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Abstract: We explore how to build quantum circuits that compute the lowest energy state correspond-
ing to a given Hamiltonian within a symmetry subspace by explicitly encoding it into the circuit.
We create an explicit unitary and a variationally trained unitary that maps any vector output by
ansatz A(~α) from a defined subspace to a vector in the symmetry space. The parameters are trained
varitionally to minimize the energy, thus keeping the output within the labelled symmetry value.
The method was tested for a spin XXZ Hamiltonian using rotation and reflection symmetry and H2

Hamiltonian within Sz = 0 subspace using S2 symmetry. We have found the variationally trained
unitary gives good results with very low depth circuits and can thus be used to prepare symmetry
states within near term quantum computers.

Keywords: variational method; symmetry states; quantum circuits; optimization

1. Introduction

One of the most important problems quantum computers have been envisioned to
solve is the simulation of Hamiltonian dynamics and computation of ground state energies.
Phase estimation algorithm [1,2], despite solving this problem, requires circuits that run
deep, something that cannot be afforded within the NISQ [3] era. Alternative algorithms
based on hybrid models that make use of variational methods, for instance variational
quantum eigensolvers (VQE) [4] and quantum imaginary time evolution [5], have been
found to be more resilient to noisy quantum devices [6]. The strength of a variational
method depends a lot on the variational ansatz that has been used for the simulation of
the given state. Unitary coupled clusters [7] decomposed using trotterization [8], RBM
ansatz [9] based models and using hardware efficient gates to create generalized layered
models [10] are some of the circuit designs that have been studied under variational
methods.

Solving for the low energy states that lie within a Symmetry subspace, i.e., labelled
by a specified symmetry value, forms a sub class within the generalized constrained
optimization problems, where the idea is to minimize a cost function subject to a given
set of constraints. In cases where the operators of the cost function commute with that of
the constraints, one could easily penalize the cost function with an additional term that
captures the error in symmetry value [11]. Alternatively, one could design circuits that
variationally only explore the symmetry subspace by defining the circuit using well defined
structured features. These methods explore a smaller Hilbert space for optimization and
are likely to converge faster. Barkoutsos et al. [12] used a particle conserving gate alongside
a particle hole conserving representation to produce ground states of simple molecular
systems. Gard et al. introduced a systematic way of preserving symmetry subspaces for
particle number, total spin, spin projection, and time reversal [13].

Symmetry 2022, 14, 457. https://doi.org/10.3390/sym14030457 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14030457
https://doi.org/10.3390/sym14030457
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-4966-097X
https://orcid.org/0000-0003-0574-5346
https://doi.org/10.3390/sym14030457
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14030457?type=check_update&version=1


Symmetry 2022, 14, 457 2 of 11

Unlike previous studies, which aimed to provide algorithms for very specific symme-
tries, we would like to demonstrate the efficacy of two new techniques that can tackle any
symmetry generically. We further compute the ground state energy of a given Hamiltonian
constrained to lie within the specified symmetry subspace, i.e., the state is a eigenvector of
the chosen symmetry operator with a user-defined eigenvalue.

The organization of the paper is as follows. In Section 2 we illustrate in detail the
underlying theoretical framework of both the methods. In Section 3 we discuss the results
using Heisenberg XXZ-Spin Hamiltonian and choose two symmetry operators pertinent to
the system. We also explore a real molecular system (H2) to filter singlet states of total spin
angular momentum squared (S2) as the corresponding symmetry operator. We conclude
thereafter in Section 4 with a brief discussion of possible future extensions.

2. Method

Hybrid variational quantum algorithms have been extensively studied in the context
of solving unconstrained [14–17] and even constrained optimization problems [11,18,19].
The primary workhorse of such methods revolve around iteratively minimizing a cost
function through a usual gradient-based optimization scheme to tweak the parameters
of the quantum circuit subsequently. The gradients of the cost–function are typically
computed directly from the quantum circuit [20], for instance using a parameter shift
method [21], while the succeeding parameter updates proceeds classically. Updates are
expressed as expectation values of output states against some Hermitian operator that can
be re-expressed as a Pauli string sum and computed independently using measurements
on a basis that diagonalizes the operator or uses the Hadamard test [22]. The output state is
typically representative of an ansatz that is expressive enough to explore a sizeable portion
of the whole Hilbert space of dimension that scales as 2n where n is the number of qubits
used in the variational method. The chosen ansatz is generic and oblivious to the symmetry
eigensector being sought.

In this work, we explore an alternative route. The cornerstone of our technique lies
in its ability to confine the state-ansatz a priori to a particular eigenspace of the chosen
symmetry operator even before the optimization for minimal energy is attempted. This
is attained by building a variational state into the ansatz that selectively explores the
symmetry-subspace of interest.

We now define the problem formally, which shall be attempted to be solved in this
work. Let us consider a system characterized by a Hamiltonian H and let the complete set
of symmetry operators for this system be a set P = {Ok}N

k=1 wherein [H, Om] = 0 ∀ Om ∈ P.
Thus, the set H

⋃
P completely characterizes the state-space of the physical system. Given

a symmetry operator Ok ∈ P, we would like to find to find the lowest energy state |ψ∗〉
within a sector labelled by specific symmetry value. This can be computed through solving
the following optimization problem,

|ψ∗〉 = argmin
ψ(~θ)

ψ(~θ) ∈Ω

〈ψ(~θ)|H|ψ(~θ)〉

such that Ω = {|x〉| Ok|x〉 = S|x〉, ∀ |x〉 ∈ C2n} (1)

where S is the user-specified eigenvalue of Ok which labels the desired eigenspace and~θ
are the variational parameters. Without loss of generality, one can envision that |Ω| = r,
i.e., the symmetry subspace, is r-dimensional.

We start by first constructing a generic r-dimensional variational ansatz A(~α)|0〉
⊗

n

which allows us to subsequently confine the acceptable state within the symmetry subspace
Ω defined in Equation (1), where A(~α) is the unitary creating the variational ansatz with~α
being the corresponding parameters. If r is expressible as an exponentiation of 2, one could
condition the variational circuit over the first n−m qubits, where m = log2(r). Otherwise,
we choose m = blog2(r)c and then use a permutation gate to swap in the basis states to
match the size of the symmetry sector before applying another layer of variational ansatz.
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This ensures that A(~α) creates an output state whose dimension matches the symmetry
sector of interest. A discussion of the construction of Permutation gate to construct A(~α)
has been deferred to Appendix A. Mathematically, the action of the unitary A(~α) can be
envisioned as,

A(~α)|0〉
⊗

n =
2n

∑
i=1

ai(~α)|i〉 =
2n

∑
i=2n−r+1

ai(~α)|i〉 (2)

wherein |i〉 denotes the computational basis states and ai(~α) are the respective coefficients
parameterized over~α. The last equality in Equation (2) follows from the fact that ai(~α) =
0 ∀ i ≤ 2n − r. This allows us to create a variational ansatz over a r-dimensional subspace
of C2n

, as is required. Figure 1 provides a schematic view of the circuit involved in the
construction of ansatz A(~α). We now present two different methods that differ in the
post-processing of the ansatz A(~α)|0〉

⊗
n once created. As mentioned before, the ultimate

goal of both the methods will be to map the computational basis states {|i〉}2n

i=2n−r+1 onto
the symmetry sub-space Ω using a unitary transformation and then obtain the minimal
energy eigenstate in that subspace.

𝟎
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Figure 1. Ansatz (A(α)) has been used to build the state within a k-dimensional space in Equation (2).

2.1. Method 1—Exact Unitary

This method uses an exact unitary that is composed of the eigenvectors of the sym-
metry operator. Let U be the unitary operator that diagonalizes Ok i.e. U = ∑2n

i=1 |φi〉〈i|
wherein |φi〉 are the eigenvectors of the symmetry operator Ok. Using the unitary U on the
r-dimensional ansatz defined in Equation (2), we thus get,

UA(~α) |0〉
⊗

n =
2n

∑
j=1
|φj〉〈j|(

2n

∑
i=2n−r+1

ai(~α) |i〉) =
2n

∑
i=2n−r+1

ai(~α) |φi〉 (3)

where in the last equality of Equation (3) only the eigenvectors |φi〉2
n

i=2n−r ∈ Ω survive.
Operationally, the matrix U is constructed by stacking the r eigenvectors corresponding to
eigenvalue S in the last r-columns. Note that the coefficients ai in Equation (3) are explicitly
dependant on tunable parameters~α imparted from the ansatz A(~α). We thereafter train
these parameters~α by minimizing the energy of the output state using the Hamiltonian H
of the system as follows,

~α∗ = argmin~α
n
⊗
〈0| A†(~α)U† HUA(~α) |0〉

⊗
n . (4)

The minimization scheme in Equation (4) leads us to the minimal energy state within
the symmetry subspace, as is required. As this method uses the exact unitary U, it shall
work irrespective of any initial ansatz with an output that is restricted to the subspace. We
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schematically describe Method 1 in Figure 2a. This method, however, requires decomposing
the matrix U into a sequence of elementary gates which, depending on the symmetry, may
result in a quantum circuit with very large depth. To circumvent this drawback, we propose
an alternative approach (Method 2), described next.

(a)  Method 1

(b) Method 2

𝐔 = ෍

𝐢=𝟐𝐧−𝐫+𝟏

𝟐𝐧

𝛟𝐢 𝐢

x D times

Ry Rx

Ry Rx

Ry Rx

Ry Rx

Ry Rx

Ry

RyRy

Rx

RxRx

[Method 1 : Exact Unitary]

Compute Unitary (U) 
that diagonalizes Ok

Decompose Unitary into 2 
qubit gates (QISKIT)

Figure 2. The circuit decomposition and essential steps in (a) Method 1 and (b) Method 2.

2.2. Method 2—Approximate Unitary Construction

In this method, instead of using the exact unitary U obtained from the diagonaliza-
tion of the symmetry operator Ok as introduced in Method 1, we approximate it using
a parameterized ansatz Ũ which allows for a low depth quantum circuit construction.
Operationally, we use the same ansatz as in A(~α) for constructing Ũ(~θ) and then learn
the parameters variationally by minimizing the cost function 〈(Ok − S1)2〉, where S is the
desired eigenvalue. The state on which the unitary Ũ(~θ) acts is A(~α)|0〉

⊗
n, as introduced in

the previous section. The variational minimization over~θ is done over many realizations of
the parameter set~α, which is akin to an averaging procedure over the underlying sampling
distribution p(~α). Mathematically, the parameter set~θ is learned as follows,

~θ∗ = argmin~θ 〈
n
⊗
〈0| A†(~α)Ũ†(~θ)(Ok − S1)2Ũ(~θ)A(~α) |0〉

⊗
n〉p(~α) (5)

where 〈〉p(~α) represents the averaging over the distribution p(~α). The parameters ~θ∗ are
trained so as to achieve a very low margin of error of allowing Ũ to faithfully mimic
the exact unitary U and confine any subsequent operation to the symmetry subspace Ω
irrespective of the state prepared by the ansatz A. With the parameters~θ known, one can
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proceed towards doing a variational optimization on the parameters~α just as before to
minimize the energy,

~α∗ = argmin~α
n
⊗
〈0| A†(~α)Ũ†(~θ∗)HŨ(~θ∗)A(~α) |0〉

⊗
n . (6)

We schematically describe Method 2 in Figure 2b. In Figure 3, we describe an entire
algorithm that is followed for both Method 1 and Method 2, and highlight the essential
steps. Since we have discussed in detail the first two key steps of the algorithm, which
includes preparation of the ansatz using A(~α) |0〉

⊗
n (see Figure 1) and operation of the

unitary which confines the state within a symmetry subspace (see Figure 2), we emphasize
in some detail the subsequent steps which articulate the procedure for obtaining the ground
state energy in Figure 3 (designated as (III)). The procedure is similar to any variational
hybrid algorithms routinely used nowadays. One computes the average energy using the
Hamiltonian of the system and the parameterized state constrained in the symmetry sub-
space (from step II in Figure 3). The gradient of this energy with respect to the parameters
of the state is constructed and the convergence of the norm of the gradient is checked. If
the desired threshold is not attained, parameters of the state are updated (by changing
~α in step I in Figure 3) for the next iteration. The unitaries necessary to accomplish this
operation come from the standard procedure of the conversion of the system Hamiltonian
into Pauli-strings. The accompanying circuit description of such unitaries would then be
highly specific to the system Hamiltonian.

Output state and Energy

Initialize parameters of Ansatz (A) 

Compute Energy cost

Compute gradients wrt params of 
Ansatz (A)

Check convergence threshold

NO YES

Unitary for symmetry 
subspace confinement is

Constructed by Method 1 or
Method 2

Update Params of A

(I)

(II)

(III)

Figure 3. Flowchart indicating the steps involved in the algorithm. (I) Indicates preparation of the
ansatz as illustrated in Figure 1. (II) Preparation of the unitary that dictates symmetry restriction as
discussed in Figure 2. (III) The key steps in the variational optimization of the energy.

3. Results

Both methods discussed above have been tested against XXZ spin Hamiltonian and
H2 molecule Hamiltonian. We plot against chosen symmetries, the energy error, and state
fidelity against the low energy state that respects the symmetry. The results have been
obtained using Qiskit [23] state-vector simulator. The parameter updates in every iteration
has been globally bound by 0.5 radians and reduced iteratively for convergence. The use of
only Ry and Rx gates in our ansatz allows for gradients to be calculated with a shift of π
radians on the respective gate parameters, i.e., dRi(θ)/dθ = Ri(θ + π)/2, where i ∈ x, y, z.

3.1. XXZ Spin Hamiltonian

The XXZ spin Hamiltonian is given by,

H = ∑
i

J(σx
i σx

i+1 + σ
y
i σ

y
i+1) + Kσz

i σz
i+1 (7)
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where the summation is over the nearest neighbour spins with open boundaries. We study
the low energy states respected by the Reflection and Rotation Symmetry [24].

Both symmetry operators have eigenvalues of ±1. We would like to variationally
probe the low energy states in each of these subspaces. We set the number of spins to be 4
and work with J = 1 and K = 3. This corresponds to 16 dimensional Hilbert space. For
Method 2, we have made use of D = 5 layers as shown in Figure 2 to train the unitary Ũ(~θ)
up to a mean error of 0.001 on the Symmetry value for 100 random samples generated by
the ansatz A(~α).

3.1.1. Reflection Symmetry

The reflection symmetry operator is given by S = Πi(σ
x
i σx

i+1 + σ
y
i σ

y
i+1 + σz

i σz
i+1 +

I)/2 [24]. The reflection operator has a 6 dimensional subspace that measures -1 and a
10 dimensional subspace that measures +1. The decomposition of the Unitary was done
through built in Qiskit modules that make use of isometry to optimize on the number of
CNOT gates [25]. Figure 4 shows the energy error and state fidelity plots, indicating the
convergence of the variational methods to the exact solution for each of the Symmetry
values. Note that in Method 2, for S = −1, the method converges at the correct solution, de-
spite the overall ground state energy being lower (−11.226J). We notice that the symmetry
value fluctuates within a very small interval around the exact value during the training.

(a) (b)

(c) (d)

(e) (f)

Figure 4. Computing the lowest energy state of XXZ Hamiltonian within subspace labelled by the
Reflection Symmetry Operator using Unitary constructed from method 1 and method 2. (a) Method 1:
Energy error vs. iterations; (b) Method 1: State fidelity vs. iterations; (c) Method 2: Energy error vs.
iterations; (d) Method 2: State fidelity vs. iterations; (e) Method 2: Symmetry value vs. iterations;
(f) Method 2: Symmetry value vs. iterations.
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3.1.2. Rotation Symmetry

The reflection symmetry operator is given by S = Πi(σ
x
i ) [24]. The symmetry subspace

of the rotation operator with eigenvalue ±1 is 8 dimensional. We use an exact decom-
position of the unitary for Method 1 as presented in Appendix B. Figure 5 shows energy
error and state fidelity plots indicating the convergence of the variational methods to the
exact solution for each of the Symmetry values. Note that in Method 2, for S = −1, the
method converges at the right solution, despite the overall ground state energy being lower
(−11.226 J). Here again, we notice that the symmetry value fluctuates within a very small
interval around the exact value during the training.

(a) (b)

(c) (d)

(e) (f)

Figure 5. Computing the lowest energy state of XXZ Hamiltonian within subspace labelled by the
Rotation Symmetry Operator using Unitary constructed from method 1 and method 2. (a) Method 1:
Energy error vs. iterations; (b) Method 1: State fidelity vs. iterations; (c) Method 2: Energy error vs.
iterations; (d) Method 2: State fidelity vs. iterations; (e) Method 2: Symmetry value vs. iterations;
(f) Method 2: Symmetry value vs. iterations.

3.2. H2 Hamiltonian

As an example of a real-molecular system, we chose the prototypical H2 molecule.
The electronic Hamiltonian for the system is constructed in the STO − 3G basis in the
subspace spanned by vectors of the form |n2(↓), n1(↓), n2(↑), n1(↑)〉 with ∑i Si

z = 0 and
N = ∑i a†

i ai = 2 (the four such states are |0110〉, |0101〉, |1010〉, |1001〉). The corresponding
matrix (in units of eV) at the equilibrium bond length of 0.725 Å is [26]:
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H =


−1.06 0 0 0.18

0 −1.84 0.18 0
0 0.18 −0.23 0

0.18 0 0 −1.06

. (8)

Since the entire space is spanned by states with the zero eigenvalue of ∑i Si
z, we have used

the total angular momentum squared as the symmetry operator of our choice (Ok = Ŝ2).
The latter operator in the aforesaid basis is given by,

S2 =
1
2


1.0 0 0 −1.0
0 0 0 0
0 0 0 0
−1.0 0 0 1.0

. (9)

Only one of the eigenvalues of the S2 = s(s + 1) matrix is 1 and the remaining ones
are all 0. The techniques developed in this report requires the symmetry subspace to be
of a dimension greater than 1. Therefore, we shall be restricting to the subspace S2 =
s(s+ 1) = 0. For Method 1, the unitary has been optimally decomposed using the KAK [27]
decomposition algorithm. For Method 2, we have made use of D = 4 layers as shown in
Figure 2 to train the unitary U(~θ) up to a mean error of 0.001 on the Symmetry value for
100 random samples generated by the ansatz A(~α). Figure 6 shows energy error and state
fidelity plots indicating the convergence of the variational methods to the exact solution for
S2 = s(s + 1) = 0. Here again, we notice that the symmetry value fluctuates within a very
small interval around the exact value during the training.

(a) (b) (c)

(d) (e)

Figure 6. Computing the lowest energy state of the hydrogen Hamiltonian within ∑i Si
z = 0 subspace

labelled by S2 = s(s + 1) = 0 using Unitary constructed from method 1 and method 2. (a) Method 1:
Energy error vs. iterations; (b) Method 1: State fidelity vs. iterations; (c) Method 2: Energy error vs.
iterations; (d) Method 2: State fidelity vs. iterations; (e) Method 2: Symmetry value vs. iterations.

3.3. Simulation against Noise Models

We now test if the hardware efficient ansatz used results in a barren plateau, using
noisy simulations for Method 1 for a 4 qubit XXZ Hamiltonian with rotation symmetry.
The simulation is done using Qiskit’s noise simulator with qubit properties listed in Table 1.
No gate errors have been introduced. The method was run with no measurement error
mitigation performed to validate the robustness. We see in Figure 7 that the energy values
and state fidelity outputs fluctuate quite a bit in comparison to the results derived for
noiseless simulations in the previous sections. We would like to point out that the ansatz



Symmetry 2022, 14, 457 9 of 11

A(~α), being an hardware efficient ansatz, might have to be tuned so that the expressibility
does not lead to vanishing gradients, as noted in [28].

Table 1. Details of the 4 qubit noise model sampled from Qiskit and used for simulating results
shown in Figure 7. The noise model has been restricted to qubit errors only.

Qubit No. T1 (us) T2 (us) Readout-Error
(%)

Frequency
(GHz)

Anharomonicity
(GHz)

1 121.70 17.04 7.50 4.79 −0.31
2 111.68 132.02 2.24 4.94 −0.30
3 101.82 68.98 1.45 4.83 −0.31
4 116.71 85.88 2.15 4.80 −0.31

(a) (b)

Figure 7. Computing the lowest energy state of XXZ Hamiltonian within subspace labelled by the
Rotation Symmetry Operator using method 1 on a noisy Qiskit simulator. (a) Method 1: Energy error
vs. iterations; (b) Method 1: State fidelity vs. iterations.

4. Discussion

We discuss two general methods for restricting the exploration of a symmetry labelled
subspace for a variational ansatz in identifying the ground state energy of a spin XXZ
Hamiltonian and H2 Hamiltonian. Method 1 makes use of an exact unitary constructed from
the symmetry operator, creating a large circuit decomposition. We overcome this through
the use of variationally trained Unitaries developed in Method 2. The methods developed
in here work more generally even when the constraint function does not commute with
the Hamiltonian, i.e., is not a symmetry, as reflected in the construction of the unitary
Ũ(~θ). We would also like to point out that Method 2 provides a useful tool for developing
Unitaries variationally that satisfy a property of interest. The depth of the circuit and thus
the number of parameters to be trained is likely to increase with the number of qubits.
Additionally, it is possible to encounter symmetry operators in practice with eigenspaces
that scales polynomially in the number of qubits. In such cases, hindrances in training due
to barren plateaus are less likely to be encountered [29]. A proper size-dependant study can
corroborate the assertion. Additionally, such studies may test the likelihood of the ansatz
to be untrainable due to such restrictions and hence can serve as an insightful exercise to
be undertaken in near future. As most symmetry operators of interest are usually defined
with the similar operators acting over the entire qubit space, as future work one might
want to investigate minimal 2 qubit unitaries that leave the Symmetry value unchanged
and use them to create generalized ansatz over several qubits.
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Appendix A

We discuss a method of constructing permutation gates that help build the construction
of the subspace ansatz as shown in Figure 1 of Section 2. The depth of the permutation gate
decomposed depends on r− 2blog2(r)c, where r is the dimension of the symmetry subspace.
To illustrate the idea used in construction, consider the example presented in the S = −1
subspace of the Reflection symmetry for a 4 qubit XXZ Hamiltonian discussed in Section 3.
The subspace is r = 10 dimensional. The Ansatz A(~α) is supposed to span a vector in
10 dimensional subspace spanned by the basis vectors |6〉 , |7〉 . . . |15〉. Using an ansatz
controlled on the first qubit being turned only generates a spaces of dimension 8, leaving
out |6〉 , |7〉.Within the subspace ansatz our permutation gate is supposed to swap |6〉 , |7〉
with some basis element from |8〉 . . . |15〉 after the first layer to ensure the output spans a
space whose dimension is r. We select basis elements |14〉 to swap |6〉 and |15〉 to swap |7〉
inside. This choice is motivated from the fact that the binary representation of these digits
only differ in the most significant bit. Using a controlled rotation that’s, controlled on other
bits, one can straightforwardly exchange these basis elements with a X gate. Further since
it does not matter if elements greater than |6〉 get mapped internally as they belong to the
subspace of interest we would like to span, its trivial to show that the condition on the
constraining qubits, can be reduced further to just the most significant second and third
qubit. Thus, we mange to achieve the permutation using two 3-controlled X gate.

Appendix B

We discuss how to efficiently decompose the unitary gate U for the rotation symmetry
(S = Πi(σ

x
i )) for the case S = 1. A trivial diagonalization of S with U = H

⊗
4, where H

refers to the hadamard gate results in a diagonal matrix with entries 1 in the locations
{0, 3, 5, 6, 9, 10, 12, 15} and -1 in the locations {1, 2, 4, 7, 8, 11, 13, 14}. Thus we require to
replace the eigenvectors in the columns {8, 11, 13, 14} of the unitary with {0, 3, 5, 6}. This
would ensure that the Symmetry subspace to which U maps on the output of A(~α) always
measure to 1. We note that the pair {0, 8}, {3, 11}, {5, 13}, {6, 14} differ from each other
only in the most significant bit in the binary representation. Using a controlled rotation
that’s, controlled on other bits, one can straightforwardly exchange these pairs with an X
gate. Thus the unitary gate for Rotation symmetry is decomposed with four 3-controlled X
gate and a layer of Hadamard gate.
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