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Random quantum circuit sampling, a task to sample bit strings from a random quantum circuit, is considered
a suitable benchmark task to demonstrate the outperformance of quantum computers even with noisy qubits.
Recently, random quantum circuit sampling was performed on the Sycamore quantum processor with 53 qubits
[Nature (London) 574, 505 (2019)] and on the Zuchongzhi quantum processor with 56 qubits [Phys. Rev. Lett.
127, 180501 (2021)]. Here, we analyze and compare the statistical properties of the outputs of the random
quantum circuit sampling by the Sycamore and Zuchongzhi processors. Using the Marchenko-Pastur law of
random matrices of bit strings and the Wasssertein distances between bit strings, we find that the statistical
properties of Sycamore bit strings are quite different from those of Zuchongzhi bit strings, while both processors
score similar values of linear cross-entropy fidelity for random circuit sampling. Some bit strings sampled by
the Zuchongzhi processor pass the NIST random number tests while both Sycamore and Zuchongzhi processors
show similar patterns in the heat maps of bit strings. Zuchongzhi bit strings are much closer to classical uniform
random bits than those of Sycamore. It is shown that the statistical properties of bit strings of both random
quantum circuits change little as the depth of the random quantum circuits increases. Our findings raise a question
about the computational reliability of noisy quantum processors because two quantum processors with similar
noise levels and similar qubit structures produced statistically different outputs for the same random quantum
circuit sampling.
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I. INTRODUCTION

A quantum computer is believed to simulate quantum
systems much better [1] and to solve some computational
tasks exponentially faster [2,3] than a classical computer.
A demonstration of the outperformance of a quantum com-
puter, called quantum supremacy [4] or quantum advantage,
is considered one of the important milestones in develop-
ing practical quantum computers. Random quantum sampling
[5] is regarded as a good candidate for demonstrating quan-
tum advantage with noisy intermediate-scale quantum (NISQ)
computers available these days. Recently, quantum advantage
has been claimed for random quantum circuit sampling on the
Sycamore quantum processor with 53 superconducting qubits
[6] and the Zuchongzhi quantum processor with 56 supercon-
ducting qubits [7], and for boson sampling with optical qubits
[5,8,9].

Quantum advantages of the Sycamore and Zuchongzhi
quantum processors over classical computers for random
quantum circuit sampling were verified using the linear
cross-entropy benchmarking (XEB) fidelity, whose values
were estimated slightly larger than zero [6,7]. Both quantum
processors are made of two-dimensional arrays of supercon-
ducting transmon qubits, have similar error rates, executed the
same random quantum circuit, and scored similar XEB values.
So, one may speculate that the output bit strings generated
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by the two noisy quantum processors would be statistically
close as two classical computers with the same architecture
usually produce the same results for the same inputs or statis-
tically close results for stochastic calculations. However, it is
unknown whether or not two noisy quantum processors with
similar values of the XEB fidelity generate statistically similar
bit strings. In this paper, we analyze the statistical closeness
of the outputs of the two noisy quantum processors using
the NIST random number tests [10], the Marchenko-Pastur
distribution of eigenvalues of random matrices of bit strings
[11], and the Wasserstein distance between samples [12]. We
show that Sycamore’s random bit strings are farther away
from classical uniform random bit strings than Zuchongzhi’s
outputs, that is, the two outputs of bit strings are noticeably
different.

II. RANDOM QUANTUM CIRCUIT SAMPLING

Let us first summarize random quantum circuit sampling
implemented on the Sycamore and Zuchongzhi quantum pro-
cessors [6,7]. The task of random quantum circuit sampling
is to sample bit strings x = a1 · · · an ∈ {0, 1}n by applying
a random quantum circuit U on the initial state |0〉 of n
qubits followed by the measurement. Both Sycamore and
Zuchongzhi quantum processors executed the same random
quantum circuit U composed of m cycles as follows. A quan-
tum circuit Uk at the kth cycle consists of single-qubit gates
R selected randomly from the set {√X ,

√
Y ,

√
W } on all

qubits and deterministic two-qubit gates on the pair of qubits
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selected in the sequence of the coupler activation patterns of
two-dimensional superconducting qubits. After m cycles, a
final single-qubit gate R is applied before the measurement,
so the whole random quantum circuit with cycle m is given
by U = RUmUm−1 · · ·U1. The output of the random quantum
circuit is a bit string x that is sampled from the probability
p(x) = |〈x|U |0〉|2. By implementing the same random quan-
tum circuit M times, a collection of M random bit strings
D = {x1, . . . , xM}, i.e., an M × n binary bit array, is obtained.

To verify that a noisy quantum processor is performing
random quantum circuit sampling well [6,7], the linear cross-
entropy benchmarking (XEB) fidelity FXEB is introduced,

FXEB = 2n 1

M

∑

x∈D
p(x) − 1, (1)

where the ideal probability p(x) = |〈x|U |0〉|2 of finding a
bit string x is computed on a classical computer using
Schrödinger or Feynman simulators and the bit strings D =
{x1, . . . , xM} are generated by a quantum processor. It is
known that FXEB = 1 if a quantum processor implements a
random quantum circuit without errors, and FXEB = 0 if bit
strings are sampled from a classical uniform distribution.
The estimated XEB fidelity of Sycamore is FXEB = (2.24 ±
0.021) × 10−3 for 53 qubits, 20 cycles, and M = 30 × 106

samples over 10 circuit instances [6]. For the Zuchongzhi
quantum processor [7], the estimated XEB fidelity is FXEB =
(6.62 ± 0.72) × 10−4 for 56 qubits, 20 cycles, and M = 1.9 ×
107 samples.

While the XEB fidelity could serve as a benchmark for
the quantum advantage of random quantum circuit sampling,
it has some limitations. The XEB fidelity stems from the
Kullback-Leibler divergence or the cross entropy of an empir-
ical probability distribution p̃(x) of the data D from the ideal
probability distribution p(x) [13]. As the number of qubits
increases, it is very difficult to calculate both probability
distributions. The number of samples required to construct
the empirical probability p̃(x) increases exponentially because
the range of x ∈ [0, 2n − 1] does as well. While the XEB
fidelity needs only an ideal probability p(x) but not p̃(x), it
is still not scalable because in the quantum advantage regime
a supercomputer cannot calculate the ideal probability p(x) in
Eq. (1) and no other NISQ processor could do so. Recently,
the limitations of the XEB fidelity as a benchmark for quan-
tum advantage have been pointed out by Gao et al. [14]. More
importantly, the XEB fidelity could not give any clue about the
statistical properties of bit strings of random quantum circuit
sampling implemented on NISQ processors.

III. COMPARISON OF RANDOM QUANTUM CIRCUIT
SAMPLING OF SYCAMORE AND ZUCHONGZHI

A simple way of comparing the performance of two quan-
tum processors is to compare directly their outputs of a task,
here random quantum circuit sampling. Both Sycamore and
Zuchongzhi quantum processors are composed of transmon
qubits and have similar noise levels. The averages of single-
qubit gate errors, two-qubit gates errors, and the readout error
of Sycamore is about 0.15%, 0.36%, and 3.1%, respectively
[6]. The average errors of Zuchongzhi are about 0.14% for

single-qubit gates, 0.59% for two-qubit gates, and 4.52% for
readout, respectively [7]. Both processors implemented the
same random quantum circuit as described before and ob-
tained similar values of XEB fidelity. So, one may expect
that their outputs would be statistically close to each other.
However, that is not the case. Both Sycamore and Zuchongzhi
showed similar exponential decays of the XEB fidelity FXEB

as a function of qubit number n or cycle m [6,7].
We first examine whether the output bit strings of random

quantum circuit sampling are random or not while random
circuit sampling is not intended to generate random numbers.
There are simple quantum mechanical ways of generating
random numbers [15]. Random numbers have many practical
applications in Monte Carlo simulation, statistics, cryptogra-
phy, etc. Given a random quantum circuit U , the probability
p(x) = |〈x|U |0〉|2 of finding bit string x is not uniform due
to the entanglement and interference, so some bit strings
are more likely to be sampled than others. However, there
is no physical ground that the output of bit strings D =
{x1, x2, . . . , xM} would contain more bit 1 than 0 or vice versa.
Bits 0 and 1 are equally probable if there is no error. To see
this, the output of bit strings D is sliced into the collection
of n × n binary arrays, with which the heat maps are plot-
ted as shown in Fig. 1. Figure 1(a) depicts the heat map of
Sycamore’s bit strings for n = 53 qubits, m = 20 cycles, and
M = 3 × 106 samples [16]. Figure 1(b) displays the heat map
of Zuchongzhi’s bit strings for n = 56 qubits, m = 18 cycles,
and M = 3 × 106 samples. Figure 1(c) shows the heat map
of uniform random bits sampled from a classical computer
for n = 56 and M = 3 × 106. As depicted in Fig. 1, the heat
maps of random quantum circuit sampling on Sycamore and
Zuchongzhi quantum processors show bright and dark stripes
at some qubit indices while the classical uniform random
sampling does not. One may suspect that stripe patterns could
be caused by readout errors. However, for both Sycamore and
Zuchongzhi data sets, the locations of bright or dark stripes in
the heat maps do not coincide with the indices of qubits with
high readout errors.

We count the number of bit 1 contained in the output
bit strings D = {x1, . . . , xM}. The average of finding bit 1 is
denoted by p1. Most Zuchongzhi outputs show p1 is greater
than 1/2, as shown in the Supplemental Material [17], while
all Sycamore outputs have p1 less than 1/2 [18]. As depicted
in Fig. 1, Zuchongzhi’s bit strings with n = 56 qubits, m = 18
cycles have p1 = 0.500 94 while Sycamore’s bit strings for
n = 53 qubits and m = 20 cycles have p1 = 0.483 83. Note
that the readout errors of Sycamore and Zuchongzhi are re-
ported to be 3.1% and 4.52%, respectively. It is unclear why
Sycamore and Zuchongzhi are quite different in the probabil-
ity p1 of finding bit 1 in random quantum circuit sampling.

To see the randomness of bit strings, we perform the NIST
random number tests [10] for Zuchongzhi’s outputs. We find
that some Zuchongzhi data sets pass the NIST random number
tests while all Sycamore data sets do not [17,18]. Note that
the probability p1 of finding bit 1 is related to the frequency
test of the NIST random number tests. It is interesting to
see that some Zuchongzhi data sets pass the NIST random
number tests while all random quantum circuit sampling data
of Sycamore and Zuchongzhi show stripe patterns unlike the
classical uniform random samples, as shown in Fig. 1. This
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FIG. 1. Heat maps of bit strings of random quantum circuit sampling are plotted for (a) the Sycamore quantum processor with n = 53
qubits, m = 20 cycles, and sample numbers M = 106, (b) the Zuchongzhi quantum processor with n = 56 qubits, m = 20 cycles, and M = 106

samples, and (c) classical uniform random sampling with n = 56 and M = 106. The average of finding bit 1 of bit strings is denoted by p1.
Random quantum samples, (a) and (b), show the stripe patterns at specific qubit indices while (b) and (c) pass the NIST random number tests.

implies random quantum circuit sampling may be used to
generate quantum random numbers [15,19].

If bit strings are sampled from the classical uniform ran-
dom distribution, pcl(x) = 1/2n. Using the Marchenko-Pastur
distribution [11] and the Wasserstein distances [12,20], we
examine how the random bit-string outputs of Sycamore and
Zuchongzhi are far away from classical uniform random sam-
ples as a function of qubit number n and cycle m.

The signal out of randomness can be captured by the out-
liers of the Marchenko-Pastur distribution of random matrices.
This method has been applied to the covariance matrices
in finance [21,22], in predicting ligand affinity [23], and in
denoising magnetic resonance imaging (MRI) [24] and single-
cell data [25]. We use the Marchenko-Pastur distribution of
eigenvalues of random bit-strings to measure the distance
among Sycamore’s outputs, Zuchongzhi’s outputs, and classi-
cal uniform random samples. The data D = {x1, x2, . . . , xM},
a binary M × n array, is sliced into the collection of k × n
random matrices X . All entries of X are assumed to be inde-
pendent and identically binary random variable {0, 1} with the
mean μX = 1/2 and the variance σ 2

X = 1/4. We calculate the
empirical distribution of eigenvalues of n × n matrix 1

k X t X ,
as shown in Fig. 2. The empirical eigenvalue distribution is
composed of the two parts: the bulk corresponding to the
noise or random and the outliers representing the signal. To
understand this, let us consider the transformed random ma-
trix Y = 2X − J with J of all entries 1. The matrix 1

k X t X is
written as

1

k
X t X = 1

4k
(Y tY + X t J + X t Z + Jt J ). (2)

The matrix Y has the mean μY = 0 and the variance σ 2
Y = 1.

The eigenvalue distribution of the first term in Eq. (2), 1
k Y tY ,

follows the Marchenko-Pastur distribution [11]

ρ(λ) = 1

2πσ 2γ

√
(λ+ − λ)(λ − λ−)

λ
, (3)

where γ = n/k is the rectangular ratio and λ± = σ 2(1 ±√
γ )2 are the upper and lower bounds. Here, we take k = 2n,

i.e., γ = 1/2. The upper limit is given by λ+ = 1 + √
1/2.

By considering the scaling factor 1/4, the upper limit of

(1/4k)Y tY is given by (1 + √
1/2)/4 ≈ 0.7285. The last term

of Eq. (2), (1/4k)Jt J , has the two eigenvalues, 0 and n/4. So
the outliers are located around n/4.

Figures 2(a) and 2(b) plot the empirical distributions of
eigenvalues of 1

k X t X made of Sycamore bit strings with n =
51, m = 14, and M = 106 (red color), Zuchongzhi bit strings
with n = 51, m = 10, and M = 106 (blue color), and classical
uniform random bits with M = 106 (green color). As shown
in Fig. 2(b), the outlier peak of Sycamore is located to the left
of n/4 while the outlier peaks of Zuchongzhi and classical
random sampling are located to the right of n/4. Surpris-
ingly, Zuchongzhi’s bit strings are much closer to the classical
random bit strings than Sycamore’s ones while Sycamore
and Zuchongzhi have similar values of the XEB fidelity. As
shown in Fig. 2(c), both Sycamore and Zuchongzhi quantum
processors show similar exponential decreases of the XEB
fidelity of random circuit sampling as the number of qubits
n increases. Figure 2(c) is plotted by digitizing the graph of
Figs. 4(a) of Refs. [6,7]. Figure 2(d) plots the distances of
the outlier peaks of the Marchenko-Pastur distributions from
n/4 as a function of qubit number n. The Sycamore processor
becomes farther away from n/4 as n increases. On the other
hand, Zuchongzhi’s distance from n/4 changes a little. The
outlier peak distances from n/4 show that the two processors
generated statistically different bit strings while both scored
the same values of the XEB fidelity. Figure 2(e) shows the
exponential decays of the XEB fidelity as a function of cycle
m for the Sycamore processor with n = 53 qubits and the
Zuchongzhi processor with n = 56 qubits. Figure 2(f) plots
the outlier peak distances from n/4 as a function of cycle m
for both processors, which change little as cycle m increases.
This is also in contrast with the exponential decay behavior of
the XEB fidelity as a function of cycle m.

The statistical distances among Sycamore, Zuchongzhi,
and classical random sampling, based on the Marchenko-
Pastur distribution, can be further confirmed by calculating the
Wasserstein distances. The 1-Wasserstein distance between
two probability distributions p(x) and q(x) [12] is defined by

W (P, Q) = inf
π∈�(p,q)

E(x,y)∼π [||x − y||], (4)
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FIG. 2. (a) For n = 51 qubits, the bulk distributions of eigenvalues of random matrices 1
k X t X of classical random bit strings (gray dotted

line), the Sycamore bit strings (red dashed line), and the Zuchongzhi bit strings (blue dashed-dotted line) obey the Marchenko-Pastur law,
Eq. (3). (b) The outliers of the Marchenko-Pastur distribution of eigenvalues of classical random bit strings (gray dotted line), Sycamore’s bit
strings (red dashed line), and Zuchongzhi’s bit strings (blue dashed-dotted line) are distributed around n/4. (c) The plots of the XEB fidelity
FXEB for Sycamore (red solid circle) and Zuchongzhi (blue solid square) random circuit sampling as a function of the number of qubits n
are shown together for comparison. The Sycamore and Zuchongzhi XEB fidelity data are taken through digitizing Figs. 4(a) of Arute et al.
[6] and Wu et al. [7], respectively. (d) The outlier peaks of the Marchenko-Pastur distribution from n/4 are plotted as a function of the qubit
number n for Sycamore, Zuchongzhi, and classical random sampling (black triangle). (e) The XEB fidelity is plotted as a function of cycle m
for Sycamore with n = 53 [6] and Zuchongzhi with n = 56 [7]. (f) The distances of the outlier peaks of the Marchenko-Pastur distributions
from n/4 are plotted as a function of cycle m for the Sycamore processor with n = 53 and the Zuchongzhi processor with n = 56.

where �(p, q) is the set of all joint distributions π (x, y)
whose marginal distributions are p(x) and p(y), respectively.
Given two samples, {x1, x2, . . . , xM} and {y1, y2, . . . , yM},
W (p, q) can be calculated directly without calculating the
empirical distributions p(x) and q(x) [20]. The Wasserstein
distance is a true metric on a probability space, so the rela-
tive Wasserstein distances among Sycamore, Zuchongzhi, and
classical random sampling give rise to the triangle inequality.
Figure 3(a) plots the triangle relation among the three data sets
for n = 18, 24, 30, 36, 42, 45, 48, 51. All Zuchongzhi data
sets are closer to classical random sampling than Sycamore.
This is consistent with the outlier peak distances from n/4
of the Marchenko-Pastur distributions as a function of qubit
number n, as shown in Fig. 2(d). Figure 3(b) plots the Wasser-
stein distance of Sycamore n = 53 and Zuchongzhi n = 56
from the classical random bit strings as a function of cycle
m. This result is consistent with the behavior of the relative
distances of the outliers of the Marchenko-Paster distribu-
tion as a function of m, shown in Fig. 2(e). Note that the
Wasserstein distances between the bit strings with different
cycles of Sycamore (or Zuchongzhi) are less than the Wasser-
stein distance of them from the classical random sampling.
It is found that the statistical properties of output bit strings,
here the position of the outlier peak of the Marchenko-Pastur
distribution or the Wasserstein distance, depend only on the

number of qubits n and the number of cycles m, but not on
random seeds of random quantum circuits, i.e., the samples
from different random circuits have similar behavior in our
tests due to concentration properties. This is analogous to the
fact that the Monte Carlo integration depends on the number
of throws, but not on a random seed of a random number
generator.

IV. CONCLUSION

In this paper, we analyzed the statistical properties of
random bit strings sampled from Sycamore and Zuchongzhi
quantum processors using the heat maps, the NIST ran-
dom number tests, the Marchenko-Pastur distribution, and
the Wasserstein distances. Both Sycamore and Zuchongzhi
exhibit stripe patterns in the heat maps of random bit strings.
Some of Zuchongzhi’s data pass the NIST random number
tests. This may open up a possibility of using a random
quantum circuit as a quantum random number generator. The
Marchenko-Pastur distribution and the Wasserstein distances
of random bit strings shows that Zuchongzhi random quan-
tum circuit sampling is statistically much closer to classical
random sampling than Sycamore’s, while both have simi-
lar error rates and similar values of the XEB fidelity. The
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FIG. 3. (a) For qubits n = 18, 24, 30, 36, 42, 45, 48, 51, the rel-
ative positions of Sycamore (red circle), Zuchongzhi (blue square),
and classical random sampling (black circle at origin) form triangles
whose edges are the Wasserstein distances. For clarity, triangles are
rotated. (b) For Sycamore bit strings with n = 51 and Zuchongzhi
with n = 56, the Wasserstein distances from the classical random
sampling are plotted as a function of cycle m.

distances of random bit strings of Sycamore from the classical
uniform sampling as a function of the number of qubits n is

quite different from those of Zuchongzhi. The distances of
Sycamore’s and Zuchongzhi’s bit strings from the classical
random bit strings remain almost constant as the cycle number
m increases. This is in contrast with the exponential decay of
the XEB fidelity as a function of m.

The results found here raise a question about the computa-
tional reliability and verification of noisy quantum processors
[26]. Two classical computers performing the same task will
produce the same outputs (within statistical errors for stochas-
tic calculation). One may expect that two NISQ processors
with similar error rates would produce statistically close
outputs. If two quantum gates are close to each other, the prob-
ability distributions of the measurement outcomes for each
quantum gate operation are close too [27]. If a random quan-
tum circuit of the Sycamore quantum processor is close to that
of the Zuchongzhi processor and noisy levels of both qubits
are similar, then the difference in probabilities of the output
bit strings of the two processors would be small. However,
there is a noticeable difference in the statistical properties of
bit strings for random circuit sampling for the two processors.
This means that either the two devices have very different
noise models (despite having similar gate fidelities), or there
may exist an unknown fact that caused this difference. In order
to ensure the reliability of quantum computing with NISQ
quantum processors, it is necessary to have good benchmark
tools which can verify the output of quantum calculation
on a classical computer, until fully error-corrected quantum
computers are available.
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