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Using quantum algorithms to simulate
complex physical processes and correla-
tions in quantum matter has been a ma-
jor direction of quantum computing re-
search, towards the promise of a quantum
advantage over classical approaches. In
this work we develop a generalized quan-
tum algorithm to simulate any dynamical
process represented by either the operator
sum representation or the Lindblad master
equation. We then demonstrate the quan-
tum algorithm by simulating the dynamics
of the Fenna-Matthews-Olson (FMO) com-
plex on the IBM QASM quantum simula-
tor. This work represents a first demon-
stration of a quantum algorithm for open
quantum dynamics with a moderately so-
phisticated dynamical process involving a
realistic biological structure. We discuss
the complexity of the quantum algorithm
relative to the classical method for the
same purpose, presenting a decisive query
complexity advantage of the quantum ap-
proach based on the unique property of
quantum measurement.

1 Introduction

Simulating physical processes with quantum algo-
rithms has been a major focus of quantum com-
puting research [1–6]. Open quantum dynam-
ics studies the time evolution of a quantum sys-
tem interacting with an environment [7]. The
complexity of the environment often makes ex-
act treatment impractical, and various approxi-
mation approaches have been developed to treat
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the environment as an averaging effect on the
system of interest. So far relatively few studies
have been done to develop quantum algorithms
for open quantum dynamics [8–12, 12–15] de-
spite its importance in modeling realistic phys-
ical systems. One main challenge is the time evo-
lution of open quantum systems is non-unitary,
while quantum algorithms are realized by uni-
tary quantum gates. To tackle this problem an
early study [8] added an auxiliary environment
to the system thus making the total evolution
unitary. Mimicking the Markovian process, that
procedure required a reset of the auxiliary envi-
ronment at each time step, which could be diffi-
cult to achieve if the system and the environment
are entangled or the evolution time is long. Other
studies [9, 10] have proposed novel quantum algo-
rithms to simulate open quantum dynamics, yet
the demonstrations are limited to basic 2-level
systems. In this work we propose a general quan-
tum algorithm that can be demonstrated with a
much more complex and realistic physical model.
In a previous study we have developed a quan-
tum algorithm for evolving the dynamics in the
operator sum representation [16]. The algorithm
uses the Sz.-Nagy dilation approach to convert
each Kraus operator into its corresponding uni-
tary dilation matrix, which is then implemented
on a quantum circuit. The quantum algorithm
was successfully applied to the amplitude damp-
ing quantum channel and implemented on the
IBM Q quantum simulator and quantum com-
puters [16]. The quantum algorithm was de-
signed with generality in mind and indeed has
been adapted through use of an ensemble of Lind-
bladian trajectories method [17, 18] to simulate
non-Markovian dynamics as demonstrated on the
Jaynes-Cummings model [19]. However, there
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are two issues that must be solved before our
dilation-based quantum algorithm can be applied
to more complex dynamical processes. Firstly,
the Kraus operators in the amplitude damping
model have an explicit dependence on time, which
allows each time step to be simulated indepen-
dently. This explicit dependence however cannot
be easily obtained for more complex dynamical
models. Secondly, a large class of dynamical mod-
els are described by the master equation formu-
lation. To apply our quantum algorithm to such
models a connection between the master equation
and the operator sum representation must be es-
tablished. Although there have been studies of
converting a widely used type of master equation
– the Lindblad equation – into the operator sum
representation [20, 21], those methods solve the
master equation into a time-explicit matrix form
and therefore require integration of the superop-
erators describing the dynamics. Integration of
the superoperators is hard for classical algorithms
and currently not solvable with any quantum al-
gorithm. In the following we intentionally avoid
integrating the superoperators, but instead treat
the master equation with the Euler method – this
is an essential simplification that allows practical
application of the quantum algorithm to more so-
phisticated dynamical models.

In this work we present a generalized quan-
tum algorithm that can simulate any open quan-
tum dynamics represented by either the opera-
tor sum representation or the Lindblad master
equation. In this algorithm each Kraus opera-
tor can be directly related to a physical process
without the integration of superoperators. In
addition, the Kraus operators no longer require
an explicit dependence on time and the system
at a given time is evolved from the initial state
by iteratively applying the Kraus operators ob-
tained from the physical processes. To demon-
strate the generality of the generalized algorithm,
we use it to simulate a moderately sophisticated
dynamical process for a realistic biological struc-
ture: the Fenna-Matthews-Olson (FMO) com-
plex. The Fenna-Mathews-Olson complex is a
trimeric-pigment protein complex found in green
sulfur bacteria [22]. In the photosynthetic light-
harvesting process, it is responsible for trans-
ferring excitonic energy from the antennae com-
plexes to the reaction center with nearly 100% ef-
ficiency [23–25]. While this is a very well-studied

complex [26–33], a more in-depth understanding
of this transport process can provide valuable in-
sight for the dynamics of other light harvesting
complexes or for the design of artificial photo-
synthetic systems [34, 35].

While some earlier studies exist [36–38], the ap-
plication of our generalized quantum algorithm to
the FMO dynamics as demonstrated on the IBM
QASM simulator [39] is so far as we know the
first successful quantum simulation of a moder-
ately sophisticated dynamical process involving
a realistic biological structure. The simulation
showcases the generality of the method by map-
ping the Lindblad master equation of the FMO
into the operator sum representation. The same
as previously discussed in Ref. [16], in terms of
the gate count required to execute the evolution,
the generalized quantum algorithm has compara-
ble computational complexity as classical meth-
ods. However, here we emphasize that both the
previous and the generalized quantum algorithms
can have a decisive query complexity advantage
over any classical method, when evaluating an
observable over the density matrix. Under spe-
cific conditions the query complexity advantage
can even translate to the total complexity advan-
tage. This complexity advantage is the result of
the fundamentally quantum properties of super-
position and projection measurement.

2 Results
2.1 Generalized Quantum Algorithm
The basic mechanisms of the generalized quan-
tum algorithm – including the Sz.-Nagy unitary
dilation procedures and the observable evaluation
procedures – have been introduced in our previ-
ous work [16] and reviewed briefly below:

We assume the physical composition of the
initial density matrix is known and can be ex-
pressed by a sum of different pure quantum states
weighted by the corresponding probabilities:

ρ =
∑
i

pi|φi〉〈φi| (1)

where each pi is the probability of finding each
|φi〉 in the mixed state of ρ. Now if the dynami-
cal model is given by the operator sum represen-
tation:

ρ(t) =
∑
k

MkρM
†
k (2)
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we want to simulate the time evolution of ρ(t)
given the initial ρ and the Kraus operators Mk’s.
To achieve this, we can prepare each |φi〉 as an
input state vector vi in a given basis and then use
a quantum circuit to create the quantum state:

|φik(t)〉 = Mkvi
unitary−−−−→
dilation

UMk
(vTi , 0, ..., 0)T (3)

where UMk
=
(
Mk D

M†
k

DMk
−M †k

)
is the 1-dilation of

Mk [16, 40], DMk
=
√
I −M †kMk is the defect

operator of Mk. After |φik(t)〉 has been obtained
for each Mk and each vi, the population of each
basis state in the current basis can be obtained
by calculating the diagonal vector:

diag(ρ(t)) =
∑
ik

pi · diag(|φik〉〈φik|) (4)

where diag(|φik(t)〉〈φik(t)|) can be efficiently ob-
tained by applying projection measurements on
the first half subspace of UMk

(vTi , 0, ..., 0)T .
To evaluate the expectation value of an observ-

able 〈A〉 = Tr(Aρ(t)), we consider the operator
Ã = A+I||A||

2||A|| with the Cholesky decomposition
Ã = LL† [41]. We can then evolve:

L†|φik(t)〉 = L†Mkvi
unitary−−−−→
dilation

UL†UMk
(vTi , ..., 0)T

(5)
and obtain 〈Ã〉 by:

〈Ã〉 = Tr(Ãρ(t)) =
∑
i,k

Tr(pi ·L†|φik(t)〉〈φik(t)|L)

(6)
where the trace of L†|φik(t)〉〈φik(t)|L
can be obtained by projection measure-
ments into the first N -dimensional space
of UL†UMk

(vTi , 0, ..., 0)T [16]. After this,
〈A〉 can then be obtained from 〈Ã〉 by
〈A〉 = 2||A||〈Ã〉 − ||A||. This procedure
was then applied to the amplitude damping
channel:

ρ(t) = M0ρM
†
0 +M1ρM

†
1 (7)

M0 =
(

1 0
0
√
e−γt

)

M1 =
(

0
√

1− e−γt
0 0

)

where M0 and M1 both have an explicit depen-
dence on time t. This concludes the review of

the previous algorithm, for more details please
see Ref. [16].

Now to introduce the new features that al-
low the generalized algorithm to simulate more
complex dynamics, we first note that the Kraus
operators with explicit time dependence as re-
viewed in Equation (7) are not generally avail-
able for more complex dynamics. This is espe-
cially true when the dynamics is described by a
master equation, where the superoperators have
to be integrated first to obtain the Kraus oper-
ators with explicit time dependence. To avoid
the hard problem of integrating superoperators,
a naive and incorrect idea is to directly write the
Kraus operators of an arbitrary dynamics in the
same basic forms of those used in Equation (7)
simulating the amplitude damping channel. How-
ever as shown in the Supplementary Information
Section S1 for the finite-temperature amplitude
damping channel, Kraus operators with naive de-
pendence on time lead to incorrect dynamics for
even such a simple deviation from the ampli-
tude damping channel. Indeed, the original for-
mulation of the operator sum representation [42]
can be essentially understood as a single physical
event that starts with an initial density matrix
ρ(0) and ends with a final density matrix ρ(1):
ρ(1) = E1[ρ(0)] =

∑
kM1kρ(0)M †1k, where E1 is

the quantum operation described by the collec-
tion of M1k’s. Now if we use ρ(1) as the initial
state and apply another quantum operation, we
have ρ(2) = E2[ρ(1)] =

∑
kM2kρ(1)M †2k. This

process can be repeated iteratively such that:

ρ(s) = Es[ρ(s− 1)] =
∑
k

Mskρ(s− 1)M †sk (8)

where each ρ(s) with s = 1, 2, ..., S can be un-
derstood as a discrete time step that samples the
dynamics until we reach the final time step. Now
an outstanding question is how to determine the
Kraus operatorsMsk for each quantum operation
Es. The answer is if the time evolution involves
the same physical processes throughout the to-
tal time interval being simulated, then we can
use the physical processes to determine the col-
lection of Mk’s and use the same collection for
all the iterations. For example, in the ampli-
tude damping channel, the physical process is
a single transition from the excited state to the
ground state, and the corresponding Kraus ma-

trix is M1 =
(

0 √
p

0 0

)
, where p is the probabil-
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ity of the transition happening over a single time
step. The condition

∑
kM

†
kMk = I thus leads

to M0 =
(

1 0
0
√

1− p

)
. Applying the iterative

process in Equation (8) to an initial ρ(0) with the
same M0 and M1 for each iteration we have the
excited state population at the final time step:

ρ11(S) = ρ11(0)(1− p)S (9)

= ρ11(0)(1− γδt)
t
δt

δt→0−−−→ ρ11(0)e−γt

where we assume p is given by a rate constant γ
times a small time interval δt and t = Sδt. Equa-
tion (9) demonstrates that when the Kraus op-
erators obtained from the physical processes are
applied iteratively to the initial density matrix,
we obtain the expected exponential decay for the
excited population under the condition that the
time interval δt between each time step is small
compared to the total time t. It is easy to ver-
ify that the correct dynamics is also obtained for
all other entries of the density matrix. In the
Supplementary Information Section S1 the same

procedure also produces the correct dynamics for
the finite temperature amplitude damping. The
relation between the transition probability and
the rate constant in Equation (9) also points to a
natural relation between the operator sum repre-
sentation and the Lindblad master equation. In-
deed the Lindblad master equation with the form
of

dρ(t)
dt

=
∑
k>0

γk
(
Lkρ(t)L†k −

1
2{L

†
kLk, ρ(t)}

)
(10)

describes each physical process with the Lindblad
operator Lk and the rate constant γk (the {·, ·}
is an anticommutator). Now if we associate each
Lk with an Mk, with the details of the physical
process described by the form of the operator Lk,
and the probability of the physical process given
by pk = γkδt, then [7]:

Mk =
√
γkδtLk (11)

Now setting M0 = I − 1
2δt

∑
k>0 γkL

†
kLk, using

ρ(t) as the initial state and incrementing time by
δt we get:

ρ(t+ δt) = M0ρ(t)M †0 +
∑
k>0

Mkρ(t)M †k (12)

= ρ(t)− 1
2δt

∑
k>0

γk{L†kLk, ρ(t)}+O(δt2) + δt
∑
k>0

γkLkρ(t)L†k

Equation (12) converges to Equation (10) when δt→ 0. At the same time:

∑
k

M †kMk = M †0M0 +
∑
k>0

M †kMk (13)

= I− δt
∑
k>0

γkL
†
kLk +O(δt2) + δt

∑
k>0

γkL
†
kLk

= I +O(δt2)

Therefore the condition of
∑
kM

†
kMk = I is ap-

proximately satisfied for the operator sum rep-
resentation. Equations (10) through (13) show
that the Lindblad master equation and the op-
erator sum representation are two different de-

scriptions of the same dynamics: when the physi-
cal processes are represented by the Lindblad op-
erators Lk’s, the Lindblad master equation de-
fines a differential equation on the density oper-
ator ρ(t); when the physical processes are repre-
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sented by the Kraus operatorsMk’s, the operator
sum representation essentially evolves the differ-
ential equation with the Euler method. In ac-
tual simulation of the dynamics, Equation (11)
is especially important as it allows us to easily
determine the Kraus operators Mk’s with k > 0
for use in the iterative process in Equation (8).
In Equation (13) the condition

∑
kM

†
kMk = I is

not exactly satisfied, which may cause problems
in our specific quantum algorithm. However this
problem is easy to solve as we can enforce the

condition by defining:

M0 =
√

I−
∑
k>0

M †kMk (14)

Now with all the Kraus operators defined, we can
simulate the dynamics by the iterative process in
Equation (8) with the same Kraus operators for
each iteration. The first three time steps will look
like:

ρ(1) =
∑
k

Mkρ(0)M †k (15)

ρ(2) =
∑
k

Mkρ(1)M †k =
∑
j

∑
k

MjMkρ(0)M †kM
†
j

ρ(3) =
∑
k

Mkρ(2)M †k =
∑
i

∑
j

∑
k

MiMjMkρ(0)M †kM
†
jM

†
i

For the first time step we can apply the ba-
sic unitary dilation procedure described in Equa-
tions (1) to (6) or in Ref. [16] to implement each
Mk term. For the second and later time steps we
need to use higher dilations [16, 40] to implement
each term, e.g. a 2-dilation for each MjMk and
a 3-dilation for each MiMjMk. In Equation (15)
if the total number of Kraus operators is K –
meaning there are (K−1) physical processes – for
the first time step we need to implement K Mk

terms, for the second step K2 MjMk terms, for
the third step K3 MiMjMk terms, and in general
we need to implement Ks terms for the sth time
step. This exponential scaling of terms with the
number of time steps apparently limits the total
number of time steps that can be simulated. In
actual simulation however, there are two ways the
number of terms can be significantly reduced such
that the total number of time steps simulated can
be greatly increased (See the Methods section for
details). As shown in Equation (12) the time in-
terval δt between time steps must be kept small
for the Euler method to work, therefore increas-
ing the total number of time steps is equivalent
to increasing the total time for which the dynam-
ics can be evolved. In the following our quantum
simulation covers sufficient total time to observe
the FMO dynamics. If after all the simplifications

the total time is still too short for observing some
other physical phenomena, quantum tomography
may be applied to the final Sth ρ(S) which can
be then used as the new initial state. Quantum
tomography however will likely take a lot of com-
putational resource and will be beyond the scope
of the study.

2.2 Simulation of the Fenna-Matthews-Olson
Dynamics

In the photosynthetic light-harvesting process,
the FMO is a trimer complex which acts as a
quantum wire connecting the light-harvesting an-
tennae to the reaction center [43, 44]. Each
monomer consists of seven bacteriochlorophyll
chromophores, where an initial excitation can oc-
cur on either chromophore 1 or 6 and is trans-
ported to chromophore 3, which is closely coupled
to the reaction center [45, 46]. This transport is
largely driven by environmental interactions in-
cluding those with neighboring excitations and
the protective protein scaffold [47]. Within each
monomer of this trimer, there are multiple effi-
cient quantum pathways for the exciton to be
transferred to the reaction center. This quan-
tum redundancy has led to a study of the dif-
ferent functional subsystems of the FMO’s chro-
mophores, demonstrating that many subsets ex-
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ist with similar efficiencies to that of the entire
monomer [46]. In this work, we consider the
three-chromophore subsystem which consists of
chromophores 1-3 and has been shown to faith-
fully reproduce the exciton dynamics on the en-
tire seven-chromophore monomer [46]. A single
FMO monomer is shown in Figure 1, where the
functional subsystem is depicted in green with the
interactions depicted with yellow arrows. Con-

Figure 1: One monomer of the Fenna-Matthews-Olsen
complex where the seven-chromophore system acts as
the quantum wire connecting the chlorosome antenna to
the reaction center. The three-chromophore functional
subsystem is presented in green, with yellow arrows
showing the interactions between the chromophores.

sidering the redundancy of the chromophore sub-
units in the FMO dynamics, we can focus on
three chromophore subunits supporting three lo-
cal states of excitation. Adding a ground state
and a sink state, the Hamiltonian of the relevant
part of the FMO is:

H =
4∑
i=0

ωiσ
+
i σ
−
i +

∑
j 6=i

Jij(σ+
i σ
−
j + σ+

j σ
−
i ) (16)

where the state |i〉 with energy ωi is created by
the Pauli raising operator σ+

i and annihilated by
the Pauli lowering operator σ−i , Jij is the cou-
pling strength between |i〉 and |j〉. The FMO dy-
namics can be described by the Lindblad master
equation:

dρ(t)
dt

= −i[H, ρ(t)]+
∑
k>0

(
Lkρ(t)L†k−

1
2{L

†
kLk, ρ(t)}

)
(17)

where the [·, ·] is a commutator and the {·, ·} is
an anticommutator, and the seven Lk’s represent
seven physical processes (the rate γk has been
folded into each Lk as defined next).
L1 through L3 are the dephasing operators

Ldeph(i) =
√
α|i〉〈i| with i = 1, ..., 3; L4 through

L6 are the dissipation operators that describe the
transition from |i〉 to the ground |0〉: Ldiss(i) =√
β|0〉〈i| with i = 1, ..., 3; Lsink is the sink op-

erator that describes the transition from |3〉 to
the sink |4〉: Lsink = √γ|4〉〈3|. Compared to
Equation (10), Equation (17) contains an addi-
tional term of −i[H, ρ(t)]. This “coherent part”
of the dynamics is unitary and thus can be easily
realized by multiplying each Kraus operator by
an additional unitary matrix. All the parameters
used in the Hamiltonian and the Lindblad master
equation are listed in the Supplementary Infor-
mation Section S2. Now to determine the Kraus
operators we use Equations (11) and (14):

M1 =
√
αδt|1〉〈1| M2 =

√
αδt|2〉〈2| (18)

M3 =
√
αδt|3〉〈3| M4 =

√
βδt|0〉〈1|

M5 =
√
βδt|0〉〈2| M6 =

√
βδt|0〉〈3|

M7 =
√
γδt|4〉〈3| M0 =

√
I−

∑
k>0

M †kMk

where the time interval δt is set to be 2000 atomic
unit or 48.4 fs. We then apply the procedure in
Equation (15) for up to the 6th time step with
a total simulation time of 12000 atomic unit or
290 fs. In principle, with eight Kraus operators,
the total number of terms from Equation (15) for
the 6th iteration would be a prohibitively large
number 86 = 262144. However by considering re-
dundancy of the terms and setting a threshold of
the norm of the matrices to be > 0.01 (reduction
of terms discussed in the Methods section), we
are able to reduce the number of terms to only
679, which is much more manageable. We then
construct the quantum circuits from the unitary
dilations of the Kraus matrices(for detailed pro-
cedures see Equations (1) to (6) or Ref. [16]) and
run the circuits on the IBM QASM simulator [39].
An example of the circuits is shown in the Sup-
plementary Section S5. The results are shown in
Figure 2 and Figure 3:

In Figure 2 we see the dynamical evolution of
the populations of all the five states in our model.
These populations are calculated by the proce-
dure explained around Equation (4), where the
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Figure 2: The dynamical evolution of the populations
of the five states in the FMO complex model. The
classical benchmarks are shown as smooth curves, and
the quantum simulation results are shown as dots. In
the quantum results, for each population, five groups of
simulations with six data points each are run, creating
totally 30 data points evenly spaced within the 290 fs
total time. Each data point is the average of 9216 mea-
surement results. An example of the quantum circuits
can be found in the Supplementary Section S5.

diagonal elements of the evolved density matrix
are obtained by projection measurements into
the computational subspace. We first simulate
six data points at 2000 (48.4 fs), 4000 (96.8 fs),
6000 (145 fs), 8000 (194 fs), 10000 (242 fs) and
12000 (290 fs) atomic unit respectively. To ob-
tain more data points such that the oscillations
can be smoothly represented, we simulate four ad-
ditional groups with six data points each (details
in the Methods section). The results simulated
by our generalized quantum algorithm as imple-
mented on the IBM QASM simulator are shown
as dots and they agree well with the classically
calculated results shown as curves. The results
in Figure 2 demonstrate the viability of the gen-
eralized quantum algorithm. In particular the it-
erative procedure in Equation (8) , the formula-
tion of Kraus operators from Lindblad operators
in Equations (11) and (14), and the simplifica-
tion of terms by norm threshold and redundancy,
are working together to produce the correct pop-
ulation dynamics with small errors. In Figure 2
we can see the excitation beating between chro-
mophores 1 and 2, as it gradually decays into the
sink. This process is driven by a combination of
environmental noise and entanglement between
the chromophores in the functional subsystem.

In Figure 3, we see the expectation values of

0 50 100 150 200 250 300
Time (fs)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

En
er

gy
 (e

V)

Figure 3: The dynamical evolution of the energy observ-
able in the FMO complex model. The classical bench-
mark is shown as a smooth curve, and the quantum sim-
ulation results are shown as dots. For the quantum re-
sults, five groups of simulations with six data points each
are run, creating totally 30 data points evenly spaced
within the 290 fs total time. Each data point is the
average of 9216 measurement results. An example of
the quantum circuits can be found in the Supplemen-
tary Section S5.

the energy observable calculated at different time
steps. The evaluation of an observable by pro-
jection measurement is a complex process as ex-
plained in Equations (5), (6) and Ref. [16]. Again,
the quantum simulation results shown as dots
agree well with the classical results shown as a
curve. Indeed, the way we evaluate the observ-
able in the generalized algorithm is the same as
the previous quantum algorithm [16], therefore
if the new algorithm can accurately simulate the
evolution of the density matrix, then the observ-
able evluation will not introduce new errors not
considered before.

3 Analysis of complexity scaling and
error

3.1 The complexity scaling

On the complexity scaling of the quantum algo-
rithm, there are two separate scalings for the evo-
lution of the dynamics: the scaling with the sys-
tem size n and the scaling with the evolution time
step.

For the scaling with the system size n, for an
arbitrary n× n Kraus operator Mk without any
special property, the cost to realize its unitary di-
lation UMk

is O
(
n2) [16] . In practice however,
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an Mk is often sparse with few non-zero elements.
This is particularly true for our current quantum
algorithm as we generate the Mk’s from the ba-
sic physical processes of transition and dephasing.
Consequently the complexity scaling of a quan-
tum circuit implementation for each Mk can be
greatly reduced to O

(
log2n

)
[16]. Now we still

need to evolve all K number of Mk’s, so the to-
tal complexity scaling is O

(
Klog2n

)
, where K is

determined case-by-case by the dynamical model.
Note that the different Mk’s can be evolved in
parallel, thus the scaling in K is a “soft” scaling
because it does not contribute to either the depth
or the width of each individual quantum circuit.

For the scaling with the evolution time step,
without any simplification, Step s requires that
Ks matrices be evolved, which is an exponential
scaling in the time step. Fortunately, the number
of terms can be reduced drastically by the spar-
sity and redundancy of the Mk matrices that we
discussed in detail under Equation (15) and in
the Methods section. In general it is difficult to
claim the scaling is polynomial or exponential,
because the number of matrix terms depends, in
a case-by-case matter, on the actual forms of the
Mk matrices and the threshold set for the matrix
norm. For our particular FMO model we have
managed to simplify the number of terms from
the prohibitive 86 = 262144 to merely 679, which
allowed us to implement it on the IBM simulator.
Here we remark that the scaling with the evolu-
tion time step is the natural result of solving a
differential equation with the Euler method. The
Euler method is the simplest among the Runge-
Kutta methods that are standard tools for the nu-
merical evolution of differential equations. Con-
sequently, the scaling with the evolution time is
not an artifact introduced by our method, but an
important issue to be investigated if one wishes
to adapt classical numerical tools for differential
equations to the quantum computing field. With
case-specific simplifications to reduce the scaling,
our method represents a step in this direction.

So far we have discussed the two complexity
scalings for the evolution of the dynamics. In
the quantum computing context, the complexity
scaling associated with the measurement and re-
trieval of results – the query complexity – is also
important. Here we emphasize that both the pre-
vious [16, 19] and the current generalized versions
of the quantum algorithm can have a decisive

polynomial-versus-exponential query complexity
advantage over classical methods when used to
evaluate an observable over the density matrix.
In addition, in specific situations where the evo-
lution complexity is below a threshold, the total
complexity is dominated by the query complexity,
and therefore the quantum algorithm can have a
decisive total complexity advantage over any clas-
sical methods. This quantum advantage along
with an example system is discussed in greater
detail in the Supplementary Information Section
S4.

3.2 The error analysis

There are two main sources of errors in the cur-
rent study. The first source is the error intro-
duced by evolving the master equation with the
Euler method and this error is well known to be
O
(
δt2
)
. As a future direction, this error could

be potentially reduced by introducing high-order
methods such as the Runge-Kutta methods. Note
that this source of error is not unique to our
quantum algorithm but is also present in many
classical algorithms used to numerically solve a
differential equation. The second source is the
measurement error when the IBM QASM sim-
ulator simulates a quantum projection measure-
ment. This error is notably only scaling inversely
with the number of measurements taken, and not
scaling with the system size, as we have discussed
in Section S3 of the Supplementary Information.
This error is also not unique to our quantum algo-
rithm but always present when one wants to ex-
tract physical information from the evolved den-
sity matrix. Overall, these two errors did not pre-
vent us from obtaining reasonably good results
compared to the classical benchmarks. A third
source of error – the gate error – would become
important when one tries to run the quantum al-
gorithm on an actual quantum computer. Unfor-
tunately the quantum computers available to us
at the writing of the manuscript have non-trivial
gate errors such that an experimental demon-
stration of our quantum algorithm has not been
achieved. Nonetheless, the demonstration on the
IBM QASM simulator shows that our quantum
algorithm is fully programmable (without blind
spots or “oracles”) and cost-efficient (with case-
specific simplifications), such that it can be im-
plemented on quantum computers with smaller
gate error or better error-mitigation capabilities

Accepted in Quantum 2022-05-22, click title to verify. Published under CC-BY 4.0. 8



in the near future.

4 Conclusions and Outlook

In this work we have developed a generalized
quantum algorithm for open quantum dynamics
to simulate more complex dynamical models. In
particular we formulate the Kraus operators from
basic physical processes that constitute the dy-
namics, and then realize the time evolution by
an iterative process. We then relate the Lind-
blad operators to the Kraus operators in a simple
manner with the Lindblad master equation be-
ing connected to the operator sum representation
through the correspondence between a differential
equation and its integration by the Euler method.
The generalized quantum algorithm works with
any dynamical model represented by the oper-
ator sum representation or the Lindblad master
equation, and thus is much more general than the
previous algorithm. We demonstrate the gener-
alized algorithm on the FMO dynamical model
using the IBM QASM simulator, which is so far
as we know the first successful quantum simu-
lation of a moderately sophisticated dynamical
process involving a realistic biological structure.
Finally we analyze the query complexity of the
algorithm, and constructs an example where the
quantum algorithm showcases decisive complex-
ity advantage over any classical method.

5 Methods

5.1 Reduction of terms in Equation (15)

To reduce the number of terms in Equation (15)
and increase the total simulation time, the first
way is to notice that the Mk’s with k > 0 typi-
cally correspond to basic physical processes such
as state transition or dephasing, and thus an Mk

typically contains only one or few non-zero ele-
ments. For example, a transition from the state
|1〉 to |0〉 corresponds to the operator |0〉〈1| whose
matrix M has only one non-zero element at the
M [0, 1] location regardless of the total dimension
of the matrix. Matrices with few non-zero ele-
ments multiplying each other will often produce
the zero matrix or matrices with negligible norms.
Hence by setting a threshold for the norm of the
matrix, we can significantly reduce the number
of terms to implement as in Equation (15) while

maintaining a reasonable accuracy. The second
way for term reduction is to notice that many of
the Ks terms for the sth time step are different
by only a constant. This is again due to the fact
that the Mk’s typically contain few non-zero ele-
ments, such that repeated multiplications of cer-
tain Mk’s tend to form closed groups. Hence by
organizing the terms in Equation (15) into types
within which the matrices only differ by a con-
stant, we can also significantly reduce the number
of terms to implement. The actual effects of both
ways of term reduction are case specific, and we
have shown the numbers in the FMO simulation
section.

5.2 Simplified procedure for implementing
products of Kraus operators

To implement each term in Equation (15) such as
theMiMjMk for the 3rd time step, we need to use
a 3-dilation unitary having four times the dimen-
sion of Mk, and this increases the gate count of
the quantum circuit. Here expecting a large gate
count that may exceed the capability of the cur-
rent noisy intermediate-scaled quantum (NISQ)
devices [48], we calculate the product of the ma-
trices such as MiMjMk classically and only im-
plement the product as a single 1-dilation unitary.
Note that the sparsity of theMk matrices ensures
the classical calculation of the product is simple,
and with more powerful quantum devices in the
future we can easily switch back to an all quan-
tum implementation of the matrix products with
higher dilations.

5.3 Procedure to obtain more data points

To obtain more data points such that the oscil-
lations can be smoothly represented, we simulate
four additional groups with six data points each:
e.g. the first group starting with 400 atomic
unit (9.68 fs) and incrementing by 2000 atomic
unit (48.4 fs): 400 (9.68 fs), 2400 (58.1 fs), 4400
(106 fs), 6400 (155 fs), 8400 (203 fs), 10400 (252
fs) atomic unit, the second group starting with
800 atomic unit (19.4 fs) and incrementing by
2000 atomic unit: 800 (19.4 fs), 2800 (67.7 fs),
4800 (116 fs), 6800 (164 fs), 8800 (213 fs), 10800
(261 fs), etc.. In this way we essentially simu-
late five independent groups, which when put into
the same figure, represent 30 data points equally
spaced within the 12000 atomic unit (290 fs) total
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time.
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Supplementary Information

S1 The finite-temperature amplitude damping channel treated by the operator
sum representation
In the main text we showed the Kraus matrices used to simulate the amplitude damping channel in
Equation (7),

ρ(t) = M0ρM
†
0 +M1ρM

†
1 (S1)

M0 =
(

1 0
0
√
e−γt

)

M1 =
(

0
√

1− e−γt
0 0

)
where M0 and M1 both have an explicit dependence on time t. Now the finite-temperature amplitude
damping channel includes one more physical process than the amplitude damping channel: the tran-
sition from the ground state back to the excited state. If we formulate the dynamics of the channel
with a naive dependence on time as in Equation S1, we would have:

ρ(t) = M0ρM
†
0 +M1ρM

†
1 +M2ρM

†
2 (S2)

M0 =
(√

e−γ2t 0
0

√
e−γ1t

)

M1 =
(

0
√

1− e−γ1t

0 0

)

M2 =
(

0 0√
1− e−γ2t 0

)
where γ1 and γ2 are the rates of the two transitions. Now the population of the ground state will be:

ρ00(t) = (1− e−γ1t)ρ11(0) + e−γ2tρ00(0) (S3)
ρ00(∞) = ρ11(0)

which is incorrect because the textbook solution of this model is:

ρ00(t) = e−(γ1+γ2)tρ00(0) + γ1
γ1 + γ2

(
1− e−(γ1+γ2)t) (S4)

ρ00(∞) = γ1
γ1 + γ2

Hence we see that Kraus operators formulated with a naive dependence on time lead to incorrect
dynamics for even such a simple deviation from the amplitude damping channel.

Now to treat the dynamics correctly we use the iterative procedure in Equation (8) in the main text:

ρ(s) = Es[ρ(s− 1)] =
2∑

k=0
Mskρ(s− 1)M †sk (S5)

Ms0 =
(√

1− p2 0
0

√
1− p1

)

Ms1 =
(

0 √
p1

0 0

)

Ms2 =
(

0 0√
p2 0

)
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where p1 = γ1δt and p2 = γ2δt are the probabilities of the corresponding transition happening over a
small time interval δt. Now the population of the ground state after S iterations is:

ρ00(S) = (1− p1 − p2)Sρ00(0) +
S−1∑
i=0

p1(1− p1 − p2)i (S6)

= (1− p1 − p2)Sρ00(0) + p1
p1 + p2

[1− (1− p1 − p2)S ]

Recognizing that δt = t
S , substituting in p1 = γ1δt and p2 = γ2δt, we have:

ρ00(t) = (1− (γ1 + γ2) t
S

)Sρ00(0) + γ1
γ1 + γ2

[1− (1− (γ1 + γ2) t
S

)S ] (S7)

S→∞−−−−→ e−(γ1+γ2)tρ00(0) + γ1
γ1 + γ2

[1− e−(γ1+γ2)t]

which is the correct solution as in Equation S4. Therefore we see that the iterative procedure described
in Equation (8) in the main text will give the correct solution if δt is small compared to the total time
t.

S2 Parameters used for the FMO dynamics simulation in the main text.
The matrix form of the Hamiltonian of the FMO in the unit of eV:

HFMO =


0 0 0 0 0
0 0.0267 −0.0129 0.000632 0
0 −0.0129 0.0273 0.00404 0
0 0.000632 0.00404 0 0
0 0 0 0 0

 (S8)

Parameter Value Symbol
Dephasing rate α 3.00x10−3fs−1

Dissipation rate β 5.00x10−7fs−1

Sink γ 6.28x10−3fs−1

Table 1: Rate constants used in the 3-site Fenna-Matthews-Olson complex model.

S3 Number of projection measurements required to achieve a certain error limit.
A quantum state |φ〉 = (c1, c2, ..., cn) defines a probability distribution of the basis states (e.g.
(1, 0, 0, .., 0)T , (0, 1, 0, .., 0)T , etc.) with the probability of getting the ith basis state equal to |ci|2.
Applying projection measurements on such a quantum state is essentially sampling this probability
distribution. It is a basic result that if we want to deduce the original probability distribution with
some finite number of sampling measurements, then the error decreases with increasing number of
measurements. In particular, if the error of the sampling can be represented by the standard error of
the mean σmean, and the original probability distribution defines a standard deviation σ, then:

σmean = σ√
P

(S9)

P =
( σ

σmean

)2
where P is the number of measurements. We then have the result mentioned in the following Section S4
that P does not scale with the dimension n of the quantum state, but only depends on the error σmean
we can tolerate.
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S4 Quantum advantage in query complexity

Compared to the previous quantum algorithm, the generalized quantum algorithm generalizes to more
complex dynamical models by utilizing an iterative process as in Equation (8) in the main text and
formulating the Kraus operators with physical processes as in Equation (11)in the main text. Therefore,
at the core of the generalized algorithm is still implementing matrices multiplying vectors by unitary
dilations and an execution complexity comparable to classical methods is maintained at O(n2) (n being
the dimension of the vectors used to represent the initial states). However, here we emphasize that both
versions of the quantum algorithm can have a significant query complexity advantage over classical
methods, when used to evaluate an observable over the density matrix. As shown in Equations (5)
and (6) in the main text, after the observable A has been converted into Ã = L†L, we can evaluate
〈A〉 by calculating the trace Tr

(
pi · L†|φik(t)〉〈φik(t)|L

)
and then summing over i and k. The core

idea here is classically taking the trace of the matrix of L†|φik(t)〉〈φik(t)|L involves summing over
the modulus squares of all the coefficients of the vector L†|φik(t)〉, while quantum mechanically we
can simply measure the probability of the final state UL†UMk

(vTi , 0, ..., 0)T projecting into the first
n-dimensional space. In other words, with the quantum method we do not have to look into individual
coefficients of L†|φik(t)〉, but can treat the first n-dimensional space of UL†UMk

(vTi , 0, ..., 0)T as a
whole - this is an exploitation of quantum superposition and quantum measurement. Note to obtain
the probability of projecting into a subspace, a number of quantum measurements are required. This
number of measurements P however, does not scale with the dimension n but only depends on the
error that we can tolerate, as explained in Section S3. Consequently the query complexity of the
quantum method to determine Tr

(
L†|φik(t)〉〈φik(t)|L

)
is P that is a constant determined by the error

tolerated, while the query complexity of any classical method cannot be reduced below O(n) (which
is in general O(2q), exponential in the number of qubits q) for calculating and summing over the
modulus square of each individual coefficient of L†|φik(t)〉. This means that the quantum method
has a decisive exponential query complexity advantage over classical methods. Now if we define the
total complexity of the algorithm to include the execution complexity and the query complexity, and
then compare the quantum algorithm with classical methods, we see that applying P measurements
requires P parallel implementations of the circuit for UL†UMk

(vTi , 0, ..., 0)T (because multiple projection
measurements cannot be applied to the same quantum state). This means that the total complexity of
the quantum algorithm is the query complexity P multiplied by the execution complexity Q, while the
total complexity of a classical algorithm with the same execution complexity is Q plus O(n). We see
that if Q is O(n) or above, the quantum algorithm does not have a total complexity advantage over
classical methods. However, whenQ isO(log(n)) or below, which happens when the implementations of
both UMk

and UL† are very simple, the quantum algorithm will have a decisive advantage over classical
methods. An illustrative example of this scenario can be constructed in the following. Suppose the
initial density matrix is given by Equation (1) in the main text, where the physical composition of a
few pure states is known. In fact, since the number of pure states in the mixture must be O(log(n)) or
below for ρ to be representable with a cost that scales polynomially with the qubit number, we may
assume there is only one pure state |φ〉 = (c1, c2, ..., cn) in the density matrix for simplicity. Now also
suppose there is no dynamical evolution and we are interested in the expectation value of an observable
on φ itself, then the execution cost for UMk

is removed. Given that the system can be represented by
q qubits such that 2q = n, consider the observable:

A = σz ⊗ I⊗(q−1) (S10)
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Now define Ã = A+I||A||
2||A|| , then the Cholesky decomposition gives:

L† = L = A =



1
. . .

1
0

. . .
0


(S11)

and

〈Ã〉 = Tr(L†|φ〉〈φ|L) =
n
2∑
i=1
|ci|2 (S12)

〈A〉 = 2〈Ã〉 − 1 (S13)

where ci’s are the coefficients of the initial state |φ〉. The sum
∑n

2
i=1|ci|2 in Equation (S12) has a

clear physical meaning of the probability of projecting into the first half space where the first qubit
has the value |0〉, and thus can be measured by a projection measurement efficiently. Note that here
the observable A is particularly simple that no actual implementation of L† is required. The total
complexity of the quantum algorithm evaluating 〈A〉 over |φ〉 is then only the query complexity of P .
On the other hand, for any classical method, evaluating the sum

∑n
2
i=1|ci|2 costs O(n) steps and the

total complexity is O(n) = O(2q). Consequently the quantum algorithm has a desicive total complexity
advantage over any classical method for the example we have constructed. In addition to this special
example, as discussed in the section on the generalized quantum algorithm in the main text, the Kraus
operators are formulated with the basic physical processes that constitute the dynamical model, and
thus typically contain only one or few non-zero elements. This means the execution cost for eachMk is
typically O(log(n)) or below, therefore if the number of Mk’s is O(log(n)) or below, and implementing
the observable A with L† also costs O(log(n)) or below, we will be able to demonstrate the quantum
advantage on a dynamical evolution. To find such an observable A with a realistic physical meaning
would be an interesting subject of a future study.

S5 An example of the quantum circuits used to evolve the Kraus operators
Below we give an example of the quantum gate sequence used to build the quantum circuit for evolving
M1 =

√
αδt |1〉 〈1| at the first time step at 400 atomic unit. After being multiplied by the unitary matrix

accounting for the coherent part as in Equation (17) in the main text, M1 becomes:
0 0 0 0 0
0 0.219− 0.09i 0 0 0
0 0.017 + 0.042i 0 0 0
0 0.001− 0.003i 0 0 0
0 0 0 0 0

 (S14)

Using the dilation procedure described around Equation 3 in the main text this becomes a 10 × 10
unitary matrix UM1 . Using 4 qubits to cover the 10 dimensions and 2 ancilla qubits for the gate
decomposition, we obtain a gate sequence of 899 gates as shown below. Note this sequence is not
unique and may be further optimized, but it is good enough for the purpose of producing the results
as shown in the main text when run on the IBM QASM simulator. The details of the decomposition
of all the quantum circuits used are available from the corresponding author on reasonable request.
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Figure S1: An example of the quantum gate sequence used to evolve a Kraus operator

Accepted in Quantum 2022-05-22, click title to verify. Published under CC-BY 4.0. 6


	1 Introduction
	2 Results
	2.1 Generalized Quantum Algorithm
	2.2 Simulation of the Fenna-Matthews-Olson Dynamics

	3 Analysis of complexity scaling and error
	3.1 The complexity scaling
	3.2 The error analysis

	4 Conclusions and Outlook
	5 Methods
	5.1 Reduction of terms in Equation (15)
	5.2 Simplified procedure for implementing products of Kraus operators
	5.3 Procedure to obtain more data points

	 Acknowledgments
	 References
	 Supplementary Information
	S1 The finite-temperature amplitude damping channel treated by the operator sum representation
	S2 Parameters used for the FMO dynamics simulation in the main text.
	S3 Number of projection measurements required to achieve a certain error limit.
	S4 Quantum advantage in query complexity
	S5 An example of the quantum circuits used to evolve the Kraus operators

