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ABSTRACT: Quantum supremacy has been recently reported for random circuit sampling on
the Sycamore processor with 53 qubits. Here, we analyze the statistical properties of bit strings
sampled from random quantum circuits. In contrast to classical random bit strings, bit strings
sampled from Sycamore random circuits give rise to heat maps with stripe patterns at specific
qubits, have more bit 1 than 0, and do not pass the NIST random number tests. The difference
between the Sycamore bit strings and classical random bit strings is also demonstrated by the
Marchenko−Pastur distribution and the Girko circular law of random matrices. The
calculation of Wasserstein distances shows that the Sycamore bit strings are farther from bit
strings sampled from Haar-measure random quantum circuits than classical random bit strings.
Our results show that random matrices and Wasserstein distances could be used to analyze the
performance of quantum computers.

Q uantum computers can simulate nature better than
classical computers, as noted by Feynman while

initiating the idea of quantum computing.1 Quantum
supremacy,2,3 in which a quantum computer could perform
certain computational tasks exponentially faster than a classical
computer, is one of the key milestones in developing practical
quantum computers. The power of a quantum computer is
believed to stem from its quantum nature, such as interference,
entanglement, and a large Hilbert space growing exponentially
with the number of qubits. The speed-up of quantum
algorithms such as Shor’s factoring algorithm4 or the
Harrow−Hassidim−Lloyd algorithm for solving linear systems
of equations5 requires a large-scale and error-corrected
quantum computer. With the noisy intermediate scale
quantum computers currently available, quantum sampling
algorithms are considered good candidates to demonstrate
quantum supremacy or quantum advantage.6 There have been
recent reports claiming the achievements of quantum
supremacy for quantum sampling algorithms on noisy and
intermediate-scale quantum computers. In 2019, a Google
team7 claimed the first quantum supremacy by implementing
random quantum circuits on 53 superconducting qubits. More
recently, Wu et al. performed random quantum circuits with 56
superconducting qubits.8 In 2020, Zhong et al.9 reported the
quantum advantage in the Gaussian boson sampling with linear
optical quantum computers. The aim of the boson sampling
task is to sample bit strings from the probability distribution of
bosons, given by the permanence of a unitary operator.10,11

The quantum supremacy benchmark task of random
quantum sampling is to generate bit strings from a particular
probability distribution by applying random quantum circuits
on qubits followed by the measurement. The probability

distribution of bit strings generated by random quantum
circuits is not given by a uniform random distribution but
obeys the eigenvector distribution of a circular unitary
ensemble.12 The Sycamore quantum processor generated
millions of size n = 53 bit strings in about 200 s, but a
supercomputer with the currently known efficient classical
algorithms would take a significantly longer time.13,14 To verify
that a quantum computer implements random quantum
circuits correctly, the linear cross-entropy benchmark was
introduced.7,15 The linear cross-entropy benchmark fidelity is
calculated with a probability distribution obtained from
quantum simulation of random quantum circuits on a classical
computer and output bit strings of a quantum computer. Its
value was slightly greater than the theoretical threshold, which
corresponds to the case of uniformly random bit strings.
However, the statistical properties of bit strings obtained from
random quantum sampling seem to be unexplored. One may
ask whether Sycamore bit strings are as random as classical
random bit strings or how far away they are from classical
random bit strings or from bit strings sampled from Haar-
measure random unitary operators. A rigorous analysis is
needed to quantify the performance of random quantum
circuits because random unitary dynamics is essential in
chaotic scattering,16−21 quantum information processing,22
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randomized benchmarking of noisy quantum gates,23−25

scrambling of information in black holes and quantum many-
body systems,26,27 and hydrodynamic simulation28 in addition
to the quantum supremacy benchmark test.
In this Letter, we explore the statistical properties of bit

strings sampled from Sycamore random quantum circuits7,29

using the random matrix theory,21,30,31 the NIST random
number test code,32 and the Wasserstein distance.33 To
compare with the data set provided by the Sycamore quantum
supremacy experiment, classical random bit strings and bit
strings sampled from Haar-measure random unitary operators
are generated. The heat map patterns of bit strings and the
NIST random number tests will show the nonrandomness of
Sycamore bit strings and uncover the noise of the Sycamore
quantum processor. The difference between Sycamore bit
strings and classical random bit strings is illustrated by the
positions of outliers of random matrices composed of bit
strings. Finally, we will calculate the Wasserstein distance
between various data sets of bit strings. It will be shown that
Sycamore bit strings are farther from bit strings sampled from
Haar-measure unitary operators than classical random bit
strings.
Let us start with a brief introduction to the random quantum

sampling benchmark and how to verify its faithful implemen-
tation. The random quantum circuit benchmark starts with
sampling a single random unitary operator U(2n), then
applying it to an input state |0n⟩ of n qubits and measuring
the output state |ψ⟩ = U|0n⟩ in the computational basis {|x⟩} to
generate the bit string x = a0a1···an−1 with ai ∈ {0, 1}. The
probability of getting a bit string x is given by px ≡ |⟨x|ψ⟩|2 =
|⟨x|U|0n⟩|2. By repeating this process M times, an M × n binary
array is obtained.
The first key element of the random quantum sampling is

how to draw unitary operators uniformly and randomly, i.e., a
random quantum circuit. Mathematically, this could be done
with the Haar invariant measure on a U(2n) unitary group. The
collection of these random unitary operators is called a circular
unitary ensemble (CUE) introduced by Dyson.12 The Haar-
measure sampling of a unitary operator out of the unitary
group is challenging. A unitary operator U(2n) can be
decomposed into the (2n − 1)! product of two-dimensional
unitary transformations, called the Hurwitz decomposition.34,35

However, this decomposition requires a huge amount of gate
operations: the number of 1- or 2-qubit gates is n2 × 22n, and
the number of parameters is 22n. Emerson et al.22 proposed a
method of generating pseudorandom unitary operators: the
quantum circuit of n random unitary rotations on single qubits
with 3n parameters followed by the simultaneous two-body
interactions on n qubits are repeated m times. On a classical
computer, random unitary matrices can be generated by the
QR decomposition of matrices with Gaussian random complex
elements.36 The QR algorithm needs O((2 ) )n 3 floating point
operations.
The second key element of the random quantum sampling is

the statistical property of the probability px finding a qubit state
|ψ⟩ = U|0⟩ in |x⟩. A qubit state evolved by a random unitary
operator distributes uniformly in a 2n dimensional Hilbert
space. The amplitudes cx of |ψ⟩ = ∑xcx|x⟩ may have the
Gaussian distribution on the surface of a 2 × 2n dimensional
sphere. This leads to the probability distribution P(p) for the
random variable p (dropping the subscript x of px)

=P p N p( ) ( 1)(1 )N 2 (1)

This is the chi-square distribution with 2 degrees of freedom
p( )2

2 . It is also known as the eigenvector distribution of a
circular unitary ensemble.16,17,20,21 For large N, it becomes
P(p) = =N N pe /(1 e ) e ( )Np N Np

2
2 . The expectation

value of finding p with respect to P(p) is given by 1/N. This is
consistent with our intuition that classically the probability px
of finding a bit string x out of N possible bit strings is 1/N.
Note that in some papers7,15,37 eq 1 is miscalled the Porter−
Thomas distribution. However, the Porter−Thomas distribu-
tion is given by PPT(p) = =p( ) e

Np
Np

1
2 1

2
/2, i.e., the chi-

square distribution with 1 degree of freedom and is known as
the eigenvector distribution of an Gaussian orthogonal
ensemble.20,21,38,39

The last key element is to verify the faithful implementation
of random quantum circuits. To this end, one has to estimate
the empirical probability px of finding a random quantum state
|ψ⟩ = U|0⟩ in |x⟩ with x = 0, ..., 2n − 1 from the output data, a
M × n binary array. Then one has to construct an empirical
probability Pem(p) of probabilities p and to compare it to the
ideal probability P(p) given by eq 1. For a small number of
qubits, the Kullback−Leibler divergence or the cross entropy
of Pem(p) from P(p) was used to measure how close the
probability distribution Pem(p) is to the ideal distribution
P(p).15,37

However, in the quantum supremacy experiment with the
Sycamore quantum processor with n = 53, the construction of
Pem was impossible because a few million bit strings are too
small to estimate p(x) with x = 0−9 × 1015. Instead, the linear
cross-entropy benchmark fidelity FXEB = · = p x2 ( ) 1n

M i
M

i
1

1 is
introduced.6,7,37,40,41 Here, xi are the observed bit strings and
the probability p(x) is calculated using the Schrödinger−
Feynman simulation of a single random unitary operator for n
= 53 on a supercomputer.7,42 In the quantum supremacy
experiment,7 FXEB = 0.00224 for n = 53 qubits was obtained. A
tricky point is that in order to calculate FXEB, i.e., to verify the
quantum supremacy for random quantum sampling over a
classical computer, one needs the quantum simulation of a
random quantum circuit U on a supercomputer. Thus, the
verification of random quantum sampling with FXEB may not be
scalable.
The measurement data, M × n bit strings,29 are the only

available information indicating whether the random quantum
circuit benchmark was implemented properly on the Sycamore
quantum processor. To perform the comparative analysis on
the Sycamore bit strings, we generate the two data sets of bit
strings. The first data set is classical random bit strings where
bits 0 and 1 are equally likely. If bit strings are sampled from
the classical uniform random distribution, the cross-entropy
benchmark fidelity is known to be FXEB = 0. So the classical
random bit strings will serve as an indicator to the lower
boundary of the performance of random quantum sampling.
The second data set is bit strings sampled from a single random
unitary matrix, an element of a circular unitary ensemble whose
distribution is the Haar measure on the unitary group U(n).
We call them the CUE bit strings though we deal with a single
random unitary operator rather than the ensemble of random
unitary operators. It is well known that a random unitary
operator can be constructed with the QR decomposition
algorithm.36 A random matrix A with complex elements
sampled from the normal distribution is factored as A = QR.
Then Q is a Haar measure random unitary matrix. The CUE
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bit string x is sampled from pCUE(x) = |⟨x|ψ⟩|2 = |⟨x|Q|0⟩|2. The
CUE bit strings for n = 12 are generated using the Python or
Julia random matrix library.43 The CUE bit strings will be an
indicator to the upper limit of the performance of random
quantum sampling.
A simple way of testing randomness of bit strings is to detect

some underlying patterns. We plot the heat maps of bit strings
as shown in Figure 1. By slicing an M × n rectangular array of
bit strings, =D x x x( , , ..., )M1 2

T, the ensemble of n × n square
binary matrices { = }+ + +X x x x( , , ..., )k nk nk nk n1 2

T is con-
structed. Here, xi = a1a2...an is the ith row of the binary array
D and k = 0, 1, ..., M/n − 1. Panels a, b, and c of Figure 1 show
the heat maps of the average density matrix, = = XX n

M k
M n

k0
/ ,

with n = 12 for the Sycamore bit strings, the CUE bit strings,
and the classical random bit strings, respectively. The heat
maps for other Sycamore data from n = 12 to n = 53 and
classical random bit strings for n = 53 are shown in Figures
S1−S3 in the Supporting Information.
Surprisingly, all the heat maps of Sycamore data show the

stripe patterns at some qubit indices while the classical random
bit strings do not. Some of the CUE bit strings show the stripe

patterns, while others do not. As depicted in Figures S1−S3 in
the Supporting Information, the two coupler activation types,
EFGH and ABCDCDAB, give rise to different bright and dark
stripe patterns. For n = 53 and ABCDCDAB activation, the
stripe patterns become more clear as the cycle number m
increases. The total number of bit 1 of binary array D is
counted to calculate the average p(1) of finding bit 1. As
shown in Figure 1a−c, Sycamore bit strings show the value
p(1) ≈ 0.486, which is less than the expected value of 0.5,
while the CUE bit strings and the classical random bit strings
have p(1) ≈ 0.498 and p(1) ≈ 0.50, which are very close to
0.5. As shown in Figures S1−S3 in the Supporting Information,
p(1) for Sycamore bit strings ranges from 0.483 to 0.489. The
nonrandomness of Sycamore bit strings can also be checked
with a random number test as well as the stripe patterns. We
perform the NIST statistical random number tests.32,44 As
shown in Table S1 in the Supporting Information, Sycamore
bit strings fail to pass some NIST random number tests while
the classical random bit strings pass. The failure of the NIST
frequency test indicates that the Sycamore data set has too
many 0s.

Figure 1. For n = 12 and M = 500 000, the first, second, and third columns of figures show bit strings sampled from the Sycamore random circuit,29

bit strings sampled from a random unitary operator generated with the QR algorithm, and classical random bit strings, respectively. Panels a, b, and
c are the heat maps of bit strings. p(1) represents the average of getting bit 1 over all bit strings. Panels d, e, and f are the histograms of bit string x
with 0 ≤ x ≤ N − 1. The red lines stand for the average of px, =p M N/ . Panels g, h, and i are the empirical probability densities as a function of
Np that are constructed from panels d, e, and f. The black lines plot eq 1, P(p). The red lines are fitting curves. The exponentially modified
Gaussian distribution has three parameters for location, scale, and shape. The normal distribution is denoted by ( , ) with the mean μ and the
standard deviation σ.
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One may speculate that the failure of Sycamore bit strings to
pass the NIST random number tests is caused by the
measurement error of the Sycamore processor. The Sycamore
quantum processor is more likely to produce the measures
outcome 0 (the ground state) than outcome 1 (the first excited
state).7 This measurement error possibly accounts for the
average of finding bit 1 less than that of finding bit 0 in
Sycamore bit strings. However, we find that the Zuchongzhi
quantum processor8 generated data where the average of
finding bit 1 is equally likely to that of finding bit 0.45

Next, we calculate the empirical distributions p(x) = bx/M
for n = 12, where bx counts the number of bit strings with the
value x and 0 ≤ x ≤ N − 1 in decimal notation. As illustrated
in Figure 1d−f, Sycamore data show wider fluctuation in the
count of bit strings in x than the classical random bit strings
but less than the CUE bit strings. Using the empirical
distribution p(x), we construct the three empirical probability
distributions PSycamore(p), PCUE(p), and Pcl(p) to see if they
follow eq 1, the eigenvector distribution of the circular unitary
ensemble. As shown in Figure 1g−i, the probability PCUE(p)
for the CUE bit strings follows eq 1, P(p)/N = exp(−Np), but
PSycamore(p) for the Sycamore bit strings deviates from it. As
expected, P(p) for the classical random bit strings is given by
the Gaussian distribution. This analysis implies that the
quantum supremacy benchmark test for random quantum
sampling with the Sycamore quantum processor is in the
middle between the perfect random quantum sampling and the
classical uniform random sampling.
The difference among the Sycamore bit strings, the CUE bit

strings, and the classical random bit strings is further illustrated
using the random matrix theory of the random binary matrices.
The collection {Xk} of n × n matrices Xk of random bit strings
can be regarded as a real Ginibre ensemble. It is well known
that for random matrices with identically and independently
distributed matrix elements with zero mean, the distribution of
complex eigenvalues λ of random matrices follows the Girko
circular law.31,46 However, random matrices formed by random
bit strings here have the matrix element xij ∈ {0, 1}, so the
mean of a matrix X is not zero. If xij are sampled identically and
independently from the Bernoulli distribution, the mean of X
could be 1/2. We are interested in whether the mean of X
generated by quantum random circuits is identical to 1/2 or
not.
The distributions of the complex eigenvalues of random

matrices{ }X
n

k1 ( ) with k = 1, ..., 100 are plotted in Figure 2.

Most eigenvalues of both Sycamore and classical random
matrices are distributed inside of the circle with radius 1/2, and
some outliers with large real eigenvalues are located outside
the circle. As shown in Figure 2, the positions of outliers with
large real eigenvalues of Sycamore bit strings are different from
that of the classical random bit strings. The radius 1/2 and the
outliers can be explained as follows: The matrix X with
nonzero mean can be transformed to Z with zero mean by

=Z X J2 (2)

where J is an all-one matrix. The ensemble of n × n real
random square matrices (Zk) with the matrix elements zij is
sampled identically and independently from the Bernoulli
distribution with zero mean and unit variance. The complex
eigenvalues of Z

n
1 are distributed uniformly in the unit circle.

So the radius of the circle of the eigenvalue distribution of X is

1/2. The Saturn-ring effect along the real line47,48 and the
outliers shown in Figure 2 are due to the fact that X and J are
noncommutative.
Let us slice the M × n random bit-string array D into p × n

rectangular binary matrices X where p > n. Then, the collection
of n × n symmetric matrices = ·W X X

p
t1 is called the Wishart

ensemble. It is known that if the elements of X are sampled
identically and independently from the normal distribution

( , ) with zero mean μ = 0 and the variance σ2, the
distribution of real eigenvalues of W is given by the
Marchenko−Pastur distribution49

= +( )
1

2

( )( )
2 (3)

where = ±± (1 )2 2 are the upper and lower bounds and
γ = n/p is the rectangular ratio. Here we take p = 2. Figure 3
plots the Marchenko−Pastur distributions of the Sycamore bit
strings and the classical random-bit strings for n = 53. As

Figure 2. Distributions of complex eigenvalues λ of the n × n random
bit matrices {Xk} are shown for the Sycamore bit strings (a) and for
the classical random bit strings (b) for n = 53. Only eigenvalues of
100 Xk samples are shown. The black circle is known as the Girko
circle of the non-Hermitian Ginibre ensemble. The outliers far from
the circle are the real eigenvalues located between 3 and 4.

Figure 3. Marchenko−Pastur distribution of eigenvalues of Wishart
ensembles for Sycamore bit strings and classical random bit strings.
The inset shows the outlier of the Marchenko−Paster distribution
that distinguishes the classical random bit strings and Sycamore bit
strings.
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shown in Figure 3, the outliers outside the Marchenko−Pastur
distribution distinguish the Sycamore bit strings from the
classical random bit strings. With eq 2, W can be expressed as

= · + · + · +W
p

Z Z Z J J Z J J1
4

( )t t t t

(4)

Here the first term of eq 4 is to be written as ·
p

Z Z1
2 2

t

, so Z
2
has

zero mean and variance σ2 = 1/4 while the variance of X is σ2 =
1/2. This gives the upper and lower bounds, λ+ = 0.728 and λ−
= 0.021, respectively. The last term of eq 4 becomes

· =× × ×J J J( ) ( ) 1/4( )
p

t
n p p n n n

1
4

where an all-one matrix J has

the eigenvalues 0 and n. So the outliers are located around 53/
4.
Up to now, we have shown that the Sycamore bit strings are

different from CUE bit strings and classical random bit strings
using heat maps and random matrix theory of random bit
strings. The final question we would like to address is how
different the Sycamore bit strings are from the CUE or classical
random bit strings. In the quantum supremacy benchmark test
for random quantum sampling,7 the cross-entropy benchmark
fidelity was used to measure how the experimental distribution
is close to the ideal distribution. The disadvantage of the cross-
entropy is that it is not symmetric and gives rise to zero or will
diverge if there is no overlap between two distributions. To
overcome these, we employ the Wasserstein distance of order
1, W(p, q) between two discrete probability distributions, pi
and qi

= | |W p q x y( , ) inf
i j

i j i j
,

,
ij (5)

where πij is a joint probability of xi and yj such that ∑iπi,j = qi,
∑jπij = pi, and πij ≥ 0. Given two samples, {x1, x2, ..., xM} and
{y1, y2, ..., yM}, W(p, q) can be obtained directly without
calculating the empirical distributions p and q. We use the
python optimal transport library50 for calculating the
Wasserstein distance between two samples. Figure 4a presents
the Wasserstein distances, normalized by N, between the
Sycamore bit strings and the classical random bit strings as a
function of n. For n = 53, the Sycamore data with the
activation pattern with EFGH are closer to the classical random
bits than those with ABCDCDAB. For n = 12, we calculate the
Wasserstein distance among all pairs of the Sycamore bit
strings, the CUE bit strings, and the classical random bit
strings. The Sycamore data set for n = 12 qubits is available
only for m = 14 cycles and is composed of the two subgroups:
10 files with 12 full qubits ranging from n12-m14-s0-e0 to
n12-m14-s9-e0, and the other 10 files with the 6th qubit
elided ranging from n12-m14-s0-e6 to n12-m14-s9-
e6. These three data sets are located on the vertices of a
triangle whose side lengths are given by Wasserstein distances
(Classical) − (CUE), (CUE) − (Sycamore), and (Sycamore)
− (Classical). So their relative locations in the two dimensions
are displayed in Figure 4b. This shows that the Sycamore bit
strings are farther from the CUE bit strings than the classical
random bit sample. Also, all the Sycamore data except 2 data
are fit to a straight line passing between the CUE and classical
random bit samples. One can see that the Wasserstein
distances of the Sycamore data from the CUE bit strings or
the classical random bit strings are sensitive to random number
seeds, {s0, ..., s9}.

In conclusion, we analyzed the statistical properties of the
Sycamore bit strings generated by random quantum circuits. It
is found that the heat maps of the Sycamore data have stripe
patterns at specific qubit sites. Also, the Sycamore bit strings
contain more bit 0 than bit 1, which may be caused by readout
errors. The Sycamore bit strings fail to pass the NIST random
number tests. The random matrices of random bit strings
distinguish the Sycamore data from the classical random bit
strings. The calculation of the Wasserstein distance shows that
the Sycamore bit strings are farther from the CUE bit strings
than the classical random bit strings. The two activation
patterns of the Sycamore quantum processors give rise to quite
different results in the heat map of the bit strings and in the
Wasserstein distances. Our findings imply that the random
matrix analysis and the Wasserstein distance may be used as
benchmark tools to measure the performance of intermediate
scale quantum computers. The linear cross-entropy fidelity
requires the quantum simulation on a classical computer to
calculate the probability p(x) of finding a bit string x. As the
number of qubits increases, the quantum simulation becomes
very difficult on a classical computer. So one faces the dilemma
of how to verify the performance of quantum computers using
the linear cross-entropy.51 The calculation of the Wasserstein

Figure 4. (a) Wasserstein distances between the Sycamore bit strings
and the classical random bit strings, normalized by dividing by N,
plotted as a function of the number of qubits, n. The blue and orange
dots represent the activation patterns EFGH and ABCDCDAB,
respectively. (b) For n = 12, all pairs of Wasserstein distances
among the Sycamore bit strings, the CUE bit strings, and the classical
random bit samples are calculated, and their relative locations are
plotted. For each sample, M = 500 000 is taken.
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distance requires only two data sets of bit strings and does not
need to estimate probability distributions from the two data
sets. Classical random bit strings for one hundred qubits can be
easily generated to calculate the Wasserstein distance between
the classical random bit strings and the bit strings sampled
from random quantum circuits.
As shown here, the statistical properties of bit strings

sampled from random quantum circuits are affected by various
errors. The same may be true of quantum simulation. For
example, Sage et al. prepared condensates of photons on a 53
qubit quantum computer.52 They reported that as the number
of qubits increases, the deviations of the measured values of
quantum simulation from the ideal values become large
because of the accumulation of various errors. The character-
ization and mitigation of errors of intermediate-scale quantum
computers is necessary to perform quantum simulation for
large-scale molecules and realize quantum materials on
quantum computers.
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