate on the
qubits, where 0 <t; < T, and both Alice and Bob have
enough time to finish their operations. Noise is negligible. (3)
They are still able to communicate even when Alice cannot
measure these qubits. When the noises and gate errors are
ignored, we assume that Alice cannot receive any information
from outside.

Alice and Bob apply a special quantum encoding circuit for
encryption in their communication. The plaintext is divided
into blocks with the same length. The structure of the encod-
ing circuit depends on the previous block plaintext. The kth
block of the ciphertext |\ ) can be described as a function of
the initial plaintext |®;) and the encoding circuit Uy:

|Wk) = Ukl Px), ey

where U, =
text |Dp_1).

During each time interval 7, Alice will transport N-bit
information via the N qubits. Note that one complete set of
orthogonal eigenstates of these N qubits can be described as
{10),11), ..., 12Y¥ — 1)}, and an integer n from O to 2V — 1
can also represent the N-bit information just by rewriting n
into the binary digit form. At time t = kT, Alice attempts to
transport message n to Bob with the plaintext of the kth block
n(t = kT), and we denote n(t = kT) as n(k). For simplic-
ity, in the following discussion the plaintext |®;) in Eq. (1)
will be written as |n(k)). Alice encodes information into the
quantum state |W;) = Ui|n(k)), where Uy = Up(n(k — 1)) is
determined by the former n instead of a constant operation.
They make an agreement that the first block is encrypted by
the encoding circuit Uy = Uy(]0)).

Figure 2 is a sketch of the encryption process. When k > 1,
the kth ciphertext | Wy ) is generated by encrypting the plaintext
|n(k)) and the encoding circuit Uy, |W;) = Uy|n(k)), where the

U (|®y—1)) is determined by the previous plain-

encoding operation U, = Ui (|n(k — 1))) is determined by the
former plaintext [n(k — 1)) and ©®; . ®; , are some parame-
ters shared by all encoding operations, and will be discussed
when we demonstrate the encoding operations.

Generally, it requires a number of repeating measurements
to get a quite accurate estimation of a certain quantum state;
as an example, the widely used quantum tomography [21]
requires exponential measurements to pin a quantum state.
In addition, Alice’s special communication strategy makes
it extremely difficult to extract the information from the N
qubits. As no copy is offered, Bob needs to ensure that n(k)
can be derived after only one single measurement (here we
ignored the noises and errors; strategies against noises in the
circuit are discussed later). Besides, the encoding operator Uy
is determined by the former plaintext n, so that all following
results can no longer be convincing if we make a wrong
estimation for even one single n. However, next we show that
knowing the first encoding operator and the way in which the
following encoding operators depend on the previous plain-
texts, consequently Bob can indeed obtain n(k) with ease. The
difficulty created by the communication strategy therefore
falls to Eve, the potential adversary who does not know the
encoding operators.

Here, we will demonstrate the whole process of encryp-
tion and decryption. For simplicity, we assume that 6 qubits
{q1,q2, - - -, qe} are used by Alice to communicate with Bob.
Generally, 10 numbers, 26 capital letters and 26 small ones,
a mark to divide words (blank space), and a mark to divide
sentence (like, or .) are required in communication, so that
in total 64 states |W) are needed. As 2° = 64, 6 qubits are
already enough to encode the English alphabet together with
numbers and marks. Sometimes special characters might be
required in the communication, and methods to design encod-
ing circuits for more qubits are presented in the Appendix.
In fact, various encryption operations can be applied based
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FIG. 2. Sketch of the encryption process. Binary message is divided into several blocks; each of them has the same length. Alice and Bob
have set their clocks at the same time before being separated. They share the encoding operation encrypting the first block. When k > 1, the
kth ciphertext |W;) is generated by encrypting the plaintext |®;) and the encoding circuit Uy, |V;) = Ui| D), where the encoding operation
Uy = Up(|P4-1)) is determined by the former plaintext |®;_;) and ®, ,. ©; , are some parameters shared by all encoding operations, and will

be discussed when we demonstrate the encoding operations.

on the previous plaintext, and there is huge freedom choosing
the configurations, which consequently makes it difficult for
further studying. Hence, in the following model, we will con-
sider a simple example where all U; can be decomposed into
2-qubit control gates u;;,

uij = 10){(0l; ® R;(©1) + [1)(1]; ® R;(O2), @

where i,je€{l1,2,3,4,5,6},i#j. g; 1is controlled
by ¢;. R(®) is a single-qubit rotation gate, and
O = (6, 6>, 65,04) is a four-dimensional vector; R(®) =
exp (—if1 )R (62)R,(63)R.(64). For example, in the simplest
situation, U, has only two possible choices, and these two
encoding circuit are as follows:

Encoding circuit 1: 3-qubit loop. qi,q>,q3 form one
loop of control rotation gates and gqu, gs, g¢ form another.
Initially, ¢, g2, ..., q¢ are prepared at state |n), and n =
0,1,2,...,2Y — 1, where there are N qubits used in their
communication. Then Alice can use the circuit shown in
Fig. 3(a) to encode information into |\Il,i”). ‘We note this circuit
as Uy, and one can use U[Hl to extract information encoded by
Utri~

Encoding circuit 2: 2-qubit loop. As shown in Fig. 3(b),
q1, q> form one loop, and g3, g4; gs, g¢ form two other loops,
respectively. Initially, g1, g2, . . ., g¢ are prepared at state |n);
then Alice can use this circuit to encode information into
I\D,i”). ‘We would like to note this circuit as Uy;,, and one can
apply Ub_in1 as well to extract information encoded by Uy;y.

If n(k — 1) is odd, then Alice will use circuit 1 to encode
n(k); otherwise, she will choose circuit 2 to encode n(k). Ob-
viously, the encoding strategy is determined by the bit stored
in gg, as when g¢ represents 1 then Alice will use circuit 1 for
encoding; otherwise circuit 2 will be chosen. Bob knows the
parameters @1, ©;; then as shown in Fig. 4, he can combine
the inverse of circuit 1 and 2 together as the decoding circuit,
where R; and R, represent R~!(@1) and R~'(@;), respec-
tively. One auxiliary qubit g, is introduced to represent the
previous measurement result to gg. In fact, such a circuit is not
the only possible solution to decode information from Alice’s

special communication strategy. If we prefer to make it more
difficult to decode, it is also a choice to design more different
encoding operations for every state |n), yet more auxiliary
qubits will be required for such complicated strategies.

Note that even in the simplest examples displayed above,
we still apply control rotation gates instead of stand-alone
single-qubit gates. The existence of multiqubit gates in en-
cryption ensures that the change of a single qubit in the
plaintext could have influence on more than one qubit in
the cipher, which corresponds to the concept of diffusion in
classical cryptography [22].

In summary, the secret key in the protocol contains three
parts: the selection of configurations of the encryption op-
erations, the parameters such as ®;, that determine the
encryption operations, and the ways that the encoding opera-
tions are determined by the previous plaintext blocks. All parts
are essential for successful encryption and decryption.

III. APPLICATION IN QUANTUM COMMUNICATION

In this section, we will study a more complicated situation.
Assume that Eve attempts to eavesdrop on the communication
between Alice and Bob. As shown in Fig. 5, still we design a
scenario where Alice is nearly isolated from the outside envi-
ronment, and the only connection between Alice and people
outside is some qubits. Alice attempts to communicate with
Bob, her friend, via these qubits. However, to wiretap the
communication, Eve has prepared her own group of qubits
to impersonate Bob. Now there are two groups of qubits:
q1,492, --..qn and ¢}, g5, .. ., gy. Bob has access to operate
and measure q1, ¢2, . . . , gy, wWhile Eve has the access to apply
operation or measurement on ¢}, ¢5, - .. , ¢y. However, Alice
does not know which group is under Bob’s control. Conse-
quently, she has to prepare two identical groups of ciphertext
states.

In Sec. I, we have used two encoding operations: Uy =
(u31 - uz3 - u12) ® (ugy - usg - ugs) [the 3-qubit encoding op-
erations, shown in Fig. 3(a)], and Uy = (uz1 - u12) @ (u43 -
u34) ® (ugs - usg) [the 2-qubit encoding operations, shown in
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FIG. 3. Sketch of encoding circuit. Initially, g1, g2, . . .

(b)

, e are prepared at state |n); then Alice can use these circuits to encode information

into |W;). (a) The encoding circuit based on 3-qubit control gate loop. ¢1, ¢2, g3 form one loop and ¢4, gs, g¢ form another. We note this

encoding circuit as Uy, i

and one can use U_! to extract information encoded by Uy;. (b) The encoding circuit based on 2-qubit control gate

loop. g1, g, form one loop, and g3, q4; g5, g6 form two other loops, respectively. We would like to note this circuit as Uy, and one can apply
Ubjnl as well to extract information encoded by Uy;,. Here we only show two simple encryption operations as an example. There are in fact

more choices, which will be discussed later.

Fig. 3(b)], where u;; is described by Eq. (2). And we use
Ui to encode the new state |n(k)) if the previous n(k — 1)
is odd, and use Uy otherwise. Generally speaking, if Eve
does not know the encoding strategy, or she cannot apply
operations on the qubits, then it will be quite safe for Alice
and Bob to communicate via this strategy (for more details see
Appendix Al).

Review the information shared between Alice and Bob as
follows:

S1. Alice will start to prepare qubits at certain states for
communication since t = 0. Before + = 0 she will produce
some random state. Alice and Bob have set their clock at the
same time before they are separated.

S2. Six qubits are used in the communication. Note the
eigenstates under Z measurements can be written as |n), where
n is an integer from O to 63. State |0) represents the blank
space, used as a word divider. |1) to |26) represent capital
letters “A” to “Z”, |27) to |52) represent lowercase letters “a”

[T L]

to “z”, and [53) to |62) represent numbers “0” to “9”. The
last eigenstate |63) represents “,”, “.”, or other marks to divide
sentences.

S3. Alice will prepare state |W(k)) =U(n(k —1))|n),
where U(n(k — 1)) = Uy if n(k — 1) is odd and U (n(k —
1)) = Uy if n(k — 1) is even. Alice and Bob set that U(t =
0) = Upi.

Even if we assume that Eve knows the general strategy that
the encoding operation of each block is determined by the
plaintext of the previous block, without knowing the particular
selection of encoding operations from the total set, and with-
out knowing the plaintext of the previous block, the chance of
her guessing the correct decoding operation and obtaining the
plaintext is very low.

Then consider the worst situation where Eve also knows
the selection of encryption operations and parameters © ;.
Besides, we assume that Eve has the authority to apply arbi-
trary operations on the qubits ¢}, g5, . . ., gy. In other words,

-

( Qaux P—T—{l D—“—‘D—”—ib—f\—ﬂ—’\—lb—T—{P—/‘—T—"—ii—’\—li—’\—“—q
al— Ry [ R [ Ry [ Ry /7{
q2 i ° % 'R [ Ro [ R | /7(
q3 [ Ry By [ Ro - R | /7(
. Eatkiy 7
a5 Ry — R /71
a6 1 (R} —{R] A

/

FIG. 4. A possible circuit to decode Alice’s information. ¢,,, is an auxiliary qubit, and in each period it is preset at state |0). m is the
previous measurement results of gs. As Alice and Bob make an agreement that the first block is encrypted by Uy = Uy(|0)), Bob will setm = 0
initially. Alice only performs operations on g;—¢s. For simplicity, here we use R, and R, to represent R~ (@) and R~1(0,), respectively.
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FIG. 5. Sketch of the relation among Alice, Bob, and Eve. Eve
(left) attempts to wiretap the communication. Alice (middle) is
locked in a “black room,” and the only connection between Alice and
the outside environment is some qubits. Alice attempts to communi-
cate with her friend Bob (right) via the qubits. However, there are two
groups of qubits: gi, g2, ..., gy and g}, g5, ..., gy. Bob has access
to operate and measure ¢1, ¢, . . . , gn, While Eve has access to apply
an operation or measurement on ¢4, g5, . . . , g. However, Alice does
not know which group is under Bob’s control. Consequently, Alice
has to prepare two groups as the same state.

Eve knows almost all information that Alice and Bob share,
with only one exception, the clock, which obstructs Eve from
applying correct decryption operation on the first block. In
order to miss the least information, by large chance Eve will
start wiretapping as early as possible. According to the first
communication strategy, before + = 0, Alice produces states
randomly. On the other hand, Eve has no idea about the
exact “r = 0”. Consequently, at + = 0, Eve might apply the
decoding operation Uy;, or Uy;. Once Eve applies Uy, she can
hardly decode the first state | W(t = 0)) correctly; then she will
get less information compared to Bob.

Though we have shown that there is a possibility to pre-
vent Alice from getting all information, we need to note that

200/
1751
_ 1501
3
© 751
50-
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0! |!||| |..|.|‘.' | . . T
0 20 40 60 80 100

Error

(a)

it is nearly impossible to prohibit Eve from getting “much
information” under such communication strategies. [In this
case, Eve can generally decode more than two-thirds of the
message correctly, as shown in Fig. 6(a).] Even though Eve
might decode state |n) as |n’) by mistake, once both n, n’ are
odd or even, the following states will all be decoded correctly.

Taking the above consideration into account, Alice and
Bob can change the third strategy as follows:

S3. Alice will prepare state |V(k)) = U (n(k — 1))|n). In-
stead of having only two encoding options determined by
the parity of the previous plaintext, Alice and Bob can pick
up a total number of n different encoding options, deter-
mined by all n different possibilities of the previous block of
plaintext. All U (n) can be decomposed as a combination of
u;; = u;j(0@1, @3) described by Eq. (2).

In the Appendix, we will provide one encoding operations
set as an example for S3, which is also used in the following
numerical simulations. For instance, Alice attempts to trans-
port the famous quotation of Alexandre Dumas,

All human wisdom is contained in these words: Wait and
hope.

The Count of Monte Cristo, Chap 117.

As in the encoding process, all marks such as “,.:” will be

recognized as “.”, and since there is no character representing
‘line break” or “new line”, the quotation will be converted into

All human wisdom is contained in these words. Wait and hope.
The Count of Monte Cristo. Chap 117.

Alice and Bob arrange that the |\W(¢ = 0)) is encoded by
W, and encoding operation V,, will be applied for the kth block
t if n(k — 1) = m. For simplicity, definition of the encoding
operations are presented in the Appendix. At¢ = 0 (according
to Alice and Bob’s clock), Alice will start to prepare the 6
qubits at state

Wt = 0)) =Voll), 3

where |1) is the plaintext, representing the first character
“A” in the quotation. Before t+ = ¢, Alice should finish the

70/
60/
_ 50
S 40
S 30/
20/
10/
0,

0 20 40 60 80 100

FIG. 6. Numerical simulation for Eve’s decoding process. Assume that Eve starts decoding before t = 0, and at = 0 she has uniform prob-
ability to apply each decoding operation. “Error” represents the total errors that Eve makes when decoding the sentence. “Count” represents the
frequency of certain total mistakes. A rectangle that locates at error = x with count = y infers that in the whole simulation, there are y times that
Eve makes mistakes x times. Simulations are carried out 1000 times in total, ®; = (0, 0.157, 0.727, 0.327), ®, = (0, 0.457, 0.177, 1.647).
(a) Only one previous state has a contribution to the encoding operation. (b) Two previous states are included to decide the next encoding

operation.

023251-5



JUNXU LI, ZIXUAN HU, AND SABRE KAIS

PHYSICAL REVIEW RESEARCH 3, 023251 (2021)

preparation, and then Bob will start his decoding process. Bob
will apply decoding operation Vo_l, as he already knows that
|W(t = 0)) is encoded by V. For simplicity, here we ignore
the noise and errors in the whole process (new rules will be
introduced into the communication strategy against noise, and
we will give a brief discussion later). After Z measurement
on each qubit, Bob will derive that |®(t = 0)) = |1). Bob
finishes his measurement before r = 7', and att = T all qubits
are reset at state |0). The next character is “1”, corresponding
to state |38) (or [100110) as binary). Now Alice should pre-
pare state

Wt = T)) = V;|38) = V;|100110). )

Alice and Bob can keep communicating in this way. Ignor-
ing the errors and noise, Bob can always receive the correct
information theoretically.

On the other hand, Eve finds it impossible to find r = 0
accurately for the absence of a shared clock. Additionally, Al-
ice has already noticed her existence and will produce random
states before + = 0. Here we can safely assume that Eve ap-
plies random decoding operations at ¢ = 0. Assume that Alice
has no bias when generating the random states before ¢ < 0;
Eve applies each decoding operation with the same possibility,
1/64. Figure 6(a) shows the numerical simulation results of
Eve’s decoding process when the encoding operation of each
block is determined by only the previous plaintext. There
are 97 characters in the sentence. From the histogram, one
may notice that by a quite large chance, Eve will decode the
whole sentence with fewer than 20 total mistakes. Obviously
now the communication strategy is not safe enough, when the
encoding operation of each block is determined by only one
previous plaintext. In the following section, we will provide
improvement to increase the security in communication.

To improve the security against wiretapping, consider the
following encoding operation,

U(k)=V{[ntk—1)+n(k —2)] mod 64}, 4)

where operation V are still the 64 encryption operations pre-
sented in the Appendix. Now the encoding operation at time ¢
is decided by the two former blocks n(t — T') and n(t — 2T).
In our example, at + = 0, Alice attempts to send the letter
“A’, n(t =0) =1, and at r =T Alice attempts to send “1”,
n(t =T)=238.(1438) mod 64 = 39, so Alice will encode
the third character (still “I”’) as

|W(r = 2T)) = V39[38). (6)

Still, Alice and Bob make an agreement that the first block
is encrypted by Vy. Even though Alice will generate states
randomly before = 0, Bob does not need to measure them,
and these random states will not effect their communication.
In Fig. 6(b), we show the numerical simulation results of
Eve’s decoding process under the improved communication
strategy. Now Eve can find it extremely difficult to decode the
communication. She might decode one character accidentally,
yet that gives little help for the following block, unless she
can decode two characters simultaneously. Comparing with
Fig. 6(a), there are greater chances for Eve to make more
mistakes, and the information transfer is safer than using only
one block to determine the encoding operation.

Note that here we only introduced the former two states
into the encoding operation. Theoretically, one can expand
Eq. (5) into

t—1
U(t) = v{[ Z n(r):| mod 64}. @)

T=t—t'

Hence, one can include an arbitrary number of previous states
into the determination of the encoding process.

Till now, the key in our design contains three parts. The
first one is the selection of the encoding configurations from
all possible configurations that can be applied on the plaintexts
to create ciphertexts. These define the controls and targets
of the control-unitary gates, and examples of the encoding
configurations can be found in Fig. 3 and the Appendix. The
second part of the key contains the parameters ®, ;. These
define the actual actions of the control-unitary gates and small
differences of them will lead to extremely different encryp-
tion operations. In this paper only the simplest situation is
discussed, where ®; , are used multiple times in the encryp-
tion circuit. To introduce more potential choices for the key,
one can replace the repeated ®; , as independent parameters.
Generally the more parameters there are in the encryption
circuits, there will be more potential choices for the key and
the communication will be more safe. The last part is the ways
that the encoding configurations are selected by the plaintext
of the previous blocks.

Numerical simulation shows that the communication is still
reliable even when the second and third parts of the key are
released. More theoretical discussions about quantum encryp-
tion can be found in our recent work [13].

Noise and errors are all ignored in the above discussion,
while the noise might lead to some mistakes in real experi-
ments. Here we provide a fourth strategy against noise and
errors with error-detecting auxiliary characters:

S4. Attimet = kIT,wherek = 1,2...,and [ is a constant
positive integer, Alice will prepare the qubits at some cer-
tain states, which depend on previous states. After decoding
state |W(t = kIT)), Bob will make out whether he made any
mistakes during [(k — 1)IT, kIT]. To make up the mistake,
they need one more wire that Bob is able to use to send
messages back to Alice. Once Bob find the state [\W(t = kIT))
out of expectation, he can send Alice a message, and then
Alice will restart communication from the state |W(t = (k —
DIT +T)).

Strategy 4 works on the plaintexts, instead of the encoding
process. Here we would provide one example to demonstrate
how it works. To make it possible for Bob to self-check
the encoding process, Alice rewrites the message by adding
one auxiliary character every 9 characters (so that auxiliary
characters will be the 10kth character). She sets the auxil-
iary character at position 10k to be the same value as the
[10(k — 1) — 1]th one. The message now will be

All human’ > wisdom i’n’s contain’i’ed in the’n’se words.’e’
Wait and’.” hope. Th’d’e Count o’h’f Monte C’o’risto.
Ch’C’ap 117.

Characters enclosed by apostrophes are auxiliary charac-
ters (please note that the apostrophes are included to mark the
auxiliary characters, but they themselves are not part of the
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message). Here Alice and Bob set the first auxiliary character
as a blank space. The second auxiliary character is “n”, the
same as the 9th character. The third auxiliary character is “i”,
the same as the 19th character. Other auxiliary characters are

generated similarly.

IV. FURTHER DISCUSSION
A. Other possible attacks

In addition to the situation discussed above, there are two
other possible attacks as discussed in the following. One
possible attack is that Eve could keep qubits in a quantum
memory to apply decoding circuits to many blocks. Since one
cannot perfectly clone an unknown quantum state, Eve cannot
generate copies of the received qubits unless she knows the
exact state. Thus, she cannot ensure that the first block can live
long enough before she collects sufficient succeeding blocks.
Meanwhile, difficulties arise when building a deeper circuit
on a larger scale. The second possible attack is that Eve inter-
cepts one qubit sent from Alice to Bob. According to S4, an
auxiliary digit is included for correction. When Eve intercepts
one qubit sent from Alice to Bob, Bob will find out that he can
never get the result as expected when measuring the auxiliary
digits. Alice and Bob can soon notice the existence of Eve,
and stop their communication.

B. Appropriate length of message

Intuitively, if the message contains infinite words, no mat-
ter how many previous qubits are included in the encoding
process as shown in Eq. (7), Eve will always be able to
derive all following information, once she decodes enough
characters continuously. Generally, the shorter the message is,
the more difficult it will be for Eve to decode it. Therefore
when designing the communication strategy, it will also be
important to set an appropriate length. Here, we will show
some numerical simulation results as an attempt to find the
appropriate message length.

Figure 7 shows the trend of average error rate when the
message becomes longer. The average error rate R is defined
as

=M
R— Z§:1 ej’ )
ML
where M is the total times of simulation, and L is length of the
message, e; is the errors that Eve makes in the jth time when
decoding the message.

Further, we also compare the performance of P(x) under
various lengths of message, which is the probability that Eve
makes more than xL mistakes when decoding a message with
length L. Mathematically, P(x) is defined as

Jo1 T(ej —2L)
i )
where I' represents the threshold function, and I'(y) =1 if
y > 0, otherwise I'(y) = 0. Simulation results are shown in
Fig. 8.
The same as the discussion before, here we still set @1 =

(0.457,4.04,1.04,0.92) and O, = (0,0.35,0.557, 0.79)
(just some random numbers, not the optimal ones). Based on

Px) =

®

0.801
0.751
0.701
0.651
© 0.60
0.551
0.501
0.451

25 50 75 100125150175200
L

FIG. 7. Sketch of the trend of average error rate against the
length of message. Here L represents the length of message and R
represents the average error rate. In the simulation, Alice and Bob
transport message encoded by the improved strategy (as we dis-
cussed in Sec. III, two previous states contribute to the next encoding
method). Eve can apply arbitrary operations on the qubits, and knows
all details except the exact time t = 0.

the simulation we suggest that when only two previous states
contribute to the encoding process, it is better to transport a
message of around 100 characters or less once; otherwise the
risk of wiretapping can no longer be ignored. However, it can
always be a solution to divide a long message into a branch of
pieces.

V. CONCLUSION

In this work we have proposed a protocol of quantum en-
cryption with varying encryption configurations. The plaintext
is divided into blocks with the same length, and represented
by the eigenstates under Z measurements. The operation en-
crypting each single block is determined by one or more
previous blocks of the plaintexts. Thus, successful decryption
of the former block is required when attempting to extract
information from a new one. The key in the protocol contains
several parts: the selection of configurations of the encryption

0.9
0.8
0.71
,>.<\0.6<
T 0.51
0.4
0.31
0.21

25 50 75 100125150175 200
L
FIG. 8. Sketch of P(x) against the length of message. Here L
represents the length of message and P(x) represents probability
that Eve makes at least xL mistakes when decoding the message.
In the simulation, Alice and Bob transport message encoded by the
improved strategy (as we discussed in Sec. III, two previous states
contribute to the next encoding method). Eve can apply arbitrary

operations on the qubits, and knows all details except the exact time
t=0.
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operations, the parameters that determine the encryption oper-
ations, and the ways the encoding operations are determined
by the previous plaintext blocks. All parts are essential for
successful encryption and decryption. Further, we studied the
protection against wiretapping. Simulation results show that it
is still difficult to decode the communication between Alice
and Bob even when part of the key is released, and other
possible attacks can hardly break the protection either. We
also discussed an error-correction method against noises in the
encryption and decryption circuits, and the appropriate length
of the single piece of message for the best performance of the
encryption method.

The data supporting the findings of this study are available
within the paper and the Appendix. The data are also available
from the authors upon reasonable request.
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APPENDIX
1. Optimization of parameters

In this section we will discuss one way to optimize the
6-qubit model for communication application by adjusting
parameters O, ©;.

J

For simplicity, here Alice encodes the qubits only with
operations shown in Figs. 3 and 4. On one hand, our circuit
should be robust, as we need to make sure that Bob, who
is to receive information via the qubits, can still make the
correct decision when the quantum gates are imperfect or
when there are environmental noises. In real experiments, the
control gates cannot always be perfect as we designed. When
one sets an R,(0) rotation gate, often an R, (6 + AO) gate
is set, and generally we have |Af| < 6. On the other hand,
we need to make sure that Eve, who attempts to wiretap the
communication, cannot get too much information. Further, if
we know that Eve has little chance to get any information
after t = NuT, then we can use the first Ny quantum states
to transport some trivial information, so that Eve can get
nothing useful. Here, we note Pg(k|®1, ©;) as the probability
of Bob to get all information correctly before t+ = kT, and
Pr(k|©®1, ®,) for Eve. The aim of the optimization process
is to find suitable parameters ®;, ®, so that for a given
constant ¢ > 1, there exists an integer Ny > 0, such that
Pp(cNr|©1, ©,) is significantly larger than Py (N7 |91, ©3),
after which we can ensure that the 6-qubit model can be
used to transport 6(c — 1)Ny bits of information during time
period Ny T.

At t = 0, the initial quantum state is |0), so that |\IJ{”) is
certainly encoded by the 2-qubit loop shown in Fig. 3(b).
Consider the minimum unit of a 2-qubit loop, qubits ¢g; and
q». After the encoding process they will be prepared at state

[V1.2) = U(0)lg1) ® (0]U(g1)1g2)10) + U (1)lq1)
® (11U (g)lg2)[1).

For simplicity, here we defined the unitary operator U (¢), g =
0,1 and U(0) =R(®;,) and U(1) = R(®1). Assume Eve
chooses measurement M, on g; and M, on g,, and their cor-
responding eigenstates are |¢,"), |¢;) and |¢;), |¢; ), where
|¢*) = M|0) and |¢~) = M|1). For chosen measurements,
we can rewrite Eq. (A1) as

(AD)

1¥1.2(q1, ¢2)) = (@ 1U0)lg1) 01U (g1)lg2) (5 10) + (11U (DIg1) (11U (gn)lg2)(¢5 111161 ¢5)
+ [ 1U(0)1g1) (01U (g1)]g2) (95 10) + (#7 [U(Dlg1) (11U (g1)lg2){by 111y ¢5)

)
+ e/ U (0)g1) (01U (g1)lg2) (95 10) + (& 1U(Dlgi) (11U (g1)lg2) (5 1)1 b5 )
+ e 1U0)g1)(01U (q1)1g2) (b, 10) + (&1 1U(DIg1) (LU (g1)lg2)(p; 1)1y ¢, ).

(A2)

Then we can define a new function f(M;, M»|®1, @) to describe how good the measurements M;, M, are for Eve, and

I
f(M), M50y, ©2) = >
44,=0

where we note ¢; (1) = 1+2 and ¢1,(0) = ¢, ,. Theoreti-
cally, for given ©,, ©®,, the maximum of fMy, M2|@)1, 0,)
only depends on M, M;, so that we can define function
g(01, ©,) as the maximum result. By adjusting ®;, ®,, Alice
and Bob can decide the optimal parameters that ensure the
least possibility for Eve to derive the correct information.

In fact, if Eve can only measure each qubit instead
of applying arbitrary operations on the qubits, then Al-

(B1(q)b2 () 1V12(d), g —

1

Y b1 @)eagh) v ala] g |

i

919,74, .4,

(A3)

(

ice and Bob do not need to spend time optimizing the
parameters.

Here, we simulate the correct rate for different decoding
strategies, as shown in Fig. 9. We assume that the document
is transported via binary numbers, and every time Alice will
transport 6-bit information via the 6 qubits. Qubits are en-
coded by circuit Fig. 3(b) if the former number is odd, or by
circuit Fig. 3(a) if the former number is even. R represents
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FIG. 9. Simulation result of correct rate for different decoding
strategies. Here, we simulate the correct rate R for different decoding
strategies when transporting n bits of information. Z2: Assume that
all information is encoded by circuit Fig. 3(b), and one applies only
Z measurement on every qubit. Z3: Assume that all information is
encoded by circuit Fig. 3(a), and one applies only Z measurement
on every qubit. OP2: Assume that all information is encoded by
circuit Fig. 3(b), and one applies the optimal measurement on every
single qubit. OP3: Assume that all information is encoded by circuit
Fig. 3(a), and one applies the optimal measurement on every single
qubit. B1: One can apply the decoding circuit Fig. 4. Due to the
environment noise, fidelity of all operations is 0.995. B2: One can
apply the decoding circuit Fig. 4. Due to the environment noise,
fidelity of all operations is 0.9.

the correct rate, or the possibility to derive all information
correctly when Alice transports totally n bits of information.
Z2 (and Z3) represents that Eve directly applies Z mea-
surements on every single qubit, and assume that the first
state is encoded by the circuit Fig. 3(b) [Fig. 3(a)]. OP2
(and OP3) represents that Eve optimized her measurements
on every single qubit, and assumes that the first state is
encoded by the circuit Fig. 3(b) [Fig. 3(a)]. B1 (and B2)
shows the performance of Bob’s decoding process with dif-
ferent noise; the self-check strategy is not introduced. One
can find that if only measurements on a single qubit are
allowed, it is nearly impossible to wiretap the communica-
tion, even though there are only two encoding operations.
In the simulation, we set @1 = (0.457, 4.04, 1.04,0.92) and
0, = [0, 0.35, 0.557, 0.79) (just some random numbers, not
the optimal ones).

2. Find the encoding operation from a single state

Here we will provide another method to find the encoding
operation from one single state, and only consider the encod-
ing operations shown in Figs. 3(a) and 3(b).

Assume that the first few states |W(r =0, 1,2, ..., k)) are
encoded by one same encoding circuit, which is either circuit
1 or circuit 2. All details of these two circuits are already
known; then it is also possible to find the encoding method
from |W(r =0,1,2,...,k)). Here we will demonstrate the
basic operations. For simplicity, note the 2 possible encoding
methods as Uj, U,, and one complete set of this system as

{10y, 11), |2), ..., ]2Y —1)}. Then we have
[Y10) = Uiln),  |¥2,) = Ualn), (A4)
wheren=0,1,2,...,28 — 1. Though more than one quan-

tum state are offered, they are not prepared at the same state.
Still, we are provided with no copies, which is the main
difficulty. For given quantum states encoded by the same
circuit, the structure shown in Fig. 3(a) can be used to find
the encoding circuit.

As one can notice from the figure, we need in total 3N
qubits in the circuit. The first N qubits are prepared at the
encoded states |1/ (¢)), and the other 2N qubits are used as aux-
iliary qubits. Note that the rotation gates R, satisfy R,|0) =
|n). Initially, the system is prepared at |¥;,) = |¥) ® [0) ®
|0), where every ket represents a state of N qubits. The very
first step is to apply two control operations S, S,, and

N1

Si=Y (V1)W1 @RI S,
n=0
2V 1

Sy="Y (Vo) (Y20l ®T ®Ry).

n=0

(AS5)

(A6)

As these two operations commute with each other, it does not
matter if we change their order.

Assume that the given qubits are at state [y ,,); after these
operations the system will be converted to

V1

W) =" [enl¥an) ® Im) @ [n)],

n=0

(A7)

where c,‘n‘n = (V2.u|¥1.m). Now apply measurements on the
auxiliary qubits so that the whole system will collapse. With

e1sqe 2 .
possibility P ; = |c! ,|” one will find the state at

Wi0) = [Y2,) ® Im) ® |1). (A8)

Similarly, if the given qubits are prepared at state |y ),
then after these operations and measurements one will have

2 |2 to find the system at state

possibility P, ; = |c¢
Wa,) = Y1) @ |1) & [m)

and cﬁm = (Y1.|¥2,m). To distinguish [y ;) and |y ;), one
convenient solution is to apply operation U T, and measure
the final state. If the result is |/), then we can conclude that
given states are encoded by U ; otherwise we believe that they
are encoded by U,. Yet from one state the result might be
not correct, as one might be led to the wrong decision under
two situations. First, we could hardly move forward if [ = m
after the first measurement. Besides, there is still the chance
[(¥17]1)> will get the wrong result at the final step. As a
conclusion, for a single given encoded state, the possibility
to derive the correct encoding circuit is

(A9)

2N -1

P =1—W2mlYim)® = D W20 P2 D171,
1=0,1#m
(A10)
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Further, as
2V —1

Py > 1—|<wz,m|w1,m>|2—[ > |(1/f2,l|1/f1,m)|2:||(W2,l|l>|2
1=0,1%m

= [1 = [(om|Yrm) P10 = [ |D) 1.

Once we can make sure that [1 — |(1ﬁ2,m|1ﬁ1,m)|2][1 —
|(x[f2,1|l)|2] > %, then it would be a choice of applying this
method to find the encoding circuit. However, when more
encoding operations are introduced, if would be much more
difficult to find the encoding operation from one single
state. In other words, decoding the former character by find-
ing the encoding operation cannot help Eve to wiretap the
communication.

(Al1)

3. Encoding circuits for more qubits

Here we will expand the encoding circuits to more qubits.
Generally, 6 qubits are enough for common communications
based on letters and numbers. However, sometimes special
characters might be required, and then more qubits should be
included in the communication. Sill, the encoding operations
will contain no more parameters except @1, @,. Note that
there are N qubits g1, ¢z, - . . , gy Used in communication.

Encoding operations design method I: A control gates loop
that contains all qubits. Consider a permutation of the qubits;
note the location of ¢; as p(j), where 0 < p(j) < N, and
p(j) # p(k) when j # k. Then for every permutation p, there
is a control gates loop as

N—1
Ulp) = |:l_[ uP/Pj+lj| “Upypo- (A12)
j=0
In the main article, we have defined that
u;; =10)(0; ® Rj(O1) + [1)(1]; ® R;j(O3). (A13)

Encoding operations design method II: Decompose the en-
coding operation as a combination of Uj; and Uy;. If N is even,
we can always rewrite N as a sum of N/2 qubit pairs. Further
if N > 6, we can rewrite N as a sum of some qubit triplets and
some qubit pairs. For each qubit pair we can apply U,,;, and for
each triplet we can apply Uy;. On the other hand, if N > 3 is
odd, we can rewrite N = 3 4+ (N — 3), where N — 3 is now
an even number. Consider that the N qubits are divided into
a pairs and b triplets; there exists a corresponding encoding
operation,

Jj=a k=b
U=QQ)u, X u. (A14)
j=0 k=0
where the superscript represents the jth qubit pair or the kth

triplet. Note here the uy; is different from the Uy, in the main

article. Instead, up; applies on qubit g; and g; is defined as
(A15)

Upi = Ujj - Uji.

Similarly, ug; applies on qubit triplet g;, ¢;, gx and is defined
as

(A16)

Upi = UWij - Ujk * Ug;-

Additionally, we will offer the 64 encoding operations cor-
responding to different former words. To reduce confusion,
here we use V), to represent the encoding operations. The
subscript represents the former word, where each number
represent a single letter, number, or notation. As discussed in
the main article, O represents a blank space, used as a word
divider. 1 to 26 represent characters capital letters “A” to “Z”,
27 to 52 represent lowercase letters “a” to “z”, and 53 to
62 represent numbers “0”, “1” to “9”. The last eigenstate 63

[TRINTEL

represents “,”, ., or other marks to divide sentences. As an
example, V| will be used as the encoding operation at time ¢, if
we find out that n(t — 1) = 1; in other words the former word
is 4‘A7"

Vo = (u12 - u21) ® (uzq - us3) & (use - Uss),

Vi = (w12 - u23 - u31) @ (Uas - Use - Uea),

Vo = (uin - uo3 - u31) ® (uge - Ues - Usa),

V3 = (w12 - U2z - u31) @ (Usg - Uge - Ues ),

Vo = (upn - uo3 - u31) ® (use - Ues + Uss),

Vs = (w12 - U2z - u31) ® (Ues - Uys - Use),

Vo = (u12 - uo3 - u31) ® (Ues + Usq - Usg ),

V7 = (w13 - u3p - uo1) @ (uas - Use - Uea),

Vs = (u13 - usz - uz1) ® (uys - s - Usq),

Vo = (w13 - u3p - uo1) @ (usg - Uye - Ues ),
Vio = (13 - uzs - ua1) ® (use - Uea * Ugs),
Vit = (w13 - u3 - u21) @ (ues - Uas - Use),
Vio = (u13 - uzz - uz1) ® (ues - Usq - Ugs),
Viz = (uo1 - u13 - u32) @ (ugs - Use - Usa),
Vig = (ua1 - w13 - u32) @ (uge - Ugs - Usa),
Vis = (uo1 - u13 - u32) @ (us4 - Uas - Uss),
Vie = (ua1 - w13 - uz2) ® (use - Uss - Us5),
Viz = (uo1 - u13 - u32) @ (Ues - Uas - Use),
Vig = (ua1 - w13 - u32) ® (ues - Usq - Uss),
Vig = (uo3 - u31 - u12) @ (ugs - Use - Usa),
Vao = (uo3 - uzy - u12) @ (uge - Ugs - Usa),
Var = (uo3 - u31 - u12) @ (us4 - Uas - Uss),
Voo = (uo3 - uzy - ur2) ® (use - Us - Uss),
Va3 = (uo3 - u31 - u12) @ (ues - Uas - Use),
Vag = (uo3 - uzy - ur2) ® (ues - Usq - Uss),
Vas = (u31 - u12 - U23) @ (uags - Use - Usa),
Vae = (u31 - t12 - u23) ® (uge - Ugs - Usa),
Va7 = (w13 - u3s - us1) @ (24 - Uss - Us2),
Vag = (u13 - uzs - us1) @ (Uz6 - Uss - Ug2),
Vao = (u13 - u3s - us1) @ (Uan - U - Usa),
Vio = (u13 - uzs - us1) @ (uge - U2 - U24),

Vai = (w13 - uzs - usy) @ (Uen - Uza - Usg),
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Vap = (u13 - uzs - usy) ® (ues - gz - Use),
Va3 = (u1s - us3 - u31) @ (24 - Uas - Us2),
Vag = (u1s - us3 - uz1) ® (26 - Ues - Ua),
Vas = (u1s - us3 - u31) @ (42 - Uae - Usa),
Vie = (u1s - us3 - u31) ® (146 - Usa - Uoa),
Va7 = (u1s - us3 - u31) @ (g2 - Ug - Use),
Vag = (u15 - us3 - u31) @ (Ues - Uz - Ung),
Vag = (u31 - u15 - Us3) @ (24 - Uas - Us2),
Vo = (u31 - w15 - us3) @ (26 - Ugs - Us2),
Var = (u31 - 15 - us3) @ (42 - Uae - Usa),
Vo = (u31 - w15 - us3) @ (g6 - U2 - Una),
Vaz = (u31 - w15 - us3) @ (g2 - Uog - Use),
Vg = (u31 - w15 - us3) @ (Ues - Uan - Ung),
Vas = (u3s - usy - u13) @ (24 - Uas - Us2),
Vie = (u3s - usy - u13) @ (uz6 - Uss - Us2),
Viaz = (u3s - usy - u13) @ (42 - U - Usa),

Vig = (uzs - usy - u13) @ (s - Uga - Uog),

Vg = (uzs - usy - u13) @ (Uen - Uog - Ugs),
Vso = (u3s - usy - u13) @ (Ues - Uaz - U2g),
Vs1 = (us1 - u13 - u3s) @ (24 - uag - Us2),
Vso = (us1 - u13 - u3s) @ (uze - Ugs - Us2),
Vs3 = (us1 - u13 - u3s) @ (uan - uo6 - Usa),
Vsa = (us1 - u13 - u3s) @ (Uae - U2 - U24),
Vss = (us1 - u13 - uzs) @ (uen - Uog - Ugs),
Vse = (us1 - u13 - u3s) @ (ues - Uan - Usg),
Vs7 = (us3 - u3y - u1s) @ (Uz4 - Uss - Us2),
Vsg = (us3 - u31 - u1s) @ (uz6 - Ugs - Us2),
Vso = (us3 - u3 - u1s) @ (Ugn - U - Usa),
Voo = (us3 - u31 - u1s) @ (uae - U2 - U24),
Vo1 = (us3 - uzy - u1s) @ (uen - Uog - Ugs),
Vo = (us3 - u31 - u1s5) @ (ues - Uan - Usg),
Ves = (ua1 - u12) ® (43 - uz4) ® (uss - Use ).

Please note that the above is just one design of the encoding
operations. One can design arbitrary encoding sets for various
demands.
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