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Realization of Heisenberg models of spin systems
with polar molecules in pendular states

Wenjing Yue,a Qi Wei, *a Sabre Kais, b Bretislav Friedrichc and
Dudley Herschbach d

We show that ultra-cold polar diatomic or linear molecules, oriented in an external electric field and

mutually coupled by dipole–dipole interactions, can be used to realize the exact Heisenberg XYZ, XXZ

and XY models without invoking any approximation. The two lowest lying excited pendular states

coupled by microwave or radio-frequency fields are used to encode the pseudo-spin. We map out the

general features of the models by evaluating the models constants as functions of the molecular dipole

moment, rotational constant, strength and direction of the external field as well as the distance between

molecules. We calculate the phase diagram for a linear chain of polar molecules based on the

Heisenberg models and discuss their drawbacks, advantages, and potential applications.

1 Introduction

Introduced by Heisenberg in 1928, the Heisenberg statistical model
of spin systems has been widely used to study phase transitions and
critical phenomena in magnetic systems and strongly correlated
electron systems.1–6 Recently developed powerful tools developed
to unravel the physics of strongly correlated multi-body quantum
systems provide new platforms for understanding quantum
magnetism.7 It has been proposed to implement the Heisenberg
model in other systems as well. For example, Pinheiro et al. demon-
strated that in the Mott region, a boson atom in the first excitation
band of a two-dimensional optical lattice can realize the spin-1/2
quantum Heisenberg model.7 Bermudez et al. introduced a theore-
tical scheme to simulate the XYZ model using trapped ions.8

The molecular axis of polar molecules that are subject to an
external electric field oscillates within a certain angular range
about the field direction, forming pendular states.9 These pend-
ular states have specific orientations that give rise to constant
projections of the dipole moment along the external field,
resulting in long-range anisotropic interactions via the electric
dipole–dipole coupling. In a field gradient, pendular molecule
can be individually addressed due to its field-dependent eigen-
energy (and orientation). Moreover, the internal structure of
polar molecules is much richer than that of atoms or spins,
allowing much richer physics. Given these unique properties,

arrays of polar molecules are considered to be promising plat-
forms for quantum computing and quantum information
processing,10–26 which is not unlike spins.

Inspired by the similarity between spins and polar molecules,
the simulation of the spin models with polar molecules has
attracted broad interests over the past decade.27–34 Müller
described in his thesis the details of how to realize the spin-1/2
XXZ model as well as t-J model with ultra-cold polar molecules
trapped in an optical lattice.27 Gorshkov et al. demonstrated that
the dipole interactions of ultra-cold alkali metal dimers in optical
lattices can be used to implement the t-J model, providing insights
into strong correlation phenomena in condensed systems.28 Yan
et al. experimentally observed dipolar spin-exchange interactions
with lattice-confined polar molecules, which laid a foundation for
further study of multi-body dynamics in spin lattices.29 Yao et al.
obtained the dipole Heisenberg model by using polar molecules
and found the existence of quantum spin liquids on the triangular
and Kagome lattice.30 Zou et al. implemented the quantum spin
model based on the polar molecule KRb in an optical lattice and
discovered the quantum spin liquid on the square lattice.31

However, in almost all the previous works about implemen-
tation of the spin-1/2 Heisenberg model with polar molecules,
the ground and first excited pendular states with M = 0 were
usually chosen as pseudo-spin states, representing spin up and
spin down, respectively.27–32 In which case the Hamiltonian is
not in the form of the Heisenberg model. Only after applying
the rotating wave approximation can the Heisenberg model be
recovered. Furthermore, it is not a general Heisenberg XYZ
model, but its special case, the XXZ model.

Herein, by choosing the two lowest excited pendular states
of a polar molecule to represent the pseudo-spin states, we
show how to achieve spin-1/2 Heisenberg XYZ model as well as
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XXZ and XY models directly, without any approximation. We
work out the properties of the models by evaluating all their
constants as functions of three dimensionless variables. The
first one is me/B, the ratio of the Stark energy (magnitude of
permanent dipole moment times electric field strength) to the
rotational constant (proportional to inverse of the molecular
moment of inertia); this variable governs the energy and
intrinsic angular shape of the pendular states. The second
one is O/B, with O = m2/r3, the square of the permanent dipole
moment divided by the cube of the separation distance; this
variable governs the magnitude of the dipole–dipole coupling.
The third variable is a, the angle between the axis of the
molecular array and the electric field. As a sample application
of the Heisenberg model based on polar molecules, we con-
struct the ground state phase diagram for a linear array of polar
molecules. We also discuss advantages, drawbacks as well as
potential applications of our model.

2 Pendular states of polar molecules
as pseudo-spins
2.1 Pendular and pseudo-spin states

In an electrostatic field, the Hamiltonian of a trapped linear
polar molecule is15

H ¼ p2

2m
þ VtrapðrÞ þ BJ2 � m � e; (1)

where the molecule, with mass m, rotational constant B, and
body-fixed dipole moment m, has translational kinetic energy
p2/2m, potential energy Vtrap within the trapping field and
rotational energy BJ2 as well as interaction energy m�e with the
external field e. In the trapping well, at ultra-cold temperatures,
the translational motion of the molecule is quite modest and
very nearly harmonic; p2/2m + Vtrap(r) is thus nearly constant
and can be omitted from the Hamiltonian. There remains the
rotational kinetic energy and Stark interaction,

Hs = BJ2 � mecos y, (2)

where y is the polar angle between the molecular axis (the
molecule-fixed permanent electric dipole moment m) and the
field direction. Under the action of a strong electrostatic field, the
polar molecules are compelled to undergo pendular oscillations
and result in the forming of pendular states, | J̃Mi. Here, J̃ wears a
tilde to indicate it is no longer a good quantum number since the
Stark interaction mixes the rotational states, whereas M is still a
good quantum number as long as azimuthal symmetry about e is
maintained. Fig. 1 shows eigenenergies of a few lowest lying
pendular states for a 1S diatomic (or linear) molecule, as func-
tions of me/B.

We choose the two lowest excited states pendular states, |11i
and |10 i, as the pseudo-spin states |ki and |mi, respectively
(see Fig. 1). Then use an external circularly polarized microwave
or radio-frequency field to couple the two states, forming a |ki
and |mi two-level system. The two pseudo-spin states are linear

superpositions of spherical harmonics Y1
j and Y0

j :

j #i ¼
X

j

ajY
1
j ðy;fÞ; j "i ¼

X

j

bjY
0
j ðy;fÞ: (3)

Fig. 2 plots the coefficients as functions of me/B. For me/B = 0,
both |ki and |mi are purely rotational states with single
component of spherical harmonics of Y1

1 and Y0
1, respectively.

As me/B increases, more and more components of spherical
harmonics with the same M but different J get involved and the
initially dominant components decrease accordingly. For |mi,
the dominant component Y0

1 (shown in brown) decreases so
quickly that it is replaced by Y0

0 as the leading term for me/B 4
4.5. For |ki, the initially dominant component Y1

1 (show in
brown) decreases a little slower but is eventually replaced by Y1

1

Fig. 1 Eigenenergies of a polar molecule in an external electric field, as
functions of me/B, with m the permanent dipole moment, e the field
strength, B the rotational constant. |ki correlates with the J = 1, M =
1 and |miwith the J = 1, M = 0 states. States used as the pseudo-spin states
(red curves) are labeled |ki and |mi in the absence of an external field.

Fig. 2 Coefficients of spherical harmonics for pendular states |ki (left
panel) and |mi (right panel), see eqn (3). Dashed curve for |mi indicates the
coefficients of Y0

0 is negative.
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when me/B becomes large enough. Fig. 3 displays wave functions
of |ki and |mi for different magnitudes of the electric field. For
|mi, since M = 0, the dipole is rotating with its J-vector perpendi-
cular to the field direction. Without the external field, the dipole
orientation is symmetric in the hemispheres toward (y = 0) or
opposite (y = p) to the field direction. With increasing external
field, the pinwheeling dipole favors the opposite hemisphere
because its motion is slowed down there. However, when the
external field becomes large enough, pinwheeling is inhibited
and converted into pendular libration about the field direction,
and the dipole orientation favors the toward hemisphere. For
|ki, since M = 1, without the external field, the angular momen-
tum is along the field direction, and thus the dipole orientation
is localized at about y = p/2 and also symmetric in both hemi-
spheres toward or opposite to the field direction. As the external
field increases, the dipole rotates like a conical pendulum and its
orientation favors more and more the toward hemisphere.

The problem of the |1 � 1i pendular state which is degen-
erate with |11i, can be avoided by introducing a tilt angle b
between the polarization vector of the optical trapping field that
confines the molecules and the electrostatic field such that b a
0, p. In that case, the degeneracy of the �M states is lifted.35–37

Alternatively, for molecules with a nuclear electric quadrupole
moment, a superimposed magnetic field would lift the �M
degeneracy via the interaction between this moment and the
magnetic moment generated by molecular rotation.29,38

2.2 Hamiltonian of psedo-spins with electric dipole–dipole
interaction

Adding a second trapped polar molecule, identical to the first one but
a distance r12 apart, introduces the dipole–dipole interaction term15

Vd�d ¼
m1 � m2 � 3 m1 � nð Þ m2 � nð Þ

r1 � r2j j3
: (4)

Here n is a unit vector along r12. In the presence of an external field,
Vd–d can be expressed in terms of the polar and azimuthal angles:

Vd�d ¼ O cos y1 cos y2 þ sin y1 cosj1 sin y2 cosj2½

þ sin y1 sinj1 sin y2 sinj2

� 3 sin y1 cosj1 sin aþ cos y1 cos að Þ

� cos y2 cos aþ sin y2 cosj2 sin að Þ�;

(5)

where O = m2/r12
3, a is the angle between the r12 vector and the

field direction, y1 and y2 are the polar angles between the
dipoles (m1 and m2) and the field direction, j1 and j2 are the
corresponding azimuths.

Now the total Hamiltonian is Htotal = Hs1 + Hs2 + Vd–d. When
set up in the basis set of the direct product of pseudo-spin
states {|kki, |kmi, |mki, |mmi}, it takes the form

Hs1 þHs2 ¼

2E0 0 0 0

0 E0 þ E1 0 0

0 0 E1 þ E0 0

0 0 0 2E1

0
BBBBBB@

1
CCCCCCA
; (6)

Vd�d ¼ O

PaC
2
0 0 0 QaC

2
X

0 PaC0C1 �PaC
2
X 0

0 �PaC
2
X PaC1C0 0

QaC
2
X 0 0 PaC

2
1

0
BBBBBB@

1
CCCCCCA
; (7)

where E0 and E1 are eigeneneries of the pendular pseudo spin
states |ki and |mi, respectively (see Fig. 1). Pa and Qa are simple
functions of a: Pa = 1 � 3 cos2 a, Qa = –3 sin2 a. In Vd�d, the basis
states are linked by matrix elements containing C0 and C1, the
field-induced dipole moments orientation cosines, and CX, the
transition dipole moments between the pseudo-spin states |ki
and |mi. These are given by

C0 = hk|cos y|ki, C1 = hm|cos y|mi, CX = hk|sin ycosj|mi.
(8)

In contrast to a real spin state which has a constant dipole
moment, here, the values of C0, C1 and CX are functions of
external electric fields, which are displayed in Fig. 4. When me/B
increases, C0 becomes increasingly positive, whereas C1 is
increasingly negative up to about me/B = 2, then climbs to zero
at about me/B = 4.9 and thereafter is increasingly positive. The
fact that CX = 0 at me/B = 0 means that without the external
electric field, the transition between |ki and |mi is not allowed as
a one-photon electric dipole transition. Fortunately, increasing
the external field introduces sufficient mixing of other spherical
harmonics, particularly admixing of Y0

0 and Y0
2 into |mi and

admixing of Y1
2 into |ki (see Fig. 2), such that CX increases sharply

from zero to a considerable value, enabling the |ki 2 |mi
transition to occur as a one-photon transition.

3 Realization of the Heisenberg model
of spin systems with polar molecules
3.1 General Heisenberg XYZ model based on pseudo-spins

The total Hamiltonian of the two-dipoles molecular system can
be mapped onto a two-qubit spin-1/2 general Heisenberg
XYZ model:

HXYZ = Jxs
x
1s

x
2 + Jys

y
1s

y
2 + Jzs

z
1s

z
2 � g(sz

1 + sz
2), (9)

here sx, sy and sz are Pauli operators; Jx, Jy, Jz and g are coupling
constants given by

Jx ¼ O 3 cos2 a� 2
� �

C2
X ;

Jy ¼ OC2
X ;

Jz ¼
O 1� 3 cos2 a
� �

C0 � C1ð Þ2

4
;

g ¼
2 E1 � E0ð Þ þ O 3 cos2 a� 1

� �
C2

0 � C2
1

� �
4

:

(10)

Eqn (9) and (10) demonstrate how to realize the spin-1/2
anisotropic Heisenberg model with polar molecules in pendu-
lar states. The model constants (Jx, Jy, Jz and g) are functions of
me/B, O and a, which means the model can be adjusted by
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modifying these parameters. For all the constants, the relations
to O are simply linear, whereas the relations to C’s are quad-
ratic. Jy is a independent and equal to Jx with a = 0. The term g
consists of two parts. One part is related to the energy gap DE =
E1 � E0 which is shown in Fig. 1. The other part is proportional
to O which is similar to J’s. The contour plots in Fig. 5 illustrate
how Jx/O, Jz/O and the second part of g/O change with me/B and
a. When me/B increases from 0 to 12, the magnitude of the
coupling coefficients (Jx/O, Jy/O and Jz/O) changes in the order
of 0 to 10�1. Similar results are obtained for the second part of

g/O. Maximum or minimum values of Jx and Jy appear at large
me/B, whereas for Jz they appear around me/B = 3.

For given O and a, the coupling constants Jx, Jy, Jz and g
depend only on x = me/B, which enters those constants through
C0, C1, CX and DE. To provide a convenient means to evaluate
eqn (10), we fitted our numerical results to obtain accurate
approximation formulas,

(E1 � E0)/B = A1x + A2x2 + A3x3 + A4x4 + A5x5, (11)

CðxÞ ¼ A0 þ
A1

1þ exp½ðx� x1Þ=k1�

þ A2

1þ exp½�ðx� x2Þ=k2�
: (12)

These functions are plotted in Fig. 6. The fitted parameters are
given in Tables 1 and 2.

The Heisenberg model given by Equation (9) is a general XYZ
model which is complicated and can derive several more
specific models, such as Ising, XXX, XXZ and XY models, etc.,
depending on the anisotropy coupling constants Jx, Jy and Jz.
Actually, these specific models are more frequently used and
studied in literature. For the system of polar molecules, we can
get two specific Heisenberg models by changing the direction
of the external field. One is the XXZ model which obtains by
taking a = 01. In that case, we have Jx = Jy a Jz and Jx = Jy a 0,
Jz a 0. The other one is the XY model which obtains for a =
54.71, known as the magic angle. In that case, we have Jx a 0,
Jy a 0 and Jz = 0.

Fig. 4 Matrix elements of C0, C1 and CX as functions of me/B. The dotted
green line is C0–C1.

Fig. 3 Wave functions of the |ki and |mi pendular states for values of me/B = 0, 4, 8, 12 (from left to right), respectively. Panels (a) and (b) represent the
real and imaginary parts of state |ki respectively. Panel (c) represents state |mi (has no imaginary part).
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3.2 The Heisenberg XXZ model and quantum phase diagram
of polar molecules

In order to demonstrate the application of the Heisenberg
model based on pendular polar molecules, we take the XXZ
model (a = 01) as an example. If only pairwise interaction is
considered, for a system with N polar molecules trapped in a
linear array with external electric field along the array, the
Hamiltonian has the form of the XXZ model,

HXXZ ¼
XN�1
i¼1

J sxi s
x
iþ1 þ syi s

y
iþ1

� �
þ Jzszi s

z
iþ1

� �
� g

XN
i¼1

szi (13)

with couplings given by

J ¼ OC2
X ;

Jz ¼ �
O C0 � C1ð Þ2

2
;

g ¼
E1 � E0ð Þ þ O C2

0 � C2
1

� �
2

:

(14)

Fig. 5 Contour plots of Jx/O (panel a), Jz/O (panel b) and second part of g/
O (panel c) as functions of reduced variable me/B and angle a. Jy is a-
independent and the same as Jx when a = 0.

Fig. 6 Comparison of exact results (blue curves) with fitted approxi-
mation functions (dashed red curves) cf. eqn (11) and (12): energy differ-
ence, (E1 � E0)/B, the field-induced dipole moments, C0 and C1 and the
transition dipole moments, CX.

Table 1 Values of the parameters for eqn (12)

Parameters Values

A1 0.00794
A2 0.16531
A3 �0.02838
A4 0.00206
A5 �5.55762 � 10�5

R2 = 0.9999.

Table 2 Values of the parameters for eqn (12)

Parameters Values for C0 Values for CX Values for C1

A0 �0.24612 0.21844 0.91801
A1 �0.56893 �0.53637 0.9
A2 0.95967 0.02855 1.36773
x1 �0.09066 �0.4403 0.09317
x2 �1.25815 4.28747 2.52364
k1 2.17868 1.18595 0.80729
k2 6.7313 0.94214 3.38213

R2 = 1 for C0, R2 = 0.9999 for CX and C1.
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Fig. 7(a) displays the ground state phase diagram of a spin-1/2
XXZ chain with nearest-neighbor interaction.39–41 The abscissa is
the scaled anisotropy parameter Jz/J, and the ordinate is the
scaled magnetic field g/J. There are two gapped phases: one is the
ferromagnetic phase for Jz/J o �1; the other is the antiferro-
magnetic phase for Jz/J 4 1. In between is the Luttinger liquid
phase.42 According to eqn (14), for polar molecules, Jz/J only
depends on me/B, so in Fig. 7(b) we show how Jz/J changes when
me/B increases from 0 to 12. The critical value of Jz/J = �1 appears
at me/B = 6.1 (e = 13.5 kV cm�1 for the SrO molecule). In order to
obtain phase information about the polar molecule system, we
still need to know the range of values of g/J. According to
eqn (14), g/J depends on both me/B and O. So in Fig. 7(c) we plot
of g/J as a function of me/B for different O/B. Finally we obtain a
ground state phase diagram associated with me/B and O/B for a
linear array of polar molecules, which is shown in Fig. 8.

4 Discussion and prospects

In this paper, our chief aim was to demonstrate that the
Heisenberg model of spin systems can be realized with ultra-
cold diatomic or linear 1P molecules, oriented in an external
electrostatic field and coupled by the electric dipole–dipole
interaction. This requires use of pendular states comprised of
superpositions of spherical harmonics. Here the two lowest
lying excited states coupled by microwave or radio-frequency
fields are used to mimic the two-level spin system. This
provides a new physical platform for the study of the Heisen-
berg model. Since the dipole is encoded in the rotational states
of the molecules, the field-induced electric dipole–dipole inter-
actions between the molecules reproduce magnetic dipole–
dipole interactions between spins. In order to map out the
general features of the model, we have considered a wide range
of parameters defined by sets of unitless reduced variables,
involving the dipole moments, rotational constant, dipole–
dipole coupling, electric field strength and direction.

In previous works about realizing Heisenberg XXZ model
with polar molecules,27 pendular state |00i and |10i are chosen
to represent the two-level spin states. In that case, the original
Hamiltonian matrix is not in the form of Heisenberg XXZ
model. Only after adding an external microwave field with a
small detuning and applying rotating wave approximation, can
one realize the Heisenberg XXZ model. However, our method
can realize the exact spin-1/2 Heisenberg models without any
approximation.

The external field plays an essential role. In order to induce
extensive hybridization of rotational states, the field strength
needs to be sufficiently high. This has a dual purpose. Firstly, to
make the molecules undergo pendular oscillations about the
field direction; otherwise rotational tumbling would average
out the molecule’s dipole moment in the laboratory frame.
Secondly, to make the transition dipole moment CX deviateFig. 7 (a) Quantum phase diagram of the XXZ model associated with Jz/J

and g/J for a linear spin chain. (b) The ratio of the coupling constants of the
XXZ model, Jz/J, as a function of me/B in dipole system of polar molecules.
(c) The ratio of the coupling constants of the XXZ model, g/J, as a function
of reduced variables, me/B and O/B, in dipole system of polar molecules.

Fig. 8 Ground state phase diagram of the XXZ model associated with O/B
and me/B for polar molecules in a linear array.
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from zero such that a one-photon transition |ki2 |mi would
be fully allowed.

Using optical lattices to trap the molecules limits the
distance between adjacent molecules to a few hundreds
nanometers, so that the dipole–dipole coupling is weak
(O/B typically of order 10�6 to 10�4) compared with the energy
gap DE and thus the model parameter g/J becomes very large
(4104). For that weak coupling realm, the ground state of the
Heisenberg model obtained with polar molecules is always in
the ferromagnetic phase (see Fig. 8). In order to enhance the
dipole–dipole coupling, the molecular distance r has to be
shortened. For the SrO molecule as an example, the molecular
distance of less than 10 nm is required for g/J B 1. Such
distance is much shorter than what can be achieved in typical
optical lattices, but might be obtained with arrays of nanoscale
plasmon-enhanced electro-optical traps43,44 or molecular
Wigner crystals,45,46 where extremely tight, few-nanometer con-
finement, and trap frequencies exceeding 100 MHz are shown
to be possible. At such a short distance, the dipole–dipole
coupling is strong enough for g/J B 1. Such that Luttinger
liquid phase are feasible in molecular dipole systems. That will
be a promising approach to extend the experimental scope of
the model.

Polar molecules also offer significant advantages for achieving
the Heisenberg spin model, due to their high controllability and
the presence of strong and long range interactions. Stark energy is
quite large, so for instance the energy gaps between pseudo-spin
states |ki and |mi are typically in the range of microwave
frequencies, as opposed to the radiofrequencies separating of real
spin states. This enables a faster optically controlled transition
between the two energy levels of polar molecules. Electric dipole–
dipole interaction is also much stronger than that of spins,
resulting in a larger frequency shift, which is essential for building
quantum logic gates.

One potential application of polar molecules is in quantum
computing, as originally proposed by DeMille two decades
ago.11 Since then, many aspects and variants have been exten-
sively studied, including for both diatomic linear molecules and
symmetric top molecules.12–26 For linear molecules, the |00i and
|10i pendular states are the most commonly used qubit
states.12–24 For symmetric top molecules, different choices of
qubit states have been explored.25,26 In most cases, the Hamilto-
nian matrices are complex and no existing model can be used
directly. In the meantime, spin systems are also considered to be a
promising platform to implement a quantum computer. In fact,
most of the work on quantum computers is based on spin systems
(Note: superconducting loops are actually artificial spins)47–56 and
Heisenberg model is the most popular model used in treating
such systems.52–56 If we take our pseudo-spin states |ki and |mi as
qubits states, then the two methods coincide. This opens up the
prospect of directly transplanting methods and techniques devel-
oped for spins to polar molecules.

So far, most proposals for implementing quantum comput-
ing with polar molecules have been based on the gate model.
Our new choices of qubits states also invite the possibility of
adiabatic quantum computing.57–67 This follows primarily from

the fact that the energy gap between the two qubit states DE =
E1 � E0 can be arbitrarily tuned from 0 to 3.7B (see Fig. 1) by
changing electric fields. For adiabatic quantum computing, the
tunable energy gap between |0i and |1i need to be large
compared with the interaction energy Vd–d. In this case, it is
around 104 times larger than the coupling energy Vd–d, which is
far beyond the current limit that spin systems can achieve.68

Moreover, one requirement for adiabatic quantum computing
is that the energy gap between the ground and the first excited
state be maintained during the adiabatic evolution such that no
phase transitions could occur. This requirement is also satis-
fied, since for a practical coupling constant (O/B o 10�2)
during the adiabatic process of reducing the electric field, the
entire polar molecular system remains in the ferromagnetic
phase, without undergoing any phase transition (see Fig. 8).
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