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Abstract: Quantum computers are believed to have the ability to process huge data sizes, which can
be seen in machine learning applications. In these applications, the data, in general, are classical.
Therefore, to process them on a quantum computer, there is a need for efficient methods that
can be used to map classical data on quantum states in a concise manner. On the other hand, to
verify the results of quantum computers and study quantum algorithms, we need to be able to
approximate quantum operations into forms that are easier to simulate on classical computers with
some errors. Motivated by these needs, in this paper, we study the approximation of matrices
and vectors by using their tensor products obtained through successive Schmidt decompositions.
We show that data with distributions such as uniform, Poisson, exponential, or similar to these
distributions can be approximated by using only a few terms, which can be easily mapped onto
quantum circuits. The examples include random data with different distributions, the Gram matrices
of iris flower, handwritten digits, 20newsgroup, and labeled faces in the wild. Similarly, some
quantum operations, such as quantum Fourier transform and variational quantum circuits with a
small depth, may also be approximated with a few terms that are easier to simulate on classical
computers. Furthermore, we show how the method can be used to simplify quantum Hamiltonians: In
particular, we show the application to randomly generated transverse field Ising model Hamiltonians.
The reduced Hamiltonians can be mapped into quantum circuits easily and, therefore, can be
simulated more efficiently.

Keywords: quantum machine learning; quantum algorithms; tensor decomposition; data mapping;
dimension reduction

1. Introduction

Quantum computers are considered to be theoretically more efficient than classical
computers: BPP ⊆ BQP, which are the complexity classes for the problems that are
solvable with a bounded error, respectively, on a probabilistic machine and a quantum
computer. For instance, in the search for an item among unstructured N items, quantum
computers can go beyond the theoretically proven classical lower bound of O(N) and
find an item in O(

√
N) steps [1]. In addition, although currently there is not a known

classical poly-logarithmic algorithm for integer factorization or similar problems, these
problems can be solved on quantum computers in poly-logarithmic time by using Shor’s
factoring algorithm [2] (see Ref. [3] for quantum algorithms in general). However, it is still
unknown if BPP = BQP or if the separation is polynomial or exponential (see, e.g., [4]).
Note that although Shor’s algorithm indicates an exponential speed up over the currently
known classical algorithms, since the integer factorization is not a proven NP-complete
or NP-hard problem, this does not mean one can solve general NP-complete problems
in polynomial time on quantum computers. However, one can construct some instances
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similar to (or can be mapped into) the integer factorization and then solve them with Shor’s
algorithm [5], even though we still do not know if those instances naturally exist in any
practical problem [6].

Any quantum computation can be represented by an N×N matrix acting on n = log(N)
number of qubits. According to Solovay–Kitaev theorem [7,8], any quantum operation can be
approximated by using single and two-qubit quantum gates where the approximation error is
determined by the number of gates. In general, an N× N matrix requires O(N2) numbers of
single and CNOT gates (or any two-qubit entangling gate) for an exact representation since the
matrix may have up to N2 number of independent coefficients [9]. From this, one may argue
that simulating a given general matrix computation on quantum computers in O(poly(n))
with a certain accuracy may not be possible. Therefore, we assume the complexity classes P
and NP are not equal; quantum computers, in general, cannot solve NP-complete problems
with the n number of parameters in O(poly(n)) because the solution of these problems can
be mapped to a simulation in a matrix-vector transform with sizes O(N2) and O(N) [10,11].
This means that although we know that some problems can be solved more efficiently, it is
still not fully known whether a meaningful quantum computation with poly(n) quantum
operations are beyond the capacities of classical computers: i.e., under certain conditions, such
as a special memory structure; if the result of the computation can be obtained from the given
input in O(poly(n)) by a classical computer (by using generally randomized algorithms).

Machine-learning tasks on quantum computers have started with various types of
proposals for quantum neural networks to either speed up the learning task or provide
a better neural network model, e.g., quantum mechanics modeling human-neuron sys-
tems [12], quantum dots [13,14], or general quantum computational tools, are being used
to describe classical neural networks [15]. After Lloyd’s seminal paper [16] that provided a
poly-logarithmic algorithm for principal component analysis of data stored in quantum
ram (the data are given as quantum states), the research on quantum machine learning
and quantum big data analysis gained a lot of attention and momentum (see [17,18] for
a review of the area and [19] for an introduction with a comparative analysis to classical
machine learning). The quantum principal component analysis leads most researchers to
believe that quantum computers may provide exponential speed up for data analysis tasks.
However, it is shown that by using a classical data structure similar to the assumptions
made on the quantum algorithm, one can also perform the same analysis task on classical
computers exponentially faster [20]. Although with the currently known quantum algo-
rithms, exponential speed up is not known, some quantum versions of the data analysis
algorithms are still faster in terms of computation complexity [20]. In addition, quantum
computers are expected to be able to handle more data. Therefore, they would be more
powerful in terms of computational space and capacity. Some of the quantum versions of
the classical algorithms are also shown to be more accurate for the same machine-learning
problems [21,22].

1.1. The Motivation
1.1.1. Mapping Data into Quantum States to Run on Quantum Computers

Using parameterized quantum circuits (so-called variational quantum circuits, VQC),
one can generate a matrix U(θ) whose transformation depends on the parameters given
by the vector θ: i.e., the parameters define the specifics for the quantum gates, such as the
angle values. In general, because of the training and computational difficulties, the design
structure of U(θ) is fixed by using quantum gates, which guarantees the entanglement of
the qubits and certain computational prowess.

In many recent quantum machine learning models, various types of variational quan-
tum circuits are used as a replacement to a model of a neural network. Given different
inputs as the initial state of the quantum circuit, training in these models is generally per-
formed by classically optimizing the parameters of the circuits. In other words, the learning
task aims to find a circuit U(θ) so that for an input

∣∣ψ〉 representing a data vector, U(θ)
∣∣ψ〉
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outputs a state from which the expected result can be obtained through quantum measure-
ments with high probability.

In this learning model, one of the fundamental tasks is to find a way to map a data
vector x into a quantum state

∣∣ψ〉 without losing any information. This can be performed
in two different ways [17,18,23,24]: (i) as performed in neural networks, we use one qubit
for each feature xi. Because of the similarities to classical neural networks, this mapping
provides a natural way to perform quantum machine learning with variational quantum
circuits. However, the difficulty is that the required number of qubits may be very high
and is very likely beyond the capabilities of current (may also be near future) quantum
computers. (ii) We can consider

∣∣ψ〉 = x/‖x‖. Although the learning task may become
more difficult, the number of qubits becomes exponentially small in comparison to the
dimension of the data vector; we will use N = 2n. However, generating a general x requires
O(N) quantum gates. This complicates the simplicity of the variational quantum circuits
and impedes the applications to the problems with high dimensional data vectors. As a
result, as in the classical data analysis, for quantum computers, we need to find methods
similar to the singular value decomposition [25] to reduce the dimensions of data sets in a
way so that we can reduce the required number of qubits and the number of quantum gates.

1.1.2. Classical Simulation of Quantum Circuits and Designing More Efficient
Quantum Circuits

Simulating quantum operations is difficult when the qubits are entangled. It is known
that quantum operations can be efficiently simulated by taking advantage of their mathe-
matical structures, which are generally studied by using tensor networks [26,27]. Tensor
networks are used to simulate quantum systems more efficiently and approximate them
with certain accuracy (e.g., [28,29]).It is also well known that the bipartite entanglement
can be understood by using the Schmidt decomposition of the bipartite system [30,31].

Recently, it has been shown that the coefficients in the Schmidt decomposition of
quantum Fourier transform exponentially decay; thus, the quantum Fourier transform
may be efficiently simulated on classical computers and also may be more efficient than
the classical algorithms for the discrete Fourier transform [22]. It is also shown that the
entanglement can be classically forged through the Schmidt decomposition to combine the
results of two separate quantum operations on classical computers [32].

Motivated by the above two points, in this paper, we study the approximation of
matrices and vectors by using their tensor products obtained through successive Schmidt
decompositions. We show that some data distributions can be approximated by using
a few terms that can be easily mapped into quantum circuits. Similarly, some quantum
operations may also be approximated with high accuracy that is easier to simulate on
classical computers.

In the following, we first explain Schmidt decomposition and draw an equivalent
recursion tree that can be used to understand the decomposition. Then, we describe
how this tree can be used to eliminate the terms with lower coefficients and generate
approximated quantum operators. In Section 3, we show the applications of the method to
random data vectors, Gram matrices, and general symmetric matrices on example machine
learning datasets: Iris flower, handwritten digits, 20newsgroup, and labeled faces in the
wild. Then, after discussing how it can be used in solving systems of linear equations, we
show the approximation of the quantum Fourier transform in Section 3.3. Then, we study
the dataset with a circular type distribution in Section 3.4 and variational quantum circuits
with different depths in Section 3.5. In our final example, in Section 3.6, we show how
the method can be applied as an approximation tool to reduce the terms in a transverse
field Ising model of quantum Hamiltonians. After showing how classical and quantum
computation can be performed with the approximated forms, we conclude the paper.
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2. The Schmidt Decomposition and Its Recursion Tree Structure

In the following notations, we use bold-face or the Dirac bra-ket notations for the
vectors: |x〉 and x are equivalent, but the former represents a quantum state that is generally
normalized. The matrices are written in capital letters.

2.1. Singular Value Decomposition (SVD) [25]

For any M× N matrix, A, there exists a factorization of the form:

A = UΣV∗ =
r

∑
i

σiuiv∗
i , (1)

where U and V are M×M and N × N unitary matrices and Σ is an M× N rectangular
diagonal matrix with positive diagonal entries σ1 ≥ σ2 · · · ≥ 0, known as singular values.
r, the number of non-zero singular values, defines the rank of the matrix and is the min of
M and N.

Let vec(A) be the vectorized form of matrix A. The SVD can be used to write this
vector into a sum of weight-ordered separable components:

vec(A) = ∑
i

σiui ⊗ vi. (2)

Note that SVD provides the closest low-rank approximations in l2-norm to the matrix.
For instance, a rank r1 ≤ r approximation can be obtained by:

A =
r1

∑
i

σiuiv∗
i . (3)

2.2. Schmidt Decomposition [30,31]

Let
∣∣ψ〉 represent a n-qubit system (N = 2n), where qubits are ordered as q0q1 . . . qn−1.

Using the Schmidt coefficients between the first qubit q0 and the rest of the system,
i.e., q0—(q1 . . . qn−1), we can represent the state in the following form:∣∣ψ〉 = σ1|u1〉 ⊗ |v1〉+ σ2|u2〉 ⊗ |v2〉. (4)

In the above, while σ2
1 + σ2

2 = 1,
〈
u1|u2

〉
= 1 and

〈
v1|v2

〉
= 1. The Schmidt decompo-

sition of a vector can be found by converting the vector into a 2× 2n−1 matrix and using
the SVD described above. In that case, σ1 and σ2 are the singular values and |ui〉 and |vi〉s
are the singular vectors.

Here, we can keep recursively taking the Schmidt decomposition of the larger vectors,
i.e., |vi〉s, and obtain the following:

|v1〉 = σ3|u3〉 ⊗ |v3〉+ σ4|u4〉 ⊗ |v4〉, and

|v2〉 = σ5|u5〉 ⊗ |v5〉+ σ6|u6〉 ⊗ |v6〉.
(5)

Note that the size of any |ui〉 is still two by two. Once the size of |vi〉 also goes down
to two, we stop the recursion. In the final analysis, we can write

∣∣ψ〉 in the following
decomposed form: ∣∣ψ〉 =σ1|u1〉 ⊗ σ3|u3〉 ⊗ σ7|u7〉 ⊗ . . .

+ σ1|u1〉 ⊗ σ3|u3〉 ⊗ σ8|u8〉 ⊗ . . .

+

...

+ σ2|u2〉 ⊗ σ6|u6〉 ⊗ σ14|u14〉 . . .

+ · · · = ∑
i

∣∣ψi
〉
,

(6)
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where
∣∣ψi
〉

represents a term in the summation, and the number of terms is exponential
in the number of qubits. Figure 1 shows the recursion tree for the above equation. In the
figure, each path from the root node to a leaf node represents a summation term in the
equation. If any of the coefficients, σi, is zero in this path, then the equivalent term in the
summation is zero as well. Therefore, the number of non-zero terms is equal to the number
of paths with non-zero coefficients.

∣∣ψ〉
1

3

7 8

4

9 10

2

5

11 12

6

13 14

Figure 1. The recursion tree for the Schmidt decomposition of
∣∣ψi
〉
: A node with label i represents

the term σi|ui〉|vi〉. The sum of the child terms gives the Schmidt decomposition for the vector vi in
the parent node i.

2.3. Quantum Operations

The same recursion tree can also be generated for the operators. In that case, we use
the following steps:

• Let A be an N × N matrix. First, we vectorize matrix A (column- or row-based
vectorization can be used. In this paper, we will assume row-based vectorization.):∣∣ψ〉 = vec(A). (7)

• Then we draw the recursion tree as in Figure 1.
• Since each path from the root to a leaf node is a N2 by 1 vector, we can convert these

terms back to N by N matrices. In that case, we can write A as in the form:

A = ∑
i∈{0,...,N2/2}|Ai 6=0

Ai. (8)

• Note that the number of paths is equal to the number of leaf nodes, which is 2n/2 for
a vector of dimension 2n.

• To convert a tensor decomposition of a vector into an operator in tensor form, let us
consider the following example term:∣∣∣ψj

〉
=
∣∣p1
〉
⊗
∣∣pk
〉
⊗
∣∣q1
〉
⊗ · · · ⊗

∣∣qk
〉
. (9)

Assuming
∣∣pi
〉

and
∣∣qi
〉
s are column vectors of dimension 2; from the definitions in

Equations (1) and (2), we can convert this term into an operator Aj as follows:

Aj =
∣∣p1
〉〈

q1
∣∣⊗ ∣∣p2

〉〈
q2
∣∣⊗ · · · ⊗ ∣∣pk

〉〈
qk
∣∣ = k⊗

i=1

∣∣pi
〉〈

qi
∣∣. (10)

Here, each
∣∣pi
〉〈

qi
∣∣ is a 2 by 2 matrix and is not unitary. However, they can be written

as a sum of two unitary matrices.

3. Approximation by Removing the Number of Paths with Smaller Coefficients

Choosing a threshold probability in the tree, we can approximate any operator or
vector by eliminating the paths with coefficients lower than the threshold probability. To
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determine the approximation error between the normalized quantum state
∣∣ψ〉 and the

approximation
∣∣φ〉 (not-normalized), we shall use the norm of the difference:

ε =
∥∥∥∣∣ψ〉− ∣∣φ〉∥∥∥

2
. (11)

Note that this is equivalent to the sum of squared errors. One can also consider the
mean squared error: ε2/2n, which is much smaller. In the following subsections, we show
approximations of different cases and their approximation errors.

3.1. Approximation of Gram Matrix

Gram matrix [25] is frequently used in machine learning and other areas [33–35].
For a given data matrix X (the column vectors represent the data), it is defined by the
following product:

G = XTX. (12)

Matrix G is positive semi-definite, and its rank depends on the number of independent
data vectors in X. In the simulations, we have used the normalized vec(G) produced from
the default random number generator used in the Python-numpy package. The follow-
ing Python code is used to generate data with different distributions. (The simulation
code can be found on https://github.com/adaskin/app_with_schmidt.git, (accessed on
27 February 2023)):

import numpy as np
n = 8
N = 2**n
dist = "normal"
rng = np.random.default_rng()
if dist == "normal":

X = rng.normal(size = (N,N))
elif dist == "uniform":

X = rng.uniform(size = (N,N))
elif dist == "exponential":

X = rng.exponential(size = (N,N))
elif dist == "poisson":

X = rng.poisson(size = (N,N))

Using different distributions with default parameters, an example of the output, which
shows the histogram of the probabilities of the paths, is presented in Figure 2 (Most output
generates a similar result. Therefore, we only show one instance for each to explain the
behavior in each distribution). As seen in the figure, in the cases of the exponential, Poisson,
and uniform distributions, matrix G can be approximated with high accuracy by using
only one term. This is because the Schmidt decomposition is related to the eigenvalues of
the data matrix, and the variance of the eigenvalues in these cases is large: i.e., there is one
dominant eigenvalue. When the distribution is normal, although there is a clear cut-off
point, the approximation accuracy is less than the others.

https://github.com/adaskin/app_with_schmidt.git
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Figure 2. Histogram of the coefficients for G produced by randomly generated X with different
distributions. n represents the number of qubits required for vec(G): i.e., the dimension of vec(G)

is 2n.

Here note that one can also use the same technique to directly approximate X. Figure 3
shows the direct approximations for instances of

∣∣ψ〉 = vec(X) generated randomly from
different distributions. As can be seen from the figure, although a cut-off point still exists
in all except the normal distribution, the accuracy is much lower. We also note that in
the normal distribution, since the data depends on most of the paths, the probabilities are
much lower. As a final note, one can also use data that are not powers of two, which may
require filling vec(X) with zeros up to the power of two.
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Figure 3. Histogram of the coefficients for X produced randomly with different distributions. n
represents the number of qubits required to represent vec(X): i.e., the dimension of vec(X) is 2n.

3.1.1. Applications in Data Science

We also find the kernel matrix G for the example real-world datasets [36] used in
machine learning algorithms: Iris flower data, images of handwritten digits data, vec-
torized form of 20 newsgroups data, and labeled faces in the wild [37] data, which are
loaded through Python scikit-learn package [38]. To make the size of G a power of 2, we
choose the first 128 samples for the iris dataset and 1024 samples for the other datasets.
As seen in Figure 4, the norm of the approximation error is 0.161 for the iris, 0.421 for the
newsgroup, 0.197 for the digits, and 0.21 for the faces. Here, note that the norm gives us
the accumulated error, and the mean squared error is much smaller: e.g., for the faces, it is
around 0.42× 10−7.

These results indicate that in many cases, we can approximate G as a single term
in the following form: αQ1 ⊗ · · · ⊗ Qn or as a sum of a few of these terms. As shown in
Sections 4.1 and 4.2, these reduced forms can be used to perform classical and quantum
computations more efficiently.
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Figure 4. Histogram of the coefficients for G produced by an example dataset X. n represents the
number of qubits required for vec(G): i.e., the dimension of vec(G) is 2n, which is related to the
number of samples (chosen to be the power of 2) and the number of features.

3.1.2. Applications to Solve Systems of Linear Equations

A system of linear equations [39] is, in general, defined by y := Ax. In the theo-
retical sense, the solution of this equation can be found by computing the inverse A−1:
i.e., x = A−1y (In practice, this would not be the most efficient way). In some cases, since A
may be a singular matrix, instead of solving the original equation, the equation is converted
into the following normal equation: ATy := AT Ax. Then, the solution is found by the
inverse (AT A)−1. Here, G = AT A is the same as the Gram matrix generated by the column
vectors of A. Therefore, the analysis in Figure 2 is also the same for this matrix. If this
matrix can be approximated with one term: G ≈ αQ1 ⊗ · · · ⊗Qn, then the inverse can be
found by the following:

G−1 ≈ α−1Q−1
1 ⊗ · · · ⊗Q−1

n . (13)

The inverse in this form would be directly represented since each Qi is of dimension 2.

3.2. Approximation of the Symmetric Matrix (X + XT)

Note that the arguments for the Gram matrix are also applicable to the symmetric
matrix (X + XT), assuming X is a real square matrix. That means if the distribution of the
data is uniform or similar, the tensor approximation can be used with high accuracy for
either of these cases.
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3.3. Approximation of the Quantum (or Discrete) Fourier Transform

The quantum Fourier Transform (QFT) is the quantum version of the discrete Fourier
transform. For w = e2πi/N and M = (N − 1), it can be written in the following unitary
matrix form [9]:

QFT =
1√
N



1 1 1 · · · 1
1 ω ω2 · · · ωM

1 ω2 ω4 · · · ω2M

1 ω3 ω6 · · · ω3M

...
...

...
...

1 ωM ω2M · · · ωM2


. (14)

QFT can be implemented in logarithm time on quantum computers: i.e., O(log(N)2).
Therefore, it can be employed to provide exponential efficiency over the classical algorithms,
as performed in Shor’s integer factorization [2]. As mentioned in the introduction, it
is shown that the quantum Fourier transform can be approximately decomposed into
two equal dimension local parts (as in QFT = A ⊗ B) because the Schmidt coefficient
decays exponentially with size [22].

We also use our method to decompose vec(QFT), as shown in Figure 5. From the
figure, we can see that there is a clear cut-off point to make an approximation. Careful
observation reveals that the number of terms on the right-hand side of the figure (the terms
with larger coefficients) grows linearly with the matrix dimension. That means vector
vec(QFT) can be approximated by using N terms. Then, by using Equations (9) and (10),
matrix QFT requires N/2 terms decomposed into a tensor of 2 by 2 matrices.

Figure 5. Histogram of the coefficients for QFT: Here, n represents the number of qubits required
for vec(QFT): i.e., the dimension of vec(QFT) is 2n. Therefore, the sizes of the QFT matrices are of
dimensions 27, 28, 29, 210.
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3.4. Data Having a Type of Circular Distributions

In Figure 2, we have seen that in the normal distribution; although there is a clear
partition point, the approximation accuracy is less than the others. In circular distributions,
in general, we did not observe a clear cut-off point. For instance, consider the rings in
Figure 6, although the number of paths with larger coefficients seems to be much less than
the others, there is no clear cut-off point for the approximation, and the coefficients are, in
general, very close to each other.

A similar pattern can also be observed in random unitary matrices, which can be seen
in the following section.

Figure 6. The figure on the left is the dataset with rings where the x- and y-axis represent data features,
and each color represents a different ring. The figure on the right is the histogram of the coefficients.
There is no clear cut-off point for the approximation, and the approximation error is higher.

3.5. Approximation of the Variational Quantum Circuits

Variational quantum circuits are parameterized circuits that include some single and
control (entangling) gates. In our example circuit, to work with the real entries, we only
use the following rotation about the y-axis:

Ry(θ) =

(
cos(θ/2) sin(θ/2)
−sin(θ/2) cos(θ/2)

)
, (15)

where theta is an angle value, we generate this angle randomly (by using normal distri-
bution) for each quantum gate in our circuit, which is shown in Figure 7. The depth of a
quantum circuit is defined as the largest number of quantum gates along any line (each line
represents a qubit). Thus, the circuit in Figure 7 is of depth 4. In the numerical simulations,
we use the depth values of 4, 8, 12, and 16, which is basically the same as the drawing in
Figure 7, repeatedly required 1, 2, 3, and 4 times, respectively.

The histograms of the coefficients are shown in Figure 8, where the cut-off point is
chosen as the middle point. As seen in the figure, the approximation errors grow with the
depth of the circuit. This is because the matrix starts to depend on more parameters and to
look like more of a random unitary matrix with random matrix elements. This becomes
similar to a circular type distribution, and, as seen in the previous chapter, the method
would not produce a good result for these types of data matrices.
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Ry(rand) • Ry(rand)

Ry(rand) Ry(rand) Ry(rand) •

Ry(rand) • Ry(rand) Ry(rand)

Ry(rand) Ry(rand) Ry(rand) •

Ry(rand) • Ry(rand) Ry(rand)

Ry(rand) Ry(rand) Ry(rand)

Figure 7. A variational quantum circuit (VQC) with a depth of four. rand indicates that each gate is
generated with a random angle.

Figure 8. Histogram of the coefficients for VQC with different depth values: Here, n represents the
number of qubits required for vec(VQC). The error grows with the depth of the circuit.

3.6. Approximation of Hamiltonians

In quantum mechanics, the Hamiltonian of a system is a key quantity that determines
the time evolution of a quantum state. The eigenvalue spectrum of the Hamiltonian pro-
vides important information about the system’s behavior, such as its stability, spectral
gaps, symmetries of system, and the transitions between energy levels that are possible.
There are various techniques that try to characterize quantum systems by understanding
their full Hamiltonian through various tomographic techniques [40–49]. However, as the
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size of the quantum systems increases, calculating the full eigenvalue spectrum can be
computationally expensive, and a limited number of eigenvalues may be sufficient. For ex-
ample, in quantum algorithms such as quantum Monte Carlo, it may only be necessary to
know the lowest eigenvalue of the Hamiltonian and not the full spectrum [50]. In some
optimization problems, such as the calculation of the ground state energy of a system,
determining the lowest eigenvalue may be only sufficient and not the entire spectrum.
Therefore, approximating the Hamiltonian through successive Schmidt decomposition
can prove to be a useful tool for addressing such problems and also for tackling large
quantum systems.

To test our proposed approach for Hamiltonian approximation, we considered the

Transverse Field Ising Model (TFIM) Hamiltonian, defined by H = h
n

∑
i

σi
x + J

c

∑
i,j=i+1

σi
zσ

j
z

where h and J are the transverse field and coupling parameters, respectively, n is the total
number of qubits, and c is the number of qubits that are coupled. For computing the results
we choose h = 0.1 and J = 0.5 for a 10-qubit quantum system. Figure 9 shows the histogram
of the coefficients with a cut-off probability of 0.04, for which the norm of the difference
is 0.589 for the system where all spins are coupled and 0.252 for the system where only
four spins are coupled. The interesting thing about such an approximation can be seen
in the eigenvalue distribution of the true and the reconstructed Hamiltonian in Figure 10.
Approximating the Hamiltonian using only a few Schmidt coefficients that are large, we
are able to generate the eigenvalue spectrum that accurately reproduces the eigenvalues
that are not close to 0. This is because if we perform the SVD of a Hamiltonian matrix,
the singular values correspond to the magnitude of the eigenvalues, and since we ignore
the Schmidt coefficients that are small, the reconstructed Hamiltonian has information on
the eigenvalues that are away from 0, as is seen in Figure 10.

Figure 9. Histogram of the Schmidt coefficients corresponding to TFIM Hamiltonian of a 10-qubit
quantum system with c-qubits that are coupled. With fewer coupling terms, we see that the norm of
difference reduces for the same cut-off probability.
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Figure 10. Eigenvalue spectrum of the true and the reconstructed TFIM Hamiltonian for a 10-qubit
quantum system. As can be seen, the Hamiltonian approximation using our proposed Schmidt
decomposition protocol is able to reproduce ground state and excited state eigenvalues with very
good accuracy.

4. Computations with the Schmidt Forms
4.1. Classical Computation

After writing matrix A in the form of Equation (8) and a vector
∣∣ψ〉 in the form of

(6), one can perform the matrix-vector transforms in this form. For any i, j, assume that
the decomposition of Ai and

∣∣ψ〉 is given as Ai = αQ1 ⊗ · · · ⊗ Qn and
∣∣ψ1
〉
= β

∣∣p1
〉
⊗

· · · ⊗
∣∣pn
〉
, where α, β are real coefficients and Qks and

∣∣pk
〉
s are matrices and vectors of

dimension 2. The product Ai

∣∣∣ψj

〉
can be found as:

Ai

∣∣∣ψj

〉
= αβQ1

∣∣p1
〉
⊗ · · · ⊗Qn

∣∣pn
〉
. (16)

Here, any Qk
∣∣pk
〉

requires only four additions and multiplications. Therefore, one can
generate the above equation in tensor form in O(n) time and generating the whole vector
requires O(2n) operations and memory. However, a single entry can be computed without
generating the whole vector. Therefore, a single entry can be obtained in O(n) time.

If A is approximated by using r number of Ais, then A
∣∣∣ψj

〉
can be found in O(r2n)

times. However, if one is only interested in a single entry of the output vector A
∣∣∣ψj

〉
, it can

be found in polynomial time, i.e., O(rn) time, without computing the whole vector.
As seen in the case of QFT, there were N/2 terms. That means, by this approximation,

an entry of QFT
∣∣∣ψj

〉
can be approximated in O(

N
2

n) time.

4.2. Quantum Computation

Assuming A = ∑
i

Ai and each Ai is a unitary matrix. A matrix given as a sum of

unitary matrices can be implemented as a quantum circuit by using different control bits to
control each term [51–54]. If the individual circuit for each term includes the same quantum
gates, they can be used to reduce the number of quantum gates in the overall circuit [52,55].

Since each Ai is a tensor decomposition of 2 by 2 matrices in the form Ai = αQ1 ⊗
· · · ⊗ Qn, each term requires only O(n) quantum gates. Note that if Qjs are non-unitary
matrices, then Ai can be considered a sum of two unitary matrices, each of which is in
tensor form. That means we write each Qj as a sum of unitary matrices (see Ref. [54] for a
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similar concept). As an example, the following can be considered the circuit equivalent of
the summation of two terms, αQ1 ⊗Q2 + βQ3 ⊗Q4:

C1 • • C2

Q1 Q3

Q2 Q4

In the circuit, C1 and C2 combine the terms with the ratio of the coefficients α and β.
Note that if A is approximated using r terms, then the whole circuit would require O(rn)
quantum gates.

5. Conclusions

In this paper, we study the approximation of a given matrix or a vector by using its
tensor decomposition. We show the results for the example distributions, machine learning
datasets, variational quantum circuits, and Ising-type quantum Hamiltonians. The method
can be used to map data matrices into quantum states and also can be used to approximate
operators to design more efficient quantum circuits, which is particularly useful for the
simulation of quantum systems on quantum computers. The method can also be used to
approximate quantum operations when performing classical simulations. Note that this
approximation may not be a good way to make a single computation since it requires many
Schmidt decompositions. However, it can be a good way to reduce the computations for
frequently used tools, such as QFT, or to simulate some dynamics of quantum systems,
where the number of terms is fixed but the parameters that construct the term change over
time. In addition, it can be used in the training of machine learning tools to reduce the size
of a trained model.
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