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ABSTRACT
The complex-scaling method can be used to calculate molecular resonances within the Born–Oppenheimer approximation, assuming that
the electronic coordinates are dilated independently of the nuclear coordinates. With this method, one will calculate the complex energy of
a non-Hermitian Hamiltonian, whose real part is associated with the resonance position and imaginary part is the inverse of the lifetime. In
this study, we propose techniques to simulate resonances on a quantum computer. First, we transformed the scaled molecular Hamiltonian to
second quantization and then used the Jordan–Wigner transformation to transform the scaled Hamiltonian to the qubit space. To obtain the
complex eigenvalues, we introduce the direct measurement method, which is applied to obtain the resonances of a simple one-dimensional
model potential that exhibits pre-dissociating resonances analogous to those found in diatomic molecules. Finally, we applied the method to
simulate the resonances of the H−2 molecule. The numerical results from the IBM Qiskit simulators and IBM quantum computers verify our
techniques.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0040477

I. INTRODUCTION
Resonances are intermediate or quasi-stationary states that

exist during unique atomic processes such as when an excited atom
autoionizes, an excited molecule disassociates unimolecularly, or a
molecule attracts an electron and then the ion disassociates into
stable ionic and neutral subsystems.1 The characteristics of reso-
nances, such as energy and lifetime, can be revealed by experi-
ments or predicted by theory. One theoretical method to compute
properties associated with such resonances is called the complex-
scaling method, developed in Refs. 2–7. This method is based on the
Balslev–Combes theorem, which is valid for dilation-analytic poten-
tials and can be extended for non-dilation-analytic potential ener-
gies.8 Additionally, several variants have been developed to study
problems such as Stark resonances9–11 induced by an external elec-
tric field. The real space extension of this method uses standard
quantum chemistry packages and stabilization graphs.12 Its main
applications are to study the decay of metastable states existing
above the ionization threshold of the Li center in open-shell systems
such as LiHe,13 in the computation of transition amplitudes among

metastable states,14 and in explaining Autler–Townes splitting of
spectral lines.15

The complex-scaling method usually requires a large basis set
to predict resonances with good accuracy. For example, the helium
1S resonance uses 32 Hylleraas type functions for basis construc-
tion,16 and the H−2

2Σ+u (σ2
g σu) resonance takes a total of 38 con-

structed Gaussian atomic bases.8 The computational overhead will
become overwhelming if more basis functions need to be consid-
ered, such as when simulating larger molecular systems or requir-
ing higher accuracy. Moreover, dimensional scaling and large-order
dimensional perturbation theory have been applied for complex
eigenvalues using the complex-scaling method.17,18 As for bound
states,19–23 quantum computing algorithms can overcome the above
computational limitation problem for resonances. However, most
algorithms cannot be directly adapted to resonance calculation with
the complex-scaling method because the complex-rotated Hamil-
tonian is non-Hermitian. For example, the propagator e−iH(reiθ

)t

in the conventional phase estimation algorithm (PEA) with trot-
terization24 will be non-unitary, and it cannot be implemented in
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a quantum circuit directly. In this way, a quantum algorithm for
resonance calculation that can work with non-Hermitian Hamil-
tonians is needed. Daskin et al.25 proposed a circuit design that
can solve complex eigenvalues of a general non-unitary matrix. The
method applies the matrix rows to an input state one by one and
estimates complex eigenvalues via an iterative PEA process. How-
ever, for molecular Hamiltonians, the gate complexity of this general
design is exponential in system size. In our previous publication,21

we briefly mentioned that our direct measurement method can solve
complex eigenvalues of non-Hermitian Hamiltonians with poly-
nomial gates. This study extends the direct measurement method
and applies it to simple molecular systems as benchmark tests
to obtain resonance properties. In particular, we will use IBM’s
Qiskit26 simulators and their quantum computers to calculate these
resonances.

In Secs. II–V, we first show how to obtain the complex-scaled
Hamiltonian for molecular systems and transform it into the Pauli
operator form. Then, we introduce the direct measurement method
that can derive the Hamiltonian’s complex eigenvalues. Finally, we
apply this method to do resonance calculation for a simple model
system and a benchmark test system H−2 using simulators and IBM
quantum computers.

II. COMPLEX-SCALED HAMILTONIAN
This section presents the steps needed to convert the complex-

rotated Hamiltonian to a suitable form that can be simulated on
a quantum computer. In the Born–Oppenheimer approximation,
the electronic Hamiltonian of a molecular system can be written
as a sum of electronic kinetic energy and potential energy of the
form

H(r) = T(r) + V(r),

T(r) = ∑
i
−

1
2
∇

2
i ,

V(r) = ∑
i,j

1
∣ri − rj∣

+∑
i,σ

Zσ

∣ri − Rσ ∣
,

(1)

where Zσ is the σth nucleus’s charge, Rσ is the σth nucleu’s posi-
tion, and ri and rj represents the ith and jth electrons’ position.
The complex-scaling method is applied to the study of molecular
resonances within the framework of Born–Oppenheimer approx-
imation. Following Moiseyev et al.,27 the electronic coordinates
are dilated independently of the nuclear coordinates. Given such a
Hamiltonian H(r) in Eq. (1), where r represents electrons’ coor-
dinates, the complex-scaling method rotates r into the complex
plane by θ, r→ reiθ. Thus, the Hamiltonian becomes H(reiθ

).
After a complex rotation by θ, each electron’s position r becomes
r/η, where η = e−iθ, and thus, the new Hamiltonian from Eq. (1)
becomes

Hθ = T(r/η) + V(r/η), (2)

T(r/η) = η2
∑

i
−

1
2
∇

2
i , (3)

V(r/η) = η∑
i≠j

1
∣ri − rj∣

+ η∑
i,σ

Zσ

∣ri − ηRσ ∣
. (4)

It is shown that the system’s resonance state’s energy E and
width Γ = 1

τ , where τ is the life time, are related to the corresponding
complex eigenvalue of H(reiθ

),3,28

Eθ = E −
i
2
Γ. (5)

When doing exact calculations in an infinite basis limit, Eθ in Eq. (5)
is not a function of θ. However, there would be dependence in reality
because only a truncated basis set is always used in practice. The best
resonance estimate is when the complex energy Eθ pauses or slows
down in its trajectory28,29 in the (Eθ, θ) plane or dEθ

dθ = 0. In this way,
E and Γ can be obtained by solving the new Hamiltonian’s eigenval-
ues for θ trajectories and looking for the pause. A scaling parameter
α is commonly used in the complex rotation process to locate bet-
ter resonances, which makes η = αe−iθ. We refer the readers to the
book on non-Hermitian quantum mechanics by Moiseyev for more
details and method applications.27

After choosing a proper orthogonal basis set {ψi(r)}, the
Hamiltonian can be converted into a second-quantization form,

Hθ = ∑
i,j

hija†
i aj +

1
2∑i,j,k,l

hijkla
†
i a†

j akal. (6)

In the equation, a†
i and ai are fermionic creation and annihilation

operators. The coefficients hij and hijkl can be calculated by

hij = ∫ ψ ∗i (r)(−η
2 1

2
∇

2
i + η∑

σ

Zσ

∣r − ηRσ ∣
)ψj(r),

hijkl = ∫ ψ ∗i (r1)ψ ∗j (r2)
η

∣r1 − r2∣
ψk(r2)ψl(r1).

(7)

With the Jordan–Wigner transformation,30

a†
j =

1
2
(Xj − iYj) ⊗ Z→j−1,

aj =
1
2
(Xj + iYj) ⊗ Z→j−1,

(8)

in which X, Y , and Z are the Pauli operators and

Z→j−1 = Zj−1 ⊗ Zj−2 ⊗ Z0, (9)

and the Hamiltonian in Eq. (6) will be further transformed into Pauli
operators as

Hθ =
L−1

∑
i=0

ciPi. (10)

In the summation, ci represents a complex coefficient and Pi repre-
sents a k-local tensor product of Pauli operators, where k ≤ n and n
is the size of the basis set. Alternatively, the Bravyi–Kitaev transfor-
mation30 or parity transformation can also be used in the final step
for obtaining the Hamiltonian in the qubit space.

The above process is the same as the conventional Hamil-
tonian derivation in quantum computing for electronic structure
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calculations of bound states.19,31–34 Here, for resonance calcula-
tions, to make the Hamiltonian more compatible with the direct
measurement method, we rewrite Eq. (10) as

Hθ =
2na−1

∑
i=0

βiVi, (11)

where na = ⌈log2 L⌉. The coefficient βi and the operator V i are
determined in the following ways:

βi = ∣ci∣, Vi =
ci

∣ci∣
Pi when i < L,

βi = 0, Vi = I when i ≥ L.
(12)

III. DIRECT MEASUREMENT METHOD
The direct measurement method is inspired by the direct appli-

cation of the phase estimation algorithm35 as briefly discussed in
our previous publication.21 Here, the basic idea is to apply the
complex-rotated Hamiltonian to the state of the molecular sys-
tem and obtain the complex energy information from the out-
put state. Since the original non-Hermitian Hamiltonian cannot
be directly implemented in a quantum circuit, this direct mea-
surement method embeds it into a larger dimensional unitary
operator.

Assuming n spin orbitals need to be considered for the system,
the direct measurement method requires ns = n qubits to prepare
the state of the model system ∣ϕr⟩s and an extra na ancilla qubits
to enlarge the non-Hermitian Hamiltonian to be a unitary operator.
The quantum circuit is shown in Fig. 1.

The B and V gates in the circuit are designed to have the
following properties:

B∣0⟩a =
2na−1

∑
i=0

√
βi

A
∣i⟩a, A =

2na−1

∑
i=0

βi, (13)

V ∣i⟩a∣ϕr⟩s = ∣i⟩aVi∣ϕr⟩s, (14)

which means B transforms the initial ancilla qubits’ state to a vector
of coefficients and V applies all V i on system qubits based on ancilla

FIG. 1. The quantum circuit for the direct measurement method. B and V gates
are constructed based on the coefficients and operators in Eq. (11). The system
qubits’ state and ancilla qubits’ state are initialized as ∣0⟩a and ∣ϕr⟩s, respectively.

qubits’ states. One construction choice for B could be implementing
the unitary operator

B = 2
⎛

⎝

2na−1

∑
i=0

√
βi

A
∣i⟩a
⎞

⎠

⎛

⎝

2na−1

∑
i=0

√
βi

A
⟨i∣a
⎞

⎠
− I. (15)

As for V , a series of multi-controlled V i gates will do the work. If
∣ϕr⟩s is chosen as an eigenstate and we apply the whole circuit of B,
V , and B†,

Ur = (B†
⊗ I⊗ns)V(B⊗ I⊗ns), (16)

on it, the output state will be

Ur ∣0⟩a∣ϕ⟩s =
Eeiφ

A
∣0⟩a∣ϕ⟩s + ∣Φ

�
⟩, (17)

where Eeiφ (E ≥ 0) is the corresponding eigenvalue and ∣Φ�⟩ is a state
whose ancilla qubits’ state is perpendicular to ∣0⟩a. Then, we can
derive E by measuring the output state. To obtain the phase φ, we
apply a similar circuit for H′θ = xI⊗n

+Hθ, where x is a selected real
number, and perform the measurements. The calculation details are
found in Appendix C.

IV. QUANTUM SIMULATION OF RESONANCES
IN A SIMPLE MODEL SYSTEM

In this section, we calculate the resonance properties of a model
system using the direct measurement method. This system is the
following one-dimensional potential:28

V(x) = (
1
2

x2
− J)e−λx2

+ J. (18)

Parameters are chosen as λ = 0.1 and J = 0.8. The potential plot is
in Fig. 2. This potential is used to model some resonance phenom-
ena in diatomic molecules. We only consider one electron under
this potential. The original Hamiltonian and the complex-rotated
Hamiltonian can be written as

H = −
∇

2
x

2
+ V(x), (19)

Hθ = −η
2∇

2
x

2
+ V(ηx). (20)

To make the setting consistent with the original literature, η is cho-
sen to be e−iθ and the scaling parameter α is embedded in n Gaussian
basis functions

χk(α) = exp(−αkx2
), (21)

αk = α(0.45)k, k = 0, 1, . . . , n − 1. (22)

The {χk(α)} basis set is not orthogonal, so we apply the
Gram–Schmidt process and iteratively construct an orthogonal basis
set {ψi} as follows:
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FIG. 2. The one-dimensional poten-
tial V(x) = ( 1

2
x2
− J)e−λx2

+ J, where
λ = 0.1 and J = 0.8.

γk = χk −
k−1

∑
i=0
⟨χk∣ψi⟩ψi, (23)

ψi =
γk

∥γk∥
=

γk
√
⟨γk∣γk⟩

. (24)

Since there is only one electron, we do not consider spin
interactions. This {ψi} basis set is used in the second-quantization

step to get the final Hamiltonian in the Pauli matrix form. The res-
onance eigenvalue found in Ref. 28 with n = 10 basis functions is
Eθ = 2.124 − 0.019i hartree. We will try to get the same resonance
by applying the direct measurement method using the Qiskit pack-
age. The Qiskit package supports different backends, including a
statevector simulator that executes ideal circuits, a QASM simulator
that provides noisy gate simulation, and various quantum comput-
ers. In what follows, we show the results when the basis function

TABLE I. The number of qubits and estimated gates in different cases when the direct measurement method is used to
calculate the resonance properties of the model system. The estimation for gate numbers is based on the QASM simulator
and IBM machines.

Case Number of Number of Number of Number of Number of
name basis functions total qubits system qubits ancilla qubits gates

C1 5 10 5 5 ∼ 106

C2 2 5 2 3 ∼800
C3 2 4 2 2 ∼200
C4 2 3 2 1 ∼10

FIG. 3. Trajectories of a complex eigen-
value on the rotation angle θ for fixed
n = 5 and various α, calculated by the
Qiskit statevector simulator. θ ranges
from 0.1 to 0.24 with a step of 0.01.
The green point shows the best esti-
mation of resonance energy, which is
E = 2.1265 − 0.0203i hartree, that
occurs at α = 0.65 and θ = 0.160. The
input state for the direct measurement
method is obtained by directly diago-
nalizing the complex-rotated Hamiltonian
matrix.
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FIG. 4. The quantum circuit to run the direct measurement method when n = 2.
The B gate is prepared by the coefficients [1.315 56, 0.13 333, 0.133 33, 0.252 12,
1.063 78]. V0, V1, V2, V3, and V4 are applying e−0.041 80i II, e2.328 88iYY ,
e2.328 88iXX , e3.052 83iZI, and e3.110 93i IZ, respectively.

number is n = 5 and n = 2. In particular, the former n = 5 case shows
how θ trajectories locate the best resonance estimate, and the lat-
ter n = 2 cases show how to further simplify the quantum circuit
for the direct measurement method and run it on IBM quantum
computers.

C1 in Table I is our primary example where we follow the
above steps in Secs. II and III for n = 5. An example of the
complex-rotated Hamiltonian is shown in Appendix A. Figure 3
shows a sweep of scaling parameters α for statevector simula-
tions of θ trajectories. Most trajectories pause around the point,
Eθ = 2.1265 − 0.0203i hartree, when α = 0.65 and θ = 0.160. Based
on Eq. (5), this indicates that the resonance energy and width
are E = 2.1265 hartree and Γ = 0.0406 hartree, respectively, close
to the resonance energy from Ref. 28 The IBM quantum com-
puter cannot perform the method due to a large number of stan-
dard gates in the circuit. Instead, we used the QASM simulator for
4∗ 104 shots and obtained the system’s resonance energy at α = 0.65,
θ = 0.160, and Eθ = 2.1005 − 0.3862i hartree. This result has an
error of around 0.3 hartree but can be augmented by more sample
measurements.

When taking n = 2 for the basis function, we are not able to
locate the best resonance estimate (see Fig. 3) based on direct diag-
onalization. Hence, we only use the direct measurement method
to calculate the complex eigenenergy when α = 0.65 and θ = 0.160,
where the best location is at n = 5. We run the direct measurement
method using simulators first and then try to reduce the number
of ancilla qubits to make the resulting circuit short enough to be
executed in the IBM quantum computers.

C2 in Table I is the case when we follow the steps for n = 2 in
Secs. II and III. The Hamiltonian Hθ and how to calculate its com-
plex eigenvalue are shown in Appendix D 1 [Eq. (D1)]. Figure 4
gives the quantum circuit for Hθ. This circuit can be executed in
simulators with the results listed in Table II.

TABLE II. The complex eigenenergy obtained by directly diagonalizing the Hamilto-
nian and by running different simulators. The QASM simulator is configured to have
no noise, and it takes 105 samples to calculate the complex eigenenergy.

Method Eigenenergy (hartree) Error (hartree)

Direct diagonalization 2.1259 − 0.1089i ⋅ ⋅ ⋅

Statevector simulator 2.1259 − 0.1089i 0
QASM simulator 2.1279 − 0.1100i 2 × 10−3

FIG. 5. The simplified quantum circuit to run the direct measurement method when
n = 2. The B gate is prepared by the coefficients [0.133 33, 0.133 33, 0.252 12,
1.063 78]. V0, V1, V2, and V3 are applying e2.328 88iYY , e2.328 88iXX , e3.052 83iZI,
and e3.110 93i IZ, respectively.

However, it is too complicated to be successfully run in IBM
quantum computers. For C3 in Table I, we simplify the quantum cir-
cuit by calculating the complex eigenvalue for the Hamiltonian Hθ in
Appendix D 2 [Eq. (D3)]. Because there are only four terms left, two
ancilla qubits are enough for the method. The simplified quantum
circuit is then shown in Fig. 5. To avoid introducing more ancilla
qubits, instead of H′θ = Hθ + xII, we can run a similar four-qubit
circuit for H′θ = Hθ +H3

θ , which has the same terms of tensor prod-
ucts as Hθ with different coefficients. This circuit can be executed
successfully in the simulators and the IBM quantum computers.
However, it costs around 200 gates in the IBM quantum computers,
leading to a significant error. The resulting resonance eigenenergies
and errors can be seen in Table III.

For the Hamiltonian in Eq. (D3), a simpler circuit can be con-
structed if we try to calculate the complex eigenvalue of its square
[Eq. (D6) in Appendix D 3]. This is C4 in Table I. The quantum
circuit for this H2

θ is shown in Fig. 6.
We can also run a similar three-qubit circuit for (H2

θ)
′

= H2
θ +H4

θ . The implementation of the circuit costs nine gates in the

TABLE III. The complex eigenenergy obtained by directly diagonalizing the Hamilto-
nian, running simulators and using IBM quantum computers. The QASM simulator
is configured to be noiseless, and it takes 105 samples to calculate the complex
eigenenergy. The IBM quantum computer takes 213 samples.

Method Eigenenergy (hartree) Error (hartree)

Direct diagonalization 2.1259 − 0.1089i ⋅ ⋅ ⋅

Statevector simulator 2.1259 − 0.1089i 0
QASM simulator 2.1264 − 0.1099i 1 × 10−3

IBM quantum computer 2.0700 − 0.4890i 0.3841

FIG. 6. The quantum circuit to run the direct measurement method when n = 2.
The B gate is prepared by the coefficients [1.195 77, 0.535 29]. V0 and V1 are
applying e−0.09723i II and e−0.05311iZZ, respectively.
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TABLE IV. The complex eigenenergy obtained by directly diagonalizing the Hamilto-
nian, running simulators and running IBM quantum computers. The QASM simulator
is configured to be noiseless, and it takes 105 samples to calculate the complex
eigenenergy. The IBM quantum computer takes 213 samples. The error of the IBM
quantum computer is from the best case.

Method Eigenenergy (hartree) Error (hartree)

Direct diagonalization 2.1259 − 0.1089i ⋅ ⋅ ⋅

Statevector simulator 2.1259 − 0.1089i 0
QASM simulator 2.1259 − 0.1107i 1.70 × 10−3

IBM quantum computer 2.1624 − 0.1188i 0.0378

IBM quantum computers after circuit optimization. The resulting
eigenenergies are in Table IV.

V. QUANTUM SIMULATION OF THE RESONANCES
IN H−2

This section presents a proof of concept that by using our quan-
tum algorithm, the direct measurement method, one can calculate
molecular resonances on a quantum computer. We focus on the res-
onances of a simple diatomic molecule, H−2

2Σ+u (σ2
g σu). Moiseyev

and Corcoran8 showed how to obtain this molecule’s resonance
using a variational method based on the (5s, 3p, 1d/3s, 2p, 1d) con-
tracted Gaussian atomic basis, which contains a total of 76 atomic
orbitals for H−2 . They picked around 45 configurations of natural
orbitals as a final basis for the resonance calculation. Here, how-
ever, we are not going to use their contracted Gaussian atomic basis
that needs 76 system qubits with additional ancilla qubits, which
is too large to be simulated by classical computers. The number of
gates would also be overwhelming. One may try an iterative diag-
onalization approach to get a few eigenvalues without construct-
ing matrices or vectors. Another possible solution could be using

tensor network simulators. Recent studies by Ellerbrock and Mar-
tinez show that tensor network simulators are able to efficiently and
accurately simulate over 100-qubit circuits with moderate entangle-
ment.36 In another study, Zhou et al. showed that even strongly
entangled systems (as those generated by 2D random circuits) can
be simulated by matrix product states comparably accurate to mod-
ern quantum devices.37 However, building those simulators for our
system is beyond the scope of this paper. In this way, we picked
small basis sets, 6-31g and cc-pVDZ, for our simulations. We used
the Born–Oppenheimer approximation followed by complex rota-
tion, as shown in Sec. II, “COMPLEX-SCALED HAMILTONIAN”
and mapped the Hamiltonian to the qubit space, as shown in
Appendix B. We then apply the direct measurement method to
the Hamiltonian to obtain complex eigenvalues. An example quan-
tum circuit to run the direct measurement method can be found in
Appendix E.

Figure 7 shows one complex eigenvalue’s θ trajectories at
α = 1.00 under different basis sets after running the algorithm.
Figure 7(a) is simulated using the 6-31g basis set. Eight spin orbitals
are considered in our self-defined simulator, and 16 qubits are
needed to run the algorithm. In this case, if we fix η = αe−iθ at
the lowest point in the figure, which has α = 1.00, θ = 0.18, the
resonance energy obtained by the direct measurement method is
Eθ = −0.995 102 − 0.046 236i hartree. This complex energy is close
to that obtained in Ref. 8, Eθ = −1.0995 − 0.0432i hartree, especially
the imaginary part. Figure 7(b) is simulated using the cc-pVDZ basis
set. We only considered the s and pz basis functions for H atoms
for easier simulation. 12 spin orbitals are considered in our self-
defined simulator, and a total of 23 qubits are needed to run the
algorithm in quantum computers. The results show that the reso-
nance energy at the lowest point in the figure, which has α = 1.00,
θ = 0.22, is Eθ = −1.045 083 − 0.044 513i hartree. This is even closer
to that obtained in Ref. 8. However, we want to note that the low-
est points in Figs. 7(a) and 7(b) are not pause points. In addition,
they do not reveal real resonance properties. Even after shifting

FIG. 7. Complex eigenvalue trajectories on the rotation angle θ at α = 1.00 for molecule H−2 calculated by a self-defined simulator. (a) uses the 6-31g basis set for H
atoms, including 1s and 2s orbitals. θ ranges from 0.00 to 0.24 with a step of 0.02. At the lowest point when θ = 0.18, the complex eigenvalue is −0.995 102 − 0.046 236i
hartree. (b) uses the s and pz orbitals in the cc-pVDZ basis set for H atoms. θ ranges from 0.00 to 0.28 with a step of 0.02. At the lowest point when θ = 0.22, the complex
eigenvalue is −1.045 083 − 0.044 513i hartree.
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different α in simulations, we cannot find a consistent pause point
in θ trajectories to locate the best resonance estimation. The reason
may be related to our selected basis. Compared with the literature,8
our basis set is much smaller and is not optimized for the resonance
state. Still, this application gives a proof of concept and shows that
one can calculate molecular resonances on a quantum computer.
In the future, if more qubits are available in quantum computers,
a large basis can be used, and we may be able to show finer struc-
tures in trajectories that can locate the best resonance point. In
addition, a larger basis set should lead to a more accurate resonance
calculation.

VI. CONCLUSION
In this paper, we construct and show a proof of concept

for a quantum algorithm that calculates atomic and molecular
resonances. We first presented the complex-scaling method to
calculate molecular resonances. Then, we introduced the direct mea-
surement method, which embeds a molecular system’s complex-
rotated Hamiltonian into the quantum circuit and calculates the
resonance energy and lifetime from the measurement results. These
results represent the first applications of the complex-scaling Hamil-
tonian to molecular resonances on a quantum computer. The
method is proven to be accurate when applied to a simple one-
dimensional quantum system that exhibits shape resonances. We
tested our algorithm on quantum simulators and IBM quantum
computers. Furthermore, when compared to the exponential time

complexity in traditional matrix-vector multiplication calculations,
this method only requires O(n5

) standard gates, where n is the
size of the basis set. These findings show this method’s potential
to be used in a more complicated molecular system and for better
accuracy in the future when more and better qubit machines are
available.
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APPENDIX A: COMPLEX-ROTATED HAMILTONIAN
OF THE MODEL SYSTEM AT θ = 0.16, α = 0.65
WHEN n = 5

Table V shows an example of the model system’s complex-
rotated Hamiltonian.

APPENDIX B: COMPLEX-ROTATED HAMILTONIAN
OF H−2 AT θ = 0.18, α = 1.00

Table VI shows an example of the H−2 system’s complex-rotated
Hamiltonian.

TABLE V. The coefficients and tensor product operators of the model system’s complex-rotated Hamiltonian Hθ at θ = 0.16, α = 0.65 when there is n = 5 basis functions.

YYIII −0.091 665 + 0.096 819i XXIII −0.091 665 + 0.096 819i IIIII 4.599 205 − 0.533 073i
ZIIII −0.251 131 + 0.022 353i YZYII 0.017 915 6 − 0.030 997i XZXII 0.017 915 6 − 0.030 997i
YZZYI −0.007 005 + 0.015 446i XZZXI −0.007 005 + 0.015 446i YZZZY 0.003 680 − 0.009 152i
XZZZX 0.003 680 − 0.009 152i IZIII −1.063 280 + 0.032 614i IYYII −0.089 297 + 0.108 259i
IXXII −0.089 297 + 0.108 259i IYZYI 0.014 213 − 0.055 870i IXZXI 0.014 213 − 0.055 870i
IYZZY −0.003 869 + 0.033 693i IXZZX −0.003 869 + 0.033 693i IIZII −1.445 349 + 0.113 618i
IIYYI −0.209 952 + 0.010 748i IIXXI −0.209 952 + 0.010 748i IIYZY 0.060 302 − 0.008 776j
IIXZX 0.060 302 − 0.008 776i IIIZI −1.127 058 + 0.243 702i IIIYY −0.336 956 + 0.051 691i
IIIXX −0.336 956 + 0.051 691i IIIIZ −0.712 385 + 0.120 784i

TABLE VI. The coefficients and tensor product operators in H−2 ’s complex-rotated Hamiltonian at θ = 0.18, α = 1.00 when using the 6-31g basis set.

IXZXXZXI 0.018 705 − 0.003 404i IIIZIXZX 0.038 191 − 0.006 950i ZIZIIIII 0.103 932 − 0.018 913i
XZXIXZXI 0.027 826 − 0.005 063i IXXIIIXX −0.002 794 + 0.000 508i IIZZIIII 0.106 657 − 0.019 408i
IYIYIIII 0.024 307 − 0.004 423i IIIIXXXX 0.015 119 − 0.002 751i IZIIIIZI 0.095 226 − 0.017 328i
IIIIIIXX 0.047 512 − 0.039 979i YYIIYZZY −0.019 254 + 0.003 504i XZXIYZYI 0.027 826 − 0.005 063i
IZIIYZYI 0.013 080 − 0.002 380i IIYYIIXX 0.034 554 − 0.006 288i XZXIIIZI 0.032 587 − 0.005 930i
YYYYIIII 0.015 119 − 0.002 751i XXIIIYYI 0.005 216 − 0.000 949i IXIXIIII 0.024 307 − 0.004 423i
IIIIXXYY 0.002 918 − 0.000 531i IIIZXZXI 0.050 249 − 0.009 144i IIXXXXII 0.020 481 − 0.003 727i
YYIIYYII 0.019 597 − 0.003 566i IXXIIXXI 0.008 283 − 0.001 507i IIIIXIXI 0.016 733 − 0.003 045i
IYZYIIII −0.035 671 + 0.030 324i IYZYIIIZ 0.043 018 − 0.007 828i YYIIIYYI 0.005 216 − 0.000 949i
IIIIXZZX −0.028 316 + 0.033 738i XXIIYYII 0.019 597 − 0.003 566i IXXIIIYY −0.002 794 + 0.000 508i
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TABLE VI. (Continued.)

ZYZYIIII 0.015 436 − 0.002 809i XXIIYZZY −0.019 254 + 0.003 504i IIIIIZZI 0.084 620 − 0.015 398i
YZYIIZII 0.011 702 − 0.002 129i IIYYXZZX −0.031 698 + 0.005 768i IIIIIXXI −0.007 550 + 0.006 494i
IXZXIZII 0.012 371 − 0.002 251i IIIIYYYY 0.015 119 − 0.002 751i IIIZYZYI 0.050 249 − 0.009 144i
ZIIIIIII −0.230 405 + 0.108 639i ZIIIIIIZ 0.159 054 − 0.028 943i IXXIYZZY 0.006 593 − 0.001 200i
IIIIIYIY 0.023 153 − 0.004 213i IIYYIXXI −0.000 541 + 0.000 098i YZZYIIII −0.027 204 + 0.031 862i
IIIZIIZI 0.139 579 − 0.025 399i YZZYXXII −0.016 647 + 0.003 029i IIXXIIII 0.047 746 − 0.040 370i
XIXIIIII 0.017 118 − 0.003 115i YYIIXXII 0.019 597 − 0.003 566i YZYIIYZY 0.017 127 − 0.003 117i
IIIIZZII 0.084 496 − 0.015 376i YZZYXZZX 0.031 161 − 0.005 670i IIZIIYZY 0.024 717 − 0.004 498i
XZZXIXXI 0.004 990 − 0.000 908i IYYIIYYI 0.008 283 − 0.001 507i IYZYIXZX 0.015 728 − 0.002 862i
XZZXXZZX 0.031 161 − 0.005 670i IYZYIIZI 0.026 040 − 0.004 739i IIZIIZII 0.093 507 − 0.017 015i
IZIIZIII 0.106 161 − 0.019 318i XXIIIXXI 0.005 216 − 0.000 949i IXZXIYZY 0.015 728 − 0.002 862i
ZIIIIXZX 0.030 922 − 0.005 627i IIIIIIYY 0.047 512 − 0.039 979i XXIIIIYY 0.021 209 − 0.003 859i
XXIIIIXX 0.021 209 − 0.003 859i YYIIIIII 0.001 646 − 0.022 572i ZIIIIIZI 0.130 169 − 0.023 687i
IIYYIIYY 0.034 554 − 0.006 288i YZYIIIIZ 0.052 229 − 0.009 504i YZYIIIII −0.021 561 + 0.077 956i
IIXXXZZX −0.031 698 + 0.005 768i IIIIZYZY 0.013 729 − 0.002 498i IYYIXXII 0.003 919 − 0.000 713i
IIZIZIII 0.133 407 − 0.024 276i YZZYYZZY 0.031 161 − 0.005 670i XZXIZIII 0.040 337 − 0.007 340i
ZIIIZIII 0.151 365 − 0.027 544i YZYIIXZX 0.017 127 − 0.003 117i IIIIYIYI 0.016 733 − 0.003 045i
IIXXIYYI −0.000 541 + 0.000 098i IIYYYZZY −0.031 698 + 0.005 768i IYYIIIII −0.009 705 + 0.008 779i
YZZYYYII −0.016 647 + 0.003 029i XZXIIXZX 0.017 127 − 0.003 117i IIIIIXIX 0.023 153 − 0.004 213i
IIZIYZYI 0.033 580 − 0.006 110i ZXZXIIII 0.015 436 − 0.002 809i YZYZIIII 0.020 644 − 0.003 757i
IIIIYZZY −0.028 316 + 0.033 738i IXZXZIII 0.034 152 − 0.006 215i YZZYIYYI 0.004 990 − 0.000 908i
ZIIZIIII 0.126 456 − 0.023 011i YZZYIIXX −0.029 557 + 0.005 379i XZZXYZZY 0.031 161 − 0.005 670i
IYYIIIYY −0.002 794 + 0.000 508i IXZXIIII −0.035 671 + 0.030 324i IXZXIIIZ 0.043 018 − 0.007 828i
ZIIIYZYI 0.038 659 − 0.007 035i IIXXIIXX 0.034 554 − 0.006 288i ZZIIIIII 0.085 046 − 0.015 476i
IIIZZIII 0.158 431 − 0.028 830i YXXYIIII 0.012 162 − 0.002 213i IZIIIYZY 0.013 159 − 0.002 395i
IYZYXZXI 0.018 705 − 0.003 404i XXIIXXII 0.019 597 − 0.003 566i IIIIYXXY 0.012 201 − 0.002 220i
IIIIZIII −0.231 557 + 0.112 195i IIIIZIIZ 0.128 680 − 0.023 416i YZYIXZXI 0.027 826 − 0.005 063i
IIYYYYII 0.020 481 − 0.003 727i IIIIXZXZ 0.020 604 − 0.003 749i IIIIXZXI −0.030 067 + 0.081 498i
IIYYIYYI −0.000 541 + 0.000 098i IYYIYZZY 0.006 593 − 0.001 200i YZYIYZYI 0.027 826 − 0.005 063i
IIZIXZXI 0.033 580 − 0.006 110i IIXXYZZY −0.031 698 + 0.005 768i IIIIIIZI −0.611 815 + 0.267 480i
IIIIIIZZ 0.107 859 − 0.019 627i YZZYIXXI 0.004 990 − 0.000 908i IIIIIXZX −0.012 982 + 0.018 373i
XXIXXII 0.003 919 − 0.000 713i IIZIIIII −0.612 966 + 0.271 036i XZXIIYZY 0.017 127 − 0.003 117i
IIXXIXXI −0.000 541 + 0.000 098i IIIIYYII 0.000 598 − 0.021 276i YYIIIIXX 0.021 209 − 0.003 859i
XZZXYYII −0.016 647 + 0.003 029i XZXZIIII 0.020 644 − 0.003 757i YZZYIIYY −0.029 557 + 0.005 379i
YYXXIIII 0.002 957 − 0.000 538i YZYIIIZI 0.032 587 − 0.005 930i IIXXYYII 0.020 481 − 0.003 727i
IXZXIXZX 0.015 728 − 0.002 862i IXZXIIZI 0.026 040 − 0.004 739i XYYXIIII 0.012 162 − 0.002 213i
ZIIIXZXI 0.038 659 − 0.007 035i IIXXIIYY 0.034 554 − 0.006 288i YYIIIIYY 0.021 209 − 0.003 859i
IZZIIIII 0.087 497 − 0.015 922i IZIIIZII 0.094 105 − 0.017 124i IIYYXXII 0.020 481 − 0.003 727i
IIIZIYZY 0.038 191 − 0.006 950i IYYIIIXX −0.002 794 + 0.000 508i IXXIXZZX 0.006 593 − 0.001 200i
IIIIZXZX 0.013 729 − 0.002 498i IIIIIYYI −0.007 550 + 0.006 494i IIIIZIZI 0.103 932 − 0.018 913i
YYIIXZZX −0.019 254 + 0.003 504i IXXIIIII −0.009 705 + 0.008 779i IIIIXXII 0.000 598 − 0.021 276i
XZZXIYYI 0.004 990 − 0.000 908i IZIIIIIZ 0.110 454 − 0.020 099i IZIIIIII −0.388 873 + 0.102 313i
IYZYIZII 0.012 371 − 0.002 251i IXXIIYYI 0.008 283 − 0.001 507i IYYIYYII 0.003 919 − 0.000 713i
YYIIIXXI 0.005 216 − 0.000 949i XXYYIIII 0.002 957 − 0.000 538i IXXIYYII 0.003 919 − 0.000 713i
IIIIYZYZ 0.020 604 − 0.003 749i IIIIYZYI −0.030 067 + 0.081 498i IYZYIYZY 0.015 728 − 0.002 862i
IZIIXZXI 0.013 080 − 0.002 380i IIIIIIII 1.734 311 − 1.110 499i IIIIIIIZ −0.896 247 + 0.369 556i
IIZIIXZX 0.024 717 − 0.004 498i IZIIIXZX 0.013 159 − 0.002 395i IIZIIIZI 0.120 598 − 0.021 945i
XZZXIIYY −0.029 557 + 0.005 379i IIIIXYYX 0.012 201 − 0.002 220i IYZYZIII 0.034 152 − 0.006 215i
IIYYIIII 0.047 746 − 0.040 370i IXZXYZYI 0.018 705 − 0.003 404i XZXIIIIZ 0.052 229 − 0.009 504i
XZXIIIII −0.021 561 + 0.077 956i XZZXXXII −0.016 647 + 0.003 029i ZIIIIYZY 0.030 922 − 0.005 627i
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TABLE VI. (Continued.)

YIYIIIII 0.017 118 − 0.003 115i IYYIXZZX 0.006 593 − 0.001 200i XZZXIIII −0.027 204 + 0.031 862i
IIIIIYZY −0.012 982 + 0.018 373i XXIIXZZX −0.019 254 + 0.003 504i XZXIIZII 0.011 702 − 0.002 129i
ZIIIIZII 0.102 700 − 0.018 688i IIIIIZIZ 0.092 214 − 0.016 780i IIIIIZII −0.386 698 + 0.100 135i
IYYIIXXI 0.008 283 − 0.001 507i IIIZIZII 0.105 681 − 0.019 231i XXIIIIII 0.001 646 − 0.022 572i
IIIIYYXX 0.002 918 − 0.000 531i IZIZIIII 0.092 214 − 0.016 780i YZYIZIII 0.040 337 − 0.007 340i
XXXXIIII 0.015 119 − 0.002 751i XZZXIIXX −0.029 557 + 0.005 379i IIIZIIIZ 0.184 425 − 0.033 560i
IIIZIIII −0.894 071 + 0.367 379i IIZIIIIZ 0.144 136 − 0.026 228i IYZYYZYI 0.018 705 − 0.003 404i

APPENDIX C: HOW TO GET COMPLEX EIGENVALUE
BY THE DIRECT MEASUREMENT METHOD

If the output state equation (17) is measured many times,
the possibility of obtaining the ∣0⟩a state, p, is related to E by the
following equation:

p =
E2

A2 , (C1)

which reveals ∣E∣ =
√

pA. To obtain the phase, one way is that we
apply a similar circuit for H′θ = xI⊗n

+Hθ, where x is a selected real
number. Then, the updated U′r leads us to

p′ =
∣x + Eeiφ

∣
2

A′2
. (C2)

By applying ∣E∣ =
√

pA to Eq. (C2), we can solve the phase φ and
finally the complex eigenvalue as

Eeiφ
=
√

pAei cos−1 p′A′2−x2−pA2

2xA
√

p or
√

pAe−i cos−1 p′A′2−x2−pA2

2xA
√

p . (C3)

If we expand the exponential term in Eq. (C3), it becomes

Eeiφ
=

p′A′2 − x2
− pA2

2x
+ i
√
(2xA

√
p)2 − (p′A′2 − x2 − pA2)2

2x
.

(C4)

Since the measurement errors for p and p′, i.e., Δ(p) and Δp′, are
O( 1√

N
), based on Eq. (C4), the error for the complex eigenvalue

Eeiφ is

Δ(Eeiφ
) = O(

1
√

N
). (C5)

The larger the sampling size, the more accurate the obtained com-
plex eigenvalues are.

There are also other choices to obtain the phase. For exam-
ple, instead of adding the I⊗n part, we can try building U′r based
on Hθ +H2

θ or Hθ +H3
θ to get an equation such as Eq. (C2) con-

taining phase information. This equation together with Eq. (C1) will
reveal the complex eigenvalue for the input eigenstate with another
expression.

APPENDIX D: HAMILTONIANS AND EIGENVALUES
FOR THE MODEL SYSTEM IN DIFFERENT CASES
1. n = 2 basis functions, 5 qubits

The complex-rotated Hamiltonian of the model system is

Hθ = 1.315 56∗e−0.041 80i II + 0.133 33∗ e2.328 88iYY

+ 0.133 33∗ e2.328 88iXX0.252 12∗ e3.052 83iZI

+ 1.063 78∗ e3.110 93iIZ. (D1)

By running the circuit shown in Fig. 4 for Hθ and a similar circuit
for H′θ = xII +Hθ, the complex eigenvalue can be derived by

Eeiφ
=
√

pAei cos−1 p′A′2−x2−pA2

2xA
√

p or
√

pAe−i cos−1 p′A′2−x2−pA2

2xA
√

p , (D2)

where A and A′ can be obtained from the absolute value of coef-
ficients in Hθ and H′θ and p and p′ can be obtained from the
measurement results.

2. n = 2 basis functions, 4 qubits
The complex-rotated Hamiltonian of the model system without

the II term is

Hθ = 0.133 33∗ e2.328 88i YY + 0.133 33∗ e2.328 88iXX

+ 0.252 12∗ e3.052 83iZI + 1.063 78∗ e3.110 93iIZ. (D3)

If we choose H′θ = Hθ +H3
θ , which has the same terms of ten-

sor products as Hθ with different coefficients, by running Fig. 5,
the complex eigenvalue for the original Hamiltonian can be
represented by

Eeiφ
= (1.314 41 − 0.054 97i) +

√
pAe

i
2 cos−1

(
p′A′2
2p2A4 −

1
2pA2 −

pA2

2 ) (D4)

or

(1.314 41 − 0.054 97i) +
√

pAe
−i
2 cos−1

(
p′A′2
2p2A4 −

1
2pA2 −

pA2

2 ), (D5)

where A and A′ can be obtained from the absolute value of coef-
ficients in Hθ and H′θ and p and p′ can be obtained from the
measurement results.
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3. n = 2 basis functions, 3 qubits
The square of the Hamiltonian in Eq. (D3) is

H2
θ = 1.195 77 ∗ e−0.097 23i II + 0.535 29∗ e−0.053 11iZZ. (D6)

If we choose (H2
θ)
′
= H2

θ +H4
θ , by running Fig. 6, the complex

eigenvalue for the original Hamiltonian is

Eeiφ
= (1.314 41 − 0.054 97i) + p

1
4
√

Ae
i
2 cos−1⎛

⎝

p′A′2

2p
3
2 A3
− 1

2
√

pA−
√

pA
2

⎞

⎠

(D7)

or

(1.314 41 − 0.054 97i) + p
1
4
√

Ae
−i
2 cos−1⎛

⎝

p′A′2

2p
3
2 A3
− 1

2
√

pA−
√

pA
2

⎞

⎠, (D8)

where A and A′ can be obtained from the absolute value of coeffi-
cients in H2

θ and H2
θ +H4

θ and p and p′ can be obtained from their
measurement results.

APPENDIX E: QUANTUM CIRCUIT
FOR COMPLEX-SCALED HAMILTONIAN OF H−2
AT θ = 0.18, α = 1.00

The complex-scaled Hamiltonian of H−2 at θ = 0.18, α = 1.00 in
Appendix B can be written as

H = 0.019 012∗ e−0.180 013i IXZXXZXI + 0.038 818

∗e−0.180 010iIIIZIXZX + 0.105 638∗ e−0.180 005iZIZIIIII

+ 0.028 282∗ e−0.179 983iXZXIXZXI + ⋅ ⋅ ⋅

+ 0.019 012∗ e−0.180 013iIYZYYZYI. (E1)

We would like to mention that the terms explicitly shown in Eq. (E1)
are following the order in Appendix B. It is a coincident that their

FIG. 8. The quantum circuit to run the direct measurement method for H−2 when θ = 0.18,α = 1.00. The B gate can be prepared by β in Eq. (E2). V i gates are listed in
Eq. (E3).
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phases are similar. For example, one term we did not show in the
Hamiltonian is 0.021 284∗ e1.542 696iIIIIYYII, which has a different
phase.

To construct the quantum circuit for the direct measurement
method, we need to create the B gate and V gate. The B gate can be
prepared by the coefficients from the Hamiltonian in Eq. (E1),

(E2)

as shown in Eq. (15). The V gate can be constructed by a series of
controlled-V i gates, where V i are

V0 = e−0.180 013iIXZXXZXI,

V1 = e−0.180 010iIIIZIXZX,

V2 = e−0.180 005iZIZIIIII,

V3 = e−0.179 983iXZXIXZXI,

⋮

V200 = e−0.180 013iIYZYYZYI.

(E3)

The whole circuit is shown in Fig. 8. The encoding of control qubits
is based on the binary form of V i’s index i. For example, V3 is applied
to ∣ψ⟩s if the ancilla qubit state is ∣3⟩a = ∣000 000 11⟩a.

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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