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ABSTRACT

The complex-scaling method can be used to calculate molecular resonances within the Born-Oppenheimer approximation, assuming that
the electronic coordinates are dilated independently of the nuclear coordinates. With this method, one will calculate the complex energy of
a non-Hermitian Hamiltonian, whose real part is associated with the resonance position and imaginary part is the inverse of the lifetime. In
this study, we propose techniques to simulate resonances on a quantum computer. First, we transformed the scaled molecular Hamiltonian to
second quantization and then used the Jordan-Wigner transformation to transform the scaled Hamiltonian to the qubit space. To obtain the
complex eigenvalues, we introduce the direct measurement method, which is applied to obtain the resonances of a simple one-dimensional
model potential that exhibits pre-dissociating resonances analogous to those found in diatomic molecules. Finally, we applied the method to
simulate the resonances of the H, molecule. The numerical results from the IBM Qiskit simulators and IBM quantum computers verify our

techniques.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0040477

I. INTRODUCTION

Resonances are intermediate or quasi-stationary states that
exist during unique atomic processes such as when an excited atom
autoionizes, an excited molecule disassociates unimolecularly, or a
molecule attracts an electron and then the ion disassociates into
stable ionic and neutral subsystems.! The characteristics of reso-
nances, such as energy and lifetime, can be revealed by experi-
ments or predicted by theory. One theoretical method to compute
properties associated with such resonances is called the complex-
scaling method, developed in Refs. 2-7. This method is based on the
Balslev—Combes theorem, which is valid for dilation-analytic poten-
tials and can be extended for non-dilation-analytic potential ener-
gies.” Additionally, several variants have been developed to study
problems such as Stark resonances’!! induced by an external elec-
tric field. The real space extension of this method uses standard
quantum chemistry packages and stabilization graphs.'? Its main
applications are to study the decay of metastable states existing
above the ionization threshold of the Li center in open-shell systems
such as LiHe,"” in the computation of transition amplitudes among

metastable states,'*

spectral lines."”

The complex-scaling method usually requires a large basis set
to predict resonances with good accuracy. For example, the helium
'S resonance uses 32 Hylleraas type functions for basis construc-
tion,'® and the H; 22:(0‘5@) resonance takes a total of 38 con-
structed Gaussian atomic bases.® The computational overhead will
become overwhelming if more basis functions need to be consid-
ered, such as when simulating larger molecular systems or requir-
ing higher accuracy. Moreover, dimensional scaling and large-order
dimensional perturbation theory have been applied for complex
eigenvalues using the complex-scaling method.'”'® As for bound
states,'”?* quantum computing algorithms can overcome the above
computational limitation problem for resonances. However, most
algorithms cannot be directly adapted to resonance calculation with

the complex-scaling method because the complex-rotated Hamil-
—iH(re)t

and in explaining Autler-Townes splitting of

tonian is non-Hermitian. For example, the propagator e
in the conventional phase estimation algorithm (PEA) with trot-
terization’* will be non-unitary, and it cannot be implemented in
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a quantum circuit directly. In this way, a quantum algorithm for
resonance calculation that can work with non-Hermitian Hamil-
tonians is needed. Daskin et al.”® proposed a circuit design that
can solve complex eigenvalues of a general non-unitary matrix. The
method applies the matrix rows to an input state one by one and
estimates complex eigenvalues via an iterative PEA process. How-
ever, for molecular Hamiltonians, the gate complexity of this general
design is exponential in system size. In our previous publication,’’
we briefly mentioned that our direct measurement method can solve
complex eigenvalues of non-Hermitian Hamiltonians with poly-
nomial gates. This study extends the direct measurement method
and applies it to simple molecular systems as benchmark tests
to obtain resonance properties. In particular, we will use IBM’s
Qiskit*® simulators and their quantum computers to calculate these
resonances.

In Secs. II-V, we first show how to obtain the complex-scaled
Hamiltonian for molecular systems and transform it into the Pauli
operator form. Then, we introduce the direct measurement method
that can derive the Hamiltonian’s complex eigenvalues. Finally, we
apply this method to do resonance calculation for a simple model
system and a benchmark test system H; using simulators and IBM
quantum computers.

Il. COMPLEX-SCALED HAMILTONIAN

This section presents the steps needed to convert the complex-
rotated Hamiltonian to a suitable form that can be simulated on
a quantum computer. In the Born-Oppenheimer approximation,
the electronic Hamiltonian of a molecular system can be written
as a sum of electronic kinetic energy and potential energy of the
form

H(r) =T(r)+ V(r),
()= 3 - 292,

72 1)
V(r)zz_:'r. Z|l‘
ij ITi i

where Z, is the oy, nucleus’s charge, R, is the oy, nucleu’s posi-
tion, and r; and r; represents the iy and j, electrons’ position.
The complex-scaling method is applied to the study of molecular
resonances within the framework of Born-Oppenheimer approx-
imation. Following Moiseyev et al.,”” the electronic coordinates
are dilated independently of the nuclear coordinates. Given such a
Hamiltonian H(r) in Eq. (1), where r represents electrons’ coor-
dinates, the complex-scaling method rotates r into the complex
plane by 6, r — re®. Thus, the Hamiltonian becomes H(re").
After a complex rotation by 6, each electron’s position r becomes

r/n, where 5 = eiig, and thus, the new Hamiltonian from Eq. (1)
becomes
Hg = T(x/n) + V(x/n), 2)
1
T(x/n) = 1122 -V (3)

V(r/n) = '72

+n 4)
1¢] ]| Z |l‘1 77RU
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It is shown that the system’s resonance state’s energy E and
width T = %, where 7 is the life time, are related to the corresponding

complex eigenvalue of H(r ei&)’ 328

i
Ey=E--T. 5
0 5 (5)

When doing exact calculations in an infinite basis limit, Eg in Eq. (5)
is not a function of . However, there would be dependence in reality
because only a truncated basis set is always used in practice. The best
resonance estimate is when the complex energy Ey pauses or slows
down in its trajectory’®*’ in the (Eg, 8) plane or dE" = 0. In this way,
E and T can be obtained by solving the new Hamﬂtonlan s eigenval-
ues for 0 trajectories and looking for the pause. A scaling parameter
« is commonly used in the complex rotation process to locate bet-
ter resonances, which makes # = ae ™ We refer the readers to the
book on non-Hermitian quantum mechanics by Moiseyev for more
details and method applications.”’

After choosing a proper orthogonal basis set {y,(r)}, the
Hamiltonian can be converted into a second-quantization form,

thjkla a; aiay. (6)

T
Hg = Zhijai aj
i,j 1]kl

In the equation, a;r and ag; are fermionic creation and annihilation

operators. The coefficients h;; and h;jy can be calculated by

hij:fl//i*(r)(—ﬂzlvﬂﬂxﬁ)%(f),
= [ ey () ().

%

With the Jordan-Wigner transformation, 30

1
A
=5 (

1 ;
aj = E<Xj+le)®Z] 1

)
Il

Xj-iYj) ® Zj

in which X, Y, and Z are the Pauli operators and
Z = Zi1 ® Zj2 ® Zy, )

and the Hamiltonian in Eq. (6) will be further transformed into Pauli
operators as

L-1
Hg = Z CiPi. (10)
i=0

In the summation, ¢; represents a complex coefficient and P; repre-
sents a k-local tensor product of Pauli operators, where k < n and n
is the size of the basis set. Alternatively, the Bravyi-Kitaev transfor-
mation’’ or parity transformation can also be used in the final step
for obtaining the Hamiltonian in the qubit space.

The above process is the same as the conventional Hamil-
tonian derivation in quantum computing for electronic structure
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calculations of bound states.'”’'** Here, for resonance calcula-
tions, to make the Hamiltonian more compatible with the direct
measurement method, we rewrite Eq. (10) as

oma_1

Hg= Y BiVi, (11)
i=0

where n, = [loga L]. The coefficient §; and the operator V; are
determined in the following ways:

ﬁi = |C1|, Vi = ﬁpi wheni < L, ( )
i 12
ﬂiZO,Vi:I wheni> L.

lll. DIRECT MEASUREMENT METHOD

The direct measurement method is inspired by the direct appli-
cation of the phase estimation algorithm™ as briefly discussed in
our previous publication.”! Here, the basic idea is to apply the
complex-rotated Hamiltonian to the state of the molecular sys-
tem and obtain the complex energy information from the out-
put state. Since the original non-Hermitian Hamiltonian cannot
be directly implemented in a quantum circuit, this direct mea-
surement method embeds it into a larger dimensional unitary
operator.

Assuming » spin orbitals need to be considered for the system,
the direct measurement method requires n; = n qubits to prepare
the state of the model system |¢,) and an extra n, ancilla qubits
to enlarge the non-Hermitian Hamiltonian to be a unitary operator.
The quantum circuit is shown in Fig. 1.

The B and V gates in the circuit are designed to have the

following properties:
2t g 21
Bo), = 2 \/Slile A=) B (13)
i=0 i=0
VIi)aldr)s = i), Vilgr),s (14)

which means B transforms the initial ancilla qubits’ state to a vector
of coefficients and V applies all V; on system qubits based on ancilla

0, 1B — Bf

MBI

)

FIG. 1. The quantum circuit for the direct measurement method. B and V gates
are constructed based on the coefficients and operators in Eq. (11). The system
qubits’ state and ancilla qubits’ state are initialized as |0), and |¢y ), respectively.

ARTICLE scitation.org/journalljcp

qubits’ states. One construction choice for B could be implementing
the unitary operator

B—2( z; i"mu)( Zo \/E(qg) 1 (15)

As for V, a series of multi-controlled V; gates will do the work. If
|¢r), is chosen as an eigenstate and we apply the whole circuit of B,
V,and B}L,

U, = (BT ®I®"S)V(B®I®"5), (16)
on it, the output state will be

Ee'?
e |O

10),19), + 0%, (17)

Ur0),l¢), =

where Ee' (E > 0) is the corresponding eigenvalue and |®*) is a state
whose ancilla qubits’ state is perpendicular to |0),. Then, we can
derive E by measuring the output state. To obtain the phase ¢, we
apply a similar circuit for Hy = xI®" + Hp, where x is a selected real
number, and perform the measurements. The calculation details are
found in Appendix C.

IV. QUANTUM SIMULATION OF RESONANCES
IN A SIMPLE MODEL SYSTEM

In this section, we calculate the resonance properties of a model
system using the direct measurement method. This system is the
following one-dimensional potential:**

V(x) = (%xz —])e_sz +]. (18)

Parameters are chosen as A = 0.1 and J = 0.8. The potential plot is
in Fig. 2. This potential is used to model some resonance phenom-
ena in diatomic molecules. We only consider one electron under
this potential. The original Hamiltonian and the complex-rotated
Hamiltonian can be written as

2
H:—%+V(x), (19)
vz
Hp = —;727" + V(nx). (20)

To make the setting consistent with the original literature, # is cho-
sen to be e and the scaling parameter a is embedded in n Gaussian
basis functions

() = exp(—agx’), 1)

ae = a(0.45)F, k=0,1,...,n-1. (22)

The {x.(«)} basis set is not orthogonal, so we apply the
Gram-Schmidt process and iteratively construct an orthogonal basis
set {y,} as follows:
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FIG. 2. The one-dimensional poten-
tial V(x) = (332 = J)e™™ +J, where
A=0.1andJ=08.

V/hartree

— V(x)
0.01 —-—- asymptotic value
-100 -75 -50 -25 0.0 2.5 5.0 75 100
X
k-l step to get the final Hamiltonian in the Pauli matrix form. The res-
Vi = X = Z {uelvi by (23) onance eigenvalue found in Ref. 28 with n = 10 basis functions is
=0 Eg =2.124 - 0.019i hartree. We will try to get the same resonance
Vi Vi by applying the direct measurement method using the Qiskit pack-
vi= Tyl = ﬁ (24) age. The Qiskit package supports different backends, including a
ViV statevector simulator that executes ideal circuits, a QASM simulator
Since there is only one electron, we do not consider spin  that provides noisy gate simulation, and various quantum comput-

interactions. This {y,} basis set is used in the second-quantization ers. In what follows, we show the results when the basis function

TABLE I. The number of qubits and estimated gates in different cases when the direct measurement method is used to
calculate the resonance properties of the model system. The estimation for gate numbers is based on the QASM simulator
and IBM machines.

Case Number of Number of Number of Number of Number of
name basis functions total qubits system qubits ancilla qubits gates

~10°

~800
~200
~10

10
5
4
3

Cl1
C2
C3
C4

N W U

[\SIN \S I S IR,
[SSIN \S RN S IR,

1

o
|
N

—2.0 1

FIG. 3. Trajectories of a complex eigen-
value on the rotation angle 6 for fixed
n =5 and various «, calculated by the
Qiskit statevector simulator. 6 ranges
from 0.1 to 0.24 with a step of 0.01.
The green point shows the best esti-
mation of resonance energy, which is
E=21265 - 0.0203/ hartree, that
occurs at a = 0.65 and 6 = 0.160. The
input state for the direct measurement
method is obtained by directly diago-
nalizing the complex-rotated Hamiltonian
matrix.

|
N
N

L

Eimag/ hartree
|
N
iy

—2.8 1

2.118 2.120 2.122 2.124 2.126 2.128
Ereai/lhartree
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|000) 4 — B — Bt
i
(pr)s{ Vol [Vi| [Va| | Vs | V4

FIG. 4. The quantum circuit to run the direct measurement method when n = 2.
The B gate is prepared by the coefficients [1.315 56, 0.13 333, 0.133 33, 0.252 12,
1.06378]. Vo, V4, Vo, Vi, and V, are applying e 004180ij) g232888iyy,
g232888ixx g305283i7] and g3110%i|7 respectively.

number is # = 5 and n = 2. In particular, the former n = 5 case shows
how 8 trajectories locate the best resonance estimate, and the lat-
ter n =2 cases show how to further simplify the quantum circuit
for the direct measurement method and run it on IBM quantum
computers.

C1 in Table I is our primary example where we follow the
above steps in Secs. II and III for n=5. An example of the
complex-rotated Hamiltonian is shown in Appendix A. Figure 3
shows a sweep of scaling parameters « for statevector simula-
tions of 6 trajectories. Most trajectories pause around the point,
Eg =2.1265 — 0.0203i hartree, when « = 0.65 and 0 = 0.160. Based
on Eq. (5), this indicates that the resonance energy and width
are E =2.1265 hartree and I' = 0.0406 hartree, respectively, close
to the resonance energy from Ref. 28 The IBM quantum com-
puter cannot perform the method due to a large number of stan-
dard gates in the circuit. Instead, we used the QASM simulator for
4+ 10" shots and obtained the system’s resonance energy at « = 0.65,
0 =0.160, and Eg =2.1005 — 0.3862i hartree. This result has an
error of around 0.3 hartree but can be augmented by more sample
measurements.

When taking # = 2 for the basis function, we are not able to
locate the best resonance estimate (see Fig. 3) based on direct diag-
onalization. Hence, we only use the direct measurement method
to calculate the complex eigenenergy when « = 0.65 and 6 = 0.160,
where the best location is at n = 5. We run the direct measurement
method using simulators first and then try to reduce the number
of ancilla qubits to make the resulting circuit short enough to be
executed in the IBM quantum computers.

C2 in Table I is the case when we follow the steps for n = 2 in
Secs. 11 and I11. The Hamiltonian Hy and how to calculate its com-
plex eigenvalue are shown in Appendix D 1 [Eq. (D1)]. Figure 4
gives the quantum circuit for Hg. This circuit can be executed in
simulators with the results listed in Table I1.

TABLE Il. The complex eigenenergy obtained by directly diagonalizing the Hamilto-
nian and by running different simulators. The QASM simulator is configured to have
no noise, and it takes 10° samples to calculate the complex eigenenergy.

Method Eigenenergy (hartree) Error (hartree)

2.1259 — 0.1089i e
2.1259 - 0.10891 0
2.1279 - 0.1100i 2x107°

Direct diagonalization
Statevector simulator
QASM simulator

ARTICLE scitation.org/journalljcp

100),4

. =

|67) ‘S{ Vol |V Vol |V

FIG. 5. The simplified quantum circuit to run the direct measurement method when
n = 2. The B gate is prepared by the coefficients [0.133 33, 0.133 33, 0.252 12,
1.06378]. Vo, V4, Vo, and V3 are applying 232888 yy, ¢232888ixy ¢305283i7)
and e>110%i/7, respectively.

However, it is too complicated to be successfully run in IBM
quantum computers. For C3 in Table I, we simplify the quantum cir-
cuit by calculating the complex eigenvalue for the Hamiltonian Hy in
Appendix D 2 [Eq. (D3)]. Because there are only four terms left, two
ancilla qubits are enough for the method. The simplified quantum
circuit is then shown in Fig. 5. To avoid introducing more ancilla
qubits, instead of Hy = Hy + xII, we can run a similar four-qubit
circuit for Hy = Hy + Hj, which has the same terms of tensor prod-
ucts as Hy with different coefficients. This circuit can be executed
successfully in the simulators and the IBM quantum computers.
However, it costs around 200 gates in the IBM quantum computers,
leading to a significant error. The resulting resonance eigenenergies
and errors can be seen in Table I1I.

For the Hamiltonian in Eq. (D3), a simpler circuit can be con-
structed if we try to calculate the complex eigenvalue of its square
[Eq. (D6) in Appendix D 3]. This is C4 in Table I. The quantum
circuit for this Hy is shown in Fig. 6.

We can also run a similar three-qubit circuit for (Hj)’
= Hj + Hj. The implementation of the circuit costs nine gates in the

TABLE lIl. The complex eigenenergy obtained by directly diagonalizing the Hamilto-
nian, running simulators and using IBM quantum computers. The QASM simulator
is configured to be noiseless, and it takes 10° samples to calculate the complex
eigenenergy. The IBM quantum computer takes 2'® samples.

Method Eigenenergy (hartree)  Error (hartree)

2.1259 — 0.1089i e
2.1259 — 0.1089i 0

2.1264 — 0.1099i 1x107°
2.0700 — 0.4890i 0.3841

Direct diagonalization
Statevector simulator
QASM simulator

IBM quantum computer

10),,

|¢T>s VO Vl

FIG. 6. The quantum circuit to run the direct measurement method when n = 2.
The B gate is prepared by the coefficients [1.19577, 0.53529]. V and V4 are
applying e%%%72%|] and e=09%311177, respectively.
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TABLE IV. The complex eigenenergy obtained by directly diagonalizing the Hamilto-
nian, running simulators and running IBM quantum computers. The QASM simulator
is configured to be noiseless, and it takes 105 samples to calculate the complex
eigenenergy. The IBM quantum computer takes 2'® samples. The error of the IBM
quantum computer is from the best case.

Method Eigenenergy (hartree)  Error (hartree)

2.1259 — 0.1089i e
2.1259 — 0.1089i 0
2.1259 - 0.1107i .70 x 1073
2.1624 — 0.1188i 0.0378

Direct diagonalization
Statevector simulator
QASM simulator

IBM quantum computer

IBM quantum computers after circuit optimization. The resulting
eigenenergies are in Table I'V.

V. QUANTUM SIMULATION OF THE RESONANCES
IN H;

This section presents a proof of concept that by using our quan-
tum algorithm, the direct measurement method, one can calculate
molecular resonances on a quantum computer. We focus on the res-
onances of a simple diatomic molecule, Hy 223((750,4). Moiseyev
and Corcoran® showed how to obtain this molecule’s resonance
using a variational method based on the (5s, 3p, 1d/3s, 2p, 1d) con-
tracted Gaussian atomic basis, which contains a total of 76 atomic
orbitals for H;. They picked around 45 configurations of natural
orbitals as a final basis for the resonance calculation. Here, how-
ever, we are not going to use their contracted Gaussian atomic basis
that needs 76 system qubits with additional ancilla qubits, which
is too large to be simulated by classical computers. The number of
gates would also be overwhelming. One may try an iterative diag-
onalization approach to get a few eigenvalues without construct-
ing matrices or vectors. Another possible solution could be using

1 le-2
0 4
_1 4
]
A
2
<
3
g
G —3
-4
-5 Eo1s= — 0.995102 — 0.046236i Hartree
-1.10 ~1.05 ~1.00 ~0.95
Ereall hartree

ARTICLE scitation.org/journalljcp

tensor network simulators. Recent studies by Ellerbrock and Mar-
tinez show that tensor network simulators are able to efficiently and
accurately simulate over 100-qubit circuits with moderate entangle-
ment.’® In another study, Zhou et al. showed that even strongly
entangled systems (as those generated by 2D random circuits) can
be simulated by matrix product states comparably accurate to mod-
ern quantum devices.”” However, building those simulators for our
system is beyond the scope of this paper. In this way, we picked
small basis sets, 6-31g and cc-pVDZ, for our simulations. We used
the Born-Oppenheimer approximation followed by complex rota-
tion, as shown in Sec. II, “COMPLEX-SCALED HAMILTONIAN”
and mapped the Hamiltonian to the qubit space, as shown in
Appendix B. We then apply the direct measurement method to
the Hamiltonian to obtain complex eigenvalues. An example quan-
tum circuit to run the direct measurement method can be found in
Appendix E.

Figure 7 shows one complex eigenvalue’s 6 trajectories at
« =1.00 under different basis sets after running the algorithm.
Figure 7(a) is simulated using the 6-31g basis set. Eight spin orbitals
are considered in our self-defined simulator, and 16 qubits are
needed to run the algorithm. In this case, if we fix 7= ae™™ at
the lowest point in the figure, which has a = 1.00, 6 = 0.18, the
resonance energy obtained by the direct measurement method is
Eg = —0.995102 — 0.046 236i hartree. This complex energy is close
to that obtained in Ref. 8, Eg = —1.0995 — 0.0432i hartree, especially
the imaginary part. Figure 7(b) is simulated using the cc-pVDZ basis
set. We only considered the s and p, basis functions for H atoms
for easier simulation. 12 spin orbitals are considered in our self-
defined simulator, and a total of 23 qubits are needed to run the
algorithm in quantum computers. The results show that the reso-
nance energy at the lowest point in the figure, which has « = 1.00,
0 =0.22,is Eg = —1.045 083 — 0.044 513i hartree. This is even closer
to that obtained in Ref. 8. However, we want to note that the low-
est points in Figs. 7(a) and 7(b) are not pause points. In addition,
they do not reveal real resonance properties. Even after shifting

le—2
2 4
1_
O_
$
£ -1
o
N
% -2
g
w
_3 4
_4 4
5] Eo22 = — 1.045083 — 0.044513] Hartree
~1.16 -112 ~1.08 ~1.04 ~1.00 ~0.96
Ereall hartree

FIG. 7. Complex eigenvalue trajectories on the rotation angle 6 at « = 1.00 for molecule H; calculated by a self-defined simulator. (a) uses the 6-31g basis set for H
atoms, including 1s and 2s orbitals. 6 ranges from 0.00 to 0.24 with a step of 0.02. At the lowest point when 6 = 0.18, the complex eigenvalue is —0.995 102 — 0.046 236/
hartree. (b) uses the s and p, orbitals in the cc-pVDZ basis set for H atoms. 0 ranges from 0.00 to 0.28 with a step of 0.02. At the lowest point when 6 = 0.22, the complex

eigenvalue is —1.045 083 — 0.044 513 hartree.
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different « in simulations, we cannot find a consistent pause point
in 0 trajectories to locate the best resonance estimation. The reason
may be related to our selected basis. Compared with the literature,”
our basis set is much smaller and is not optimized for the resonance
state. Still, this application gives a proof of concept and shows that
one can calculate molecular resonances on a quantum computer.
In the future, if more qubits are available in quantum computers,
a large basis can be used, and we may be able to show finer struc-
tures in trajectories that can locate the best resonance point. In
addition, a larger basis set should lead to a more accurate resonance
calculation.

VI. CONCLUSION

In this paper, we construct and show a proof of concept
for a quantum algorithm that calculates atomic and molecular
resonances. We first presented the complex-scaling method to
calculate molecular resonances. Then, we introduced the direct mea-
surement method, which embeds a molecular system’s complex-
rotated Hamiltonian into the quantum circuit and calculates the
resonance energy and lifetime from the measurement results. These
results represent the first applications of the complex-scaling Hamil-
tonian to molecular resonances on a quantum computer. The
method is proven to be accurate when applied to a simple one-
dimensional quantum system that exhibits shape resonances. We
tested our algorithm on quantum simulators and IBM quantum
computers. Furthermore, when compared to the exponential time

ARTICLE scitation.org/journalljcp

complexity in traditional matrix-vector multiplication calculations,
this method only requires O(#’) standard gates, where # is the
size of the basis set. These findings show this method’s potential
to be used in a more complicated molecular system and for better
accuracy in the future when more and better qubit machines are
available.
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APPENDIX A: COMPLEX-ROTATED HAMILTONIAN
OF THE MODEL SYSTEM AT 6 = 0.16, « = 0.65
WHEN n=5

Table V shows an example of the model system’s complex-
rotated Hamiltonian.

APPENDIX B: COMPLEX-ROTATED HAMILTONIAN
OF H; AT 0=0.18, « = 1.00

Table VI shows an example of the H system’s complex-rotated
Hamiltonian.

TABLE V. The coefficients and tensor product operators of the model system’s complex-rotated Hamiltonian Hq at 6 = 0.16, « = 0.65 when there is n = 5 basis functions.

YYIII —-0.091 665 + 0.096 819i XXIII —-0.091 665 + 0.096 819i IIIII 4.599205 - 0.533 0731
ZIIII —0.251131 + 0.022 353i YZYII 0.0179156 — 0.030997i XZXII 0.0179156 - 0.030997i
YZZYI —0.007 005 + 0.015 446i XZ7ZXI —0.007 005 + 0.015 4461 YZZZY 0.003 680 — 0.009 152
XZ77ZX 0.003 680 — 0.009 152i 1Z111 —1.063 280 + 0.032 614i IYYII —0.089297 + 0.108 259i
IXXII —-0.089297 + 0.108 259i IYZYI 0.014 213 - 0.055 870i IXZXI 0.014213 - 0.055 870i
IYZZY —-0.003 869 + 0.033 693 1X7Z7X —0.003 869 + 0.033 693i 11zZ11 —1.445349 + 0.113 618i
IIYYI —-0.209952 + 0.010 748i TIXXI —0.209952 + 0.010 748i IIYzy 0.060 302 - 0.008 776
IIXzX 0.060 302 — 0.008 776i 171 —-1.127 058 + 0.243 702i IIIYY —-0.336956 + 0.051 691i
TIXX —-0.336956 + 0.051 691 I1Z —0.712385 + 0.120 784i

TABLE VI. The coefficients and tensor product operators in H; 's complex-rotated Hamiltonian at 6 = 0.18, « = 1.00 when using the 6-31g basis set.

IXZXXZXI 0.018 705 — 0.003 404 IZIXZX 0.038 191 - 0.006 950i ZIZIIIII 0.103932 - 0.018913i
XZXIXZXI 0.027 826 — 0.005 063 IXXIIIXX —0.002 794 + 0.000 508i 1IZZIT11 0.106 657 — 0.019 408:
IYIYIIIT 0.024 307 — 0.004 423i IIXXXX 0.015119 - 0.002 751 1Z1I11Z1 0.095226 - 0.017 328i
THIIXX 0.047 512 - 0.039979i YYIIYZZY —0.019 254 + 0.003 5041 XZXIYZYI 0.027 826 — 0.005 063
1ZIIYZYI 0.013 080 - 0.002 380i IIYYIIXX 0.034 554 - 0.006 288i XZXIIZ1 0.032587 - 0.005930i
YYYYIIII 0.015119 - 0.002 751 XXIIIYYI 0.005216 — 0.000 949i IXIXIIIT 0.024 307 — 0.004 423
IHIXXYY 0.002 918 - 0.000 531 1IZXZXI 0.050 249 - 0.009 144i TIXXXXII 0.020 481 - 0.003 727i
YYIIYYII 0.019 597 - 0.003 5661 IXXIIXXI 0.008 283 - 0.001 507: THIXIXI 0.016 733 — 0.003 045:
IYZYIIIL —-0.035671 + 0.030 324i IYZYIIIZ 0.043 018 - 0.007 828i YYIIIYYI 0.005216 - 0.000 949i
IIXZZX —-0.028 316 + 0.033 738i XXITYYII 0.019 597 - 0.003 566i IXXIIIYY -0.002 794 + 0.000 508
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TABLE VI. (Continued.)
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ZYZYIIII
YZYIIZII
IXZXIZI1
ZITIIIII
THITYTY
IZI17Z1
XIXIIIII
IIZZII
XZZXIXXI
XZZXXZZX
1Z11Z111
ZIIIXZX
XXIIIXX
IIYYIIYY
[IXXXZZX
1IZIZI11
ZIIZIII
IIXXIYYI
YZZYYYII
IIZIYZYI
IIIYZZY
ZIIZIIII
IYYIIIYY
ZIIIYZYI
ZZI111
IYZYXZXI
THIZIII
IIYYYYII
IIYYIYYI
[IZIXZXI
[HINZZ
XXIXXII
TIXXIXXI
XZZXYYII
YYXXIIII
IXZXIXZX
ZINIXZXI
1ZZII111
IMZIYZY
IHIZXZX
YYIIXZZX
XZZXIYYI
IYZYIZII
YYIIIXXI
IIYZYZ
1Z1IXZXI
IIZIIXZX
XZZXIIYY
ITYYIIII
XZXIIII

0.015436 - 0.002 809i
0.011702 - 0.002 129i
0.012371 - 0.002 251
—-0.230405 + 0.108 639i
0.023 153 — 0.004 213i
0.139579 - 0.025 399i
0.017118 — 0.003 115i
0.084 496 - 0.015 376i
0.004 990 - 0.000 908i
0.031 161 - 0.005 670
0.106 161 — 0.019 318i
0.030922 - 0.005 627i
0.021 209 - 0.003 859i
0.034 554 — 0.006 288i
—-0.031 698 + 0.005 768i
0.133407 - 0.024 276
0.151 365 - 0.027 544i
—0.000 541 + 0.000 098
—-0.016 647 + 0.003 029i
0.033 580 - 0.006 110:
—-0.028 316 + 0.033 738i
0.126 456 — 0.023 011:
-0.002 794 + 0.000 508
0.038 659 — 0.007 035
0.158 431 — 0.028 830i
0.018705 — 0.003 404
—-0.231557 +0.112 195i
0.020481 - 0.003 727i
—0.000 541 + 0.000 098
0.033 580 — 0.006 1107
0.107 859 - 0.019 627
0.003919 - 0.000 713i
—0.000 541 + 0.000 098
—-0.016 647 + 0.003 029i
0.002 957 - 0.000 538:
0.015728 — 0.002 862i
0.038 659 — 0.007 035
0.087 497 — 0.015922i
0.038 191 - 0.006 950
0.013 729 - 0.002 498i
—0.019254 + 0.003 504
0.004 990 - 0.000 908i
0.012 371 - 0.002 251
0.005216 - 0.000 949i
0.020 604 - 0.003 749i
0.013 080 - 0.002 380i
0.024 717 — 0.004 498i
—-0.029 557 + 0.005 379i
0.047 746 — 0.040 370
—-0.021 561 + 0.077 956i

XXIIYZZY
IIYYXZZX
IIYYYY
ZITIIZ
IIYYIXXI
YZZYXXII
YYIIXXII

YZZYXZ7ZX

IYYIIYYI
IYZYIIZI
XXTIIXXI
IHIIYY
YYIIIIIT
YZYIIIZ
IIIZYZY
YZZYYZZY
YZYIIXZX
IIYYYZZY
XZXIIXZX
ZXZXIIII
IXZXZII1
YZZYIIXX
IXZXIIII
IIXXIIXX
YXXYIIII
XXTIIXXII
[HIZIIZ
HIIXZXZ
IYYIYZZY
IIXXYZZY
YZZYIXXI
[IZIITII
IHIYYII
XZXZIIII
YZYIIIZI
IXZXIIZI
IIXXIIYY
1Z111Z11
IYYIIIXX
IHITYYI
IXXIIIII
1Z1IIIIZ
IXXIIYYI
XXYYIIII
IIYZYI
TIITIIIT
IZITIXZX
THIIXYYX
IXZXYZYI
XZZXXXII

—-0.019254 + 0.003 504
—-0.031 698 + 0.005 768i
0.015119 - 0.002 751
0.159 054 - 0.028 943i
—0.000 541 + 0.000 098i
—-0.016 647 + 0.003 029i
0.019 597 - 0.003 566i
0.031 161 - 0.005 670
0.008283 - 0.001 507i
0.026 040 — 0.004 739i
0.005216 — 0.000 949i
0.047 512 - 0.039979i
0.001 646 — 0.022 572i
0.052229 - 0.009 504
0.013 729 - 0.002 498i
0.031 161 - 0.005 670
0.017127 - 0.003 117i
—0.031 698 + 0.005 768i
0.017127 - 0.003 117i
0.015436 - 0.002 809:
0.034 152 - 0.006 215i
-0.029 557 + 0.005 379i
—-0.035671 + 0.030 324i
0.034 554 - 0.006 288i
0.012 162 - 0.002 213i
0.019 597 - 0.003 566
0.128 680 — 0.023 416
0.020 604 - 0.003 749i
0.006 593 - 0.001 200
—-0.031 698 + 0.005 768i
0.004 990 - 0.000 908:
—-0.612966 + 0.271 036i
0.000 598 - 0.021 276
0.020 644 - 0.003 757i
0.032 587 - 0.005 930
0.026 040 — 0.004 739i
0.034 554 - 0.006 288i
0.094 105 - 0.017 124i
—0.002 794 + 0.000 508
—0.007 550 + 0.006 494i
-0.009 705 + 0.008 779i
0.110 454 - 0.020 099i
0.008 283 - 0.001 507
0.002957 - 0.000 538i
—-0.030067 + 0.081 498i
1.734311 - 1.110499i
0.013 159 - 0.002 395
0.012201 - 0.002 220i
0.018 705 — 0.003 404
—-0.016 647 + 0.003 029i

IHZZ1
THIIXXI
IMZYZYI
IXXIYZZY
YZZYIIII
TIXXIIII
YZYIIYZY
1IZIIYZY
IYZYIXZX
11ZI11Z11
IXZXIYZY
XXIIIIYY
ZITIZI
YZYIIIII
IYYIXXII
XZXIZIII
IHIYIYI
IYYIIIII
THIIXIX
YZYZIIII
YZZYIYYI

XZZXYZZY

IXZXIIZ
ZZIIIII
1ZIIIYZY
THIYXXY
YZYIXZXI
THIXZXI
YZYIYZYI
TIIIZI
TIIIXZX
XZXIIYZY
YYIIIXX
YZZYIIYY
IIXXYYII
XYYXIIII
YYIIIIYY
ITYYXXII
IXXIXZZX
II1Z1Z1
THIXXII
IZIIIIII
IYYIYYIT
IXXIYYII
IYZYIYZY
[HIIIZ
IIZIIIZI
IYZYZIII
XZXIIIZ
ZIIIYZY

0.084 620 - 0.015 398i
—0.007 550 + 0.006 494i
0.050249 - 0.009 144i
0.006 593 - 0.001 200
—0.027 204 + 0.031 862i
0.047 746 — 0.040 370i
0.017127 - 0.003 117i
0.024 717 — 0.004 498i
0.015 728 — 0.002 862i
0.093 507 - 0.017 015:
0.015 728 — 0.002 862i
0.021209 - 0.003 859i
0.130169 - 0.023 687i
—-0.021 561 + 0.077 956i
0.003919 - 0.000 713i
0.040 337 — 0.007 340
0.016 733 — 0.003 045i
-0.009 705 + 0.008 779i
0.023 153 - 0.004 213i
0.020 644 - 0.003 757i
0.004 990 - 0.000 908i
0.031 161 - 0.005 670
0.043018 - 0.007 828i
0.085046 - 0.015476i
0.013 159 - 0.002 395i
0.012201 - 0.002 220
0.027 826 — 0.005 063
—-0.030 067 + 0.081 498i
0.027 826 — 0.005 063
—0.611 815 + 0.267 480i
—-0.012982 + 0.018 373
0.017127 - 0.003 117i
0.021209 - 0.003 859i
—-0.029 557 + 0.005 379i
0.020 481 - 0.003 727i
0.012 162 - 0.002 213i
0.021209 - 0.003 859i
0.020 481 - 0.003 727i
0.006 593 - 0.001 200:
0.103932 - 0.018913i
0.000 598 - 0.021 276i
—-0.388 873 + 0.102 313i
0.003919 - 0.000 713:
0.003919 - 0.000 713i
0.015728 - 0.002 862
—0.896 247 + 0.369 556i
0.120 598 - 0.021 945i
0.034 152 - 0.006 215i
0.052229 - 0.009 504
0.030922 - 0.005 627i
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TABLE VL. (Continued.)

YIYIIIIT 0.017118 — 0.003 115i IYYIXZZX 0.006 593 — 0.001 200i XZZXIIII —-0.027 204 + 0.031 862i
IIIIYZY —0.012982 + 0.018 373i XXIIXZZX —0.019 254 + 0.003 504i XZXI1Z11 0.011702 - 0.002 129i
ZIIZIT 0.102700 — 0.018 688i 1I1Z1Z 0.092 214 - 0.016 780i [II1Z11 —0.386 698 + 0.100 135i
TYYIIXXI 0.008 283 — 0.001 507 111Z1Z11 0.105681 — 0.019 231i XXTIIIIT 0.001 646 — 0.022 572i
IIIIYYXX 0.002918 — 0.000 5311 1Z1Z1111 0.092 214 - 0.016 780i YZYIZIII 0.040 337 — 0.007 340i
XXXXIIIT 0.015119 - 0.002 751i XZZXIIXX —-0.029 557 + 0.005 379i 1zimz 0.184 425 - 0.033 560i
TIIZIIIT —0.894 071 + 0.367 379i 11Z1111Z 0.144 136 — 0.026 228i IYZYYZYI 0.018 705 — 0.003 404

APPENDIX C: HOW TO GET COMPLEX EIGENVALUE
BY THE DIRECT MEASUREMENT METHOD

If the output state equation (17) is measured many times,
the possibility of obtaining the |0), state, p, is related to E by the
following equation:

E2

= ﬁ) (Cl)

p

which reveals |E| = \/pA. To obtain the phase, one way is that we
apply a similar circuit for Hy = xI®" + Hp, where x is a selected real
number. Then, the updated U, leads us to

, |x+Ee?P
By applying |E| = \/pA to Eq. (C2), we can solve the phase ¢ and
finally the complex eigenvalue as

Ly AP =2 pa?

Eeiq) _ \/ﬁA@i cos” TATs

1 p A2 pa?

or\/f)Ae_i O Tas | (C3)

If we expand the exponential term in Eq. (C3), it becomes

B - p'A” - x* - pA? . i\/(ZxA\/ﬁ)z -(pA? -2 —pAZ)Z.
2x 2x

(C4)

Since the measurement errors for p and p’, i.e., A(p) and Ap’, are
O(ﬁ), based on Eq. (C4), the error for the complex eigenvalue

Ee'? is

A(EE®) = O(ﬁ)' (C5)

The larger the sampling size, the more accurate the obtained com-
plex eigenvalues are.

There are also other choices to obtain the phase. For exam-
ple, instead of adding the I®" part, we can try building U} based
on Hy + Hé or Hy +HS to get an equation such as Eq. (C2) con-
taining phase information. This equation together with Eq. (C1) will
reveal the complex eigenvalue for the input eigenstate with another
expression.

APPENDIX D: HAMILTONIANS AND EIGENVALUES
FOR THE MODEL SYSTEM IN DIFFERENT CASES

1. n = 2 basis functions, 5 qubits

The complex-rotated Hamiltonian of the model system is

Hg=131556%¢ **"* [1+0.13333 + & ¥yy
+0.13333 %€ XX0.25212 % " "2¥iz]
+1.06378 x & 119% 17, D)

2.328 88i

By running the circuit shown in Fig. 4 for Hg and a similar circuit
for Hy = xII + Hy, the complex eigenvalue can be derived by

P AP pa? A2 p?

l’:“ei"’:\/1_7Aeic°{1 w5 or \/I_)Aeficosilp VN (D2)

where A and A’ can be obtained from the absolute value of coef-
ficients in Hy and Hp and p and p’ can be obtained from the
measurement results.

2. n = 2 basis functions, 4 qubits

The complex-rotated Hamiltonian of the model system without
the II term is

Hp = 0.13333 % 8% yy 1 0.13333 % 232888 xx

+0.25212 %2871 4+ 1.063 78 x 110% 2. (D3)

If we choose Hj = Hy+ Hj, which has the same terms of ten-
sor products as Hy with different coefficients, by running Fig. 5,
the complex eigenvalue for the original Hamiltonian can be
represented by

PIAIZ 1 PA2

. il
Ee' = (131441 — 0.05497i) + \/pAe’ " (1, e ) (D4)

or
(1.31441 - 0.05497i) + \/pAe , (D5)

where A and A’ can be obtained from the absolute value of coef-
ficients in Hy and Hp and p and p’ can be obtained from the
measurement results.
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3. n = 2 basis functions, 3 qubits

The square of the Hamiltonian in Eq. (D3) is

Hi =1.19577 % e 2 11 1053529 ¢ " Mizz. (D6)

If we choose (Hj)' = Hj + Hy, by running Fig. 6, the complex
eigenvalue for the original Hamiltonian is

Y 7 ar2
Ee" = (131441 - 0.05497i) + p*\/Ae

ARTICLE scitation.org/journalljcp

where A and A’ can be obtained from the absolute value of coeffi-
cients in Hj and Hj + Hy and p and p’ can be obtained from their
measurement results.

APPENDIX E: QUANTUM CIRCUIT
FOR COMPLEX-SCALED HAMILTONIAN OF H,
AT 6=0.18,a=1.00

The complex-scaled Hamiltonian of H, at 8 = 0.18, « = 1.00 in
Appendix B can be written as

H=0.019012 % ¢ "3 Ix7XX7XT + 0.038 818
we U000 7T 7X 4+ 0.105 638 * & 005 Z1Z1TIIT

+0.019012 % ¢ * 10 1y 7yyzyT, (E1)

Bt

) B B B B BJ bJ B

(D7)
+0.028282 % ¢ 7" XZXIXZXT + - -
or
. S cos™! ( A v ) We would like to mention that the terms explicitly shown in Eq. (E1)
(1.31441 - 0.05497i) + pi/Ae p2al ,  (D8) are following the order in Appendix B. It is a coincident that their
|00000000) , B
%), Vol (Vi Vol |Va] | W4 Vaoo

FIG. 8. The quantum circuit to run the direct measurement method for H; when 6 = 0.18, & = 1.00. The B gate can be prepared by g in Eq. (E2). V; gates are listed in

Eq. (E3).
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phases are similar. For example, one term we did not show in the
Hamiltonian is 0.021284 x e">*®“IIIIYYII, which has a different
phase.

To construct the quantum circuit for the direct measurement
method, we need to create the B gate and V gate. The B gate can be
prepared by the coefficients from the Hamiltonian in Eq. (E1),

8T 0.019012
| 0.038818
> | 0.105638
5| 0.028282

200 0.019012

201 0
202 0
255 L 0 i (E2)

as shown in Eq. (15). The V gate can be constructed by a series of
controlled-V; gates, where V; are

Vo = MO xTXX7XT,

Vi = M0y X,

Vy, = e 00z,
(E3)

Vs = M7ixoxIXIXI,

Vo =e B0 yzyyzyT

The whole circuit is shown in Fig. 8. The encoding of control qubits
is based on the binary form of V’s index i. For example, V3 is applied
to |y), if the ancilla qubit state is |3), = [000 000 11} .

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

ARTICLE scitation.org/journalljcp

REFERENCES

"W. P. Reinhardt, “Complex coordinates in the theory of atomic and molecular
structure and dynamics,” Annu. Rev. Phys. Chem. 33, 223-255 (1982).

2], Aguilar and J. M. Combes, “A class of analytic perturbations for one-body
Schrodinger Hamiltonians,” Commun. Math. Phys. 22, 269-279 (1971).

3E. Balslev and J. M. Combes, “Spectral properties of many-body Schrédinger
operators with dilatation-analytic interactions,” Commun. Math. Phys. 22,
280-294 (1971).

“B. Simon, “Quadratic form techniques and the Balslev-Combes theorem,”
Commun. Math. Phys. 27, 1-9 (1972).

5B. Simon, “Resonances in n-body quantum systems with dilatation analytic
potentials and the foundations of time-dependent perturbation theory,” Ann.
Math. 97, 247-274 (1973).

6C. van Winter, “Complex dynamical variables for multiparticle systems with
analytic interactions. I,” J. Math. Anal. Appl. 47, 633-670 (1974).

7N. Moiseyev, “Quantum theory of resonances: Calculating energies, widths and
cross-sections by complex scaling,” Phys. Rep. 302, 212-293 (1998).

8N. Moiseyev and C. Corcoran, “Autoionizing states of H, and H; using the
complex-scaling method,” Phys. Rev. A 20, 814 (1979).

9 A. Emmanouilidou and L. E. Reichl, “Scattering properties of an open quantum
system,” Phys. Rev. A 62, 022709 (2000).

10y, Orimo, T. Sato, A. Scrinzi, and K. L. Ishikawa, “Implementation of the
infinite-range exterior complex scaling to the time-dependent complete-active-
space self-consistent-field method,” Phys. Rev. A 97, 023423 (2018).

" T.-C. Jagau, “Coupled-cluster treatment of molecular strong-field ionization,”
J. Chem. Phys. 148, 204102 (2018).

"2, Haritan and N. Moiseyev, “On the calculation of resonances by analytic con-
tinuation of eigenvalues from the stabilization graph,” J. Chem. Phys. 147, 014101
(2017).

"3A. Landau, A. Ben-Asher, K. Gokhberg, L. S. Cederbaum, and N. Moiseyev,
“Ab initio complex potential energy curves of the He*(1s2p'p)-Li dimer,” J.
Chem. Phys. 152, 184303 (2020).

4D. Bhattacharya, A. Landau, and N. Moiseyev, “Ab initio complex transition
dipoles between autoionizing resonance states from real stabilization graphs,”
J. Phys. Chem. Lett. 11, 5601-5609 (2020).

TSA. Pick, P. R. Kaprélova-Zdansk4, and N. Moiseyev, “Ab-initio theory of
photoionization via resonances,” J. Chem. Phys. 150, 204111 (2019).

T6N. Moiseyev, P. R. Certain, and F. Weinhold, “Complex-coordinate studies of
helium autoionizing resonances,” Int. J. Quantum Chem. 14, 727-736 (1978).
173, Kais and D. R. Herschbach, “Dimensional scaling for quasistationary states,”
J. Chem. Phys. 98, 3990-3998 (1993).

8T, C. Germann and S. Kais, “Large order dimensional perturbation theory for
complex energy eigenvalues,” . Chem. Phys. 99, 7739-7747 (1993).

195, Kais, Quantum Information and Computation for Chemistry, Advances in
Chemical Physics Vol. 154 (Wiley Online Library, NJ, 2014), p. 224109.

20R. Xia and S. Kais, “Quantum machine learning for electronic structure
calculations,” Nat. Commun. 9, 4195 (2018).

2T, Bian, D. Murphy, R. Xia, A. Daskin, and S. Kais, “Quantum computing
methods for electronic states of the water molecule,” Mol. Phys. 117, 2069-2082
(2019).

22 A. Daskin, T. Bian, R. Xia, and S. Kais, “Context-aware quantum simulation of
a matrix stored in quantum memory,” Quantum Inf. Process. 18, 357 (2019).
R, Xia, T. Bian, and S. Kais, “Electronic structure calculations and the Ising
Hamiltonian,” ]. Phys. Chem. B 122, 3384-3395 (2017).

243, Lloyd, “Universal quantum simulators,” Science 273, 1073-1078 (1996).
25A. Daskin, A. Grama, and S. Kais, “A universal quantum circuit scheme for
finding complex eigenvalues,” Quantum Inf. Process. 13, 333-353 (2014).

28G. Aleksandrowicz et al., “Qiskit: An open-source framework for quantum
computing,” (accessed on March 16, 2019).

27N. Moiseyev, Non-Hermitian Quantum Mechanics (Cambridge University
Press, 2011).

28\ Moiseyev, P. R. Certain, and F. Weinhold, “Resonance properties of
complex-rotated Hamiltonians,” Mol. Phys. 36, 1613-1630 (1978).

J. Chem. Phys. 154, 194107 (2021); doi: 10.1063/5.0040477
Published under license by AIP Publishing

154, 194107-11


https://scitation.org/journal/jcp
https://doi.org/10.1146/annurev.pc.33.100182.001255
https://doi.org/10.1007/bf01877510
https://doi.org/10.1007/bf01877511
https://doi.org/10.1007/bf01649654
https://doi.org/10.2307/1970847
https://doi.org/10.2307/1970847
https://doi.org/10.1016/0022-247x(74)90015-8
https://doi.org/10.1016/s0370-1573(98)00002-7
https://doi.org/10.1103/physreva.20.814
https://doi.org/10.1103/physreva.62.022709
https://doi.org/10.1103/physreva.97.023423
https://doi.org/10.1063/1.5028179
https://doi.org/10.1063/1.4989867
https://doi.org/10.1063/5.0008337
https://doi.org/10.1063/5.0008337
https://doi.org/10.1021/acs.jpclett.0c01519
https://doi.org/10.1063/1.5098063
https://doi.org/10.1002/qua.560140604
https://doi.org/10.1063/1.464027
https://doi.org/10.1063/1.465703
https://doi.org/10.1038/s41467-018-06598-z
https://doi.org/10.1080/00268976.2019.1580392
https://doi.org/10.1007/s11128-019-2469-1
https://doi.org/10.1021/acs.jpcb.7b10371
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1007/s11128-013-0654-1
https://doi.org/10.1080/00268977800102631

The Journal

of Chemical Physics

29G. D. Doolen, “A procedure for calculating resonance eigenvalues,” J. Phys. B:
At. Mol. Phys. 8, 525 (1975).

30y T, Seeley, M. J. Richard, and P. J. Love, “The Bravyi-Kitaev transformation for
quantum computation of electronic structure,” ]. Chem. Phys. 137, 224109 (2012).
3p.1 . O’Malley, R. Babbush, I. D. Kivlichan, J. Romero, J. R. McClean,
R. Barends, J. Kelly, P. Roushan, A. Tranter, N. Ding et al., “Scalable quantum
simulation of molecular energies,” Phys. Rev. X 6, 031007 (2016).

324, Aspuru-Guzik, A. D. Dutoi, P. J. Love, and M. Head-Gordon, “Simulated
quantum computation of molecular energies,” Science 309, 1704-1707 (2005).
33Y. Cao, J. Romero, J. P. Olson, M. Degroote, P. D. Johnson, M. Kieferova, I. D.
Kivlichan, T. Menke, B. Peropadre, N. P. D. Sawaya ef al., “Quantum chemistry in
the age of quantum computing,” Chem. Rev. 119, 10856-10915 (2019).

ARTICLE scitation.org/journalljcp

347, McClean, N. Rubin, K. Sung, I. David Kivlichan, X. Bonet-Monroig, Y. Cao,
C. Daij, E. S. Fried, G. Gidney, B. Gimby et al., “OpenFermion: The electronic
structure package for quantum computers,” Quantum Sci. Technol. 5, 034014
(2020).

3%A. Daskin and S. Kais, “Direct application of the phase estimation algo-
rithm to find the eigenvalues of the Hamiltonians,” Chem. Phys. 514, 87-94
(2018).

36R. Ellerbrock and T. ]. Martinez, “A multilayer multi-configurational approach
to efficiently simulate large-scale circuit-based quantum computers on classical
machines,” J. Chem. Phys. 153, 051101 (2020).

57Y. Zhou, E. Miles Stoudenmire, and X. Waintal, “What limits the simulation of
quantum computers?,” Phys. Rev. X 10, 041038 (2020).

J. Chem. Phys. 154, 194107 (2021); doi: 10.1063/5.0040477
Published under license by AIP Publishing

154, 194107-12


https://scitation.org/journal/jcp
https://doi.org/10.1088/0022-3700/8/4/010
https://doi.org/10.1088/0022-3700/8/4/010
https://doi.org/10.1063/1.4768229
https://doi.org/10.1103/PhysRevX.6.031007
https://doi.org/10.1126/science.1113479
https://doi.org/10.1021/acs.chemrev.8b00803
https://doi.org/10.1016/j.chemphys.2018.01.002
https://doi.org/10.1063/5.0013123
https://doi.org/10.1103/physrevx.10.041038

