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Imaginary components of out-of-time-order correlator and information scrambling
for navigating the learning landscape of a quantum machine learning model
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We introduce and analytically illustrate that hitherto unexplored imaginary components of out-of-time order
correlators can provide unprecedented insight into the information scrambling capacity of a graph neural
network. Furthermore, we demonstrate that it can be related to conventional measures of correlation like quantum
mutual information and rigorously establish the inherent mathematical bounds (both upper and lower bound)
jointly shared by such seemingly disparate quantities. To consolidate the geometrical ramifications of such
bounds during the dynamical evolution of training we thereafter construct an emergent convex space. This
newly designed space offers much surprising information including the saturation of lower bound by the trained
network even for physical systems of large sizes, transference, and quantitative mirroring of spin correlation
from the simulated physical system across phase boundaries as desirable features within the latent subunits of
the network (even though the latent units are directly oblivious to the simulated physical system) and the ability
of the network to distinguish exotic spin connectivity (volume law vs area law). Such an analysis demystifies
the training of quantum machine learning models by unraveling how quantum information is scrambled through
such a network introducing correlation surreptitiously among its constituent subsystems and open a window into
the underlying physical mechanism behind the emulative ability of the model.
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I. INTRODUCTION

Heralding machine learning algorithms to be the most dis-
ruptive technological advancement of the present era would
not be an overstatement [1–4]. Despite successful inroads
of the former to enable scientific applications on both clas-
sical and quantum hardware [5–11], a pervasive reluctance
prevails in making such algorithms mainstream as indicated
by a recent survey [12]. A part of the culpability is in
the very nature of training of the associated paradigmatic
models, which often seems agnostic to physical principles
or human-acquired domain intuition. Attempting to address
this lacuna, the primary objective of our thesis is to gain
physical insight into the learning mechanism of a machine
learning model (to be called the learner) assigned to simulate
the eigenstates of any user-defined system (to be called the
driver), a task central to the core of many physicochemical
applications [13].

The major contributions of this paper are manyfold. Fol-
lowing a description of the learner, we explicate the role of
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the information transport and scrambling between the inter-
nal subunits of the learner during the course of its training.
To this end, the hitherto unexplored imaginary component
of out-of-time order correlators (OTOCs) [14] of the learner
is defined and analytically characterized using invariants of
motion generated from the underlying Lie algebra [15]. It
is then subsequently employed to act as a compass in nav-
igating the parameter landscape during learning. In recent
years OTOCs has been used as a quintessential measure of
how fast information propagation away from the source of
initiation happens in the real-time post any local excitation
in atomic systems [16–19], in statistical physics to probe ther-
malization [20–22], in quantum-information theory [23,24],
as a diagnostic tool for quantum chaos [25], and even in
models mimicking aspects of quantum gravity [26–29]. Such
correlators have also been measured using quantum circuits
[30–34]. We thereafter connect such a quantifier with known
measures of quantum correlation and illustrate analytically
the relative bounds shared by the two quantities, which are
stricter than conventionally known bounds. Equipped with
these aforesaid probes, we provide a map of navigating the
parameter landscape during training of the network in an
emergent space and demonstrate with with appropriate case
studies features of the trained learner like saturation of lower
bound in the above inter-relationship and how the footprints of
correlation in the driver get imprinted onto a trained learner,
thereby empowering the latter to be used as a concrete di-
agnostic tool in investigating physical phenomena like phase
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FIG. 1. The description of the learner network G = (V, E ) as
defined in text (also known as restricted Boltzmann machine (RBM)
in literature [35,36].) The set of hidden neurons {hj}p

j=1 are shown in

grey with the corresponding bias vector (�b). Similarly, set of visible
neurons {vi}n

i=1 are shown in red with the corresponding bias vector
(�a). The interconnecting weight matrix with elements Wi j is shown in
blue. The parameter set �X = (�a, �b, �W ) are tuned during the training
of the network.

transitions as well as in differentiating between drivers with
exotic connectivity/interactions, etc. by simply accessing
properties of the learner alone.

In the following section (Sec. II) we shall describe the
generative neural network we use for this paper. In Sec. II B
we define OTOCs in a general setting. In Sec. II C we intro-
duce and prove that several invariants of motion associated
with the phase-space description of OTOC for the aforesaid
neural network exists with particular emphasis on the hitherto
unexplored imaginary part, which as we shall see which form
a key player in our analysis. In Sec. II D we describe the
generators associated with the said invariants, which high-
lights an underlying Lie algebra. In Sec. II E we prove how
the imaginary part of OTOC for our network is related to
conventional measures of correlation as described previously
including the relative bounds, which they share and construct
a new emergent convex space to understand the training mech-
anism of the network and the role of its latent sub-units.
In Sec. III we describe the polynomially scaling algorithm
for training the network and subsequent construction of the
new space. In Sec. IV we describe our primary inferences
from numerical studies in the said space and conclude in
Sec. V.

II. THEORETICAL BACKGROUND

A. Description of the graph neural network G = (V, E )

The specific description of the generative network used
as the learner in this work is illustrated in Fig. 1. Formally
the learner is a connected bipartite graph G = (V, E ) (also
known as restricted Boltzmann machine, RBM [35–37]). The
set V consists of (p + n) neurons with (p, n) ∈ Z+ and is fur-
ther classified into two subsets as V = {vi}n

i=1

⋃{h j}p
j=1 (see

Fig. 1). Both the subsets are endowed with a locally accessible
σ z (Pauli-z) operator and their corresponding bias- vectors are
�a ∈ Rn and �b ∈ Rp. The edge set E can be characterized with
the adjacency matrix Adj(G) ∈ {0, 1}(n+p)×(n+p) of the graph

G defined as follows:

Adj(G)i j =
⎧⎨
⎩

1, if νi ∈ {vi}n
i=1, ν j ∈ {hi}p

i=1∀ (νi, ν j ) ∈ V
0 otherwise

(1)

∀(i, j) ∈ Z p+n. Corresponding to each nonzero entry in
Adj(G) we define an edge ei j ∈ E . This would mean that
|E | = p ∗ n. Associated with ei j ∈ E we define a weight ma-
trix �W ∈ Rn×p (shown in blue in Fig. 1) each element of
which quantifies the strength of the shared connection be-
tween any of the neurons from the subset {vi}n

i=1 (visible-node
register) to every neuron in the subset {hj}p

j=1 (hidden-node

register). Collectively the tunable parameters �X = (�a, �b, �W ) ∈
Rn+p+np enables us to define the learner’s Hamiltonian H :
G �→ R2p+n×2p+n

similar to that of a classical Ising model
[38,39] as

H( �X , �v, �h) =
n∑

i=1

aiσ
z(vi ) +

p∑
j=1

b jσ
z(h j )

+
n,p∑

i=1, j=1

W i
j σ

z(vi)σ
z(h j ), (2)

where σ z(χi ) represents operator σ z acting at neuron χi. The
learner is trained to encode a probability distribution that cor-
responds to the diagonal elements of a thermal state ρth of the
Hamiltonian in Eq. (2), and is defined as follows [36,37,40]:

ρth( �X , �v, �h) = e−H( �X ,�v,�h)

Tr{v,h}e−H( �X ,�v,�h)
. (3)

Any instance of spin configuration (�v, �h) of the combined
registers of (p + n) spins are samples drawn from the said
thermal distribution in Eq. (3). Equipped with this, the pri-
mary objective of the learner network G is to mimic the
amplitude field of the target state ψ ( �X ) of the driver Hamilto-
nian H ∈ Cd×d following the prescription

ψ (�v, �X ) =
∑

�h
diag(ρth( �X , �v, �h))

= e− ∑n
i=1 aiσ

z (vi ) × �
p
j=12cosh

(
b j + ∑n

i W i
j σ

z(vi )
)

Tr{v,h}e−H( �X ,�v,�h)
.

(4)

Whether the training happens on a classical processor or a
NISQ device, the flow of the algorithm, in either case, involves
randomly initializing �X to construct ψ (�v, �X ) as in Eq. (4)
and then evaluating an appropriate merit function J ( �X ) = 〈Ĵ〉
(usually Ĵ = H but other properties can be optimized too).
The variational parameters X = (�a, �b, �W ) are thereafter sub-
sequently tuned using gradient-based updates of the merit
function ∂ �X J ( �X ) until a desired convergence threshold is
reached. The algorithmic details of such a training process
can be found elsewhere [41–44]. Formally such a training
exploits the isomorphism of the vector space Cd of the driver
and the space of spin configurations of the visible node �v
of the learner of dimension S = dim(2n) with n = 
log2d�.
As �X ∈ Rn+p+np, we specifically focus on drivers with non-
negative coefficients for the target state. Extension to account
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for the phase of the target wavefunction is straightforward
[45,46].

The number of neurons p in {h j}p
j=1 is chosen arbitrarily

by the user (usually p ∼ n). It is clear from Eq. (4) that the
variational form of the ansatz is independent of σ z(h j ), i.e.,
the spins of the latent neurons and it is the configurations of
{σ z(vi )}n

i=1, which forms the requisite basis for the eigenstate
of the driver. While from the optimization point of view, the
role of the hidden set of neurons ({h}p

j=1) is thus to enhance
the expressive capability of the network by increasing the
number of tunable parameters (�b, �W ), from a more physical
perspective {h}p

j=1 induces higher-order correlation between
the neurons of the visible layer by relaying the information
between a given (vi, vk ) ∈ �v as the latter is devoid of any
direct interaction. This relay is sensitive to the connections
(ekm ∈ E ), which defines the weight matrix elements Wkm of
the kth neuron in �v and mth neuron in �h. Central goal of our
paper is thus probing how {h j}p

j=1 physically fosters correla-
tion between configurations of {vi}n

i=1 by analyzing how an
initial excitation on a given visible neuron is shared with a
given hidden neuron in real-time. This will be a direct neuron-
resolved picture of the dynamical evolution of the network
during training and provide valuable insight into its learning
mechanism.

B. Out of time order correlators (OTOC)

To attain the aforesaid objective of probing information
exchange between the active (visible) and latent (hidden) units
of the learner, we shall employ an OTOC, which we shall de-
fine in detail in this section. An OTOC is primarily composed
of two unitary operators U1(0) and U2(0) wherein Ui(0) is a
local operator for a specific site i evolving in time t through
Heisenberg prescription [47]. The quantity is sensitive to the
extent of information scrambling between sites {1, 2} [48–51]
and is defined as follows:

CU1,U2 (t ) = 〈U †
1 (0)U †

2 (t )U1(0)U2(t )〉. (5)

Equation (5) is an estimator of growth of the operator
U2(t ) = eiHotoctU2(0)e−iHotoct under the effect of the generator
Hotoc assuming the latter possesses interaction within the dif-
ferent sites of the system. If the sites (1,2) are far apart, the
supporting bases of the operators U1(0) and U2(0) are sparsely
overlapping and hence CU1,U2 (0) will be initially 1. With time,
the operator U2(t ) = eiHotoctU2(0)e−iHotoct will start to extend its
support thereby culminating in an eventual overlap between
the probe operator U1(0) and U2(t ), which ultimately lead
to changing values of CU1,U2 (t ). The quantity CU1,U2 (t ) thus
directly hints at how fast the excitation has traveled from
the initially localized point at 2 to site 1. The reason for
the nomenclature of “out-of-time order correlator” is due to
the fact that the expression CU1,U2 (t ) has a time ordering,
which is nonmonotonic as opposed to forward time correlators
like 〈U2(t )U1(0)〉 wherein the operators Ui are sequentially
arranged in ascending order of time. Also, unlike two-point
correlators, which are known to decay in O(1) time irrespec-
tive of the length (L) of the system employed, OTOCs like
Eq. (5) decay in time proportional to the difference in location
of the two sites (hence ∼L) [52].

C. Imaginary component of OTOC of G = (V, E )—Geometrical
characterization in phase space

Unlike in most reports wherein the real part of Eq. (5)
is used, we introduce the imaginary part of Eq. (5), i.e.,
Im(CU1,U2 (t )) and shall see that it is also an important player
in our analysis. To this end we offer in Appendix A a gen-
eral formulation for obtaining both the Re(CU1,U2 (t )) and
Im(CU1,U2 (t )) through positive semidefinite construction of
other appropriate operators. To understand how {hj}p

j=1 and
{vi}n

i=1 scrambles information internally we now construct a
specific OTOC and establish the contents of the following
theorem.

Theorem II.1. For a given parameter vector �X , one
can define H( �X , �v, �h) [see Eq. (2)] and a thermal state
ρth( �X , �v, �h). Let us thereafter define the following OTOC
with U1(0) = σ̃α = σα (vk, 0) − κ1I, and operator U2(0) =
σ̃β = σβ (hm, 0) − κ2I and the generator Hotoc = H( �X , �v, �h)
in Eq. (5) ∀ {α, β} ∈ {x, y}.
Cσα,σ β (κ1, κ2, �X , t )=〈σ̃ α (vk, 0)σ̃ β (hm, t )σ̃ α (vk, 0)σ̃ β (hm, t )〉

(6)

Note that {κ1, κ2} ∈ C2 are arbitrary user-defined mean trans-
lations. Also 〈·〉 indicates averaging over the thermal state
ρth( �X , �v, �h) defined in Eq. (3), which activates the �X depen-
dence. Using 6, one can then make the following statements:

(1) For (κ1, κ2) ∈ C2

Cσα,σ β (κ1, κ2, �X , t ) = Cσα,σ β (0, 0, �X , t ) + |κ1|2|κ2|2
+ |κ2|2 + |κ1|2

(2) The following invariants of motion exists for
Cσα,σ β (0, 0, �X , t ):

(a) I1 = −2ξ̇σ α,σ β ( �X , τ )Cos(τ ) − 2ξσα,σβ ( �X , τ )Sin(τ )
(b) I2 = −2ξ̇σ α,σ β ( �X , τ )Sin(τ ) + 2ξσα,σβ ( �X , τ )Cos(τ )

where ξσα,σβ ( �X , τ ) can either be the real or the imaginary part

of (Cσα,σ β (0, 0, �X , τ )) and is with τ = 4W k
mt

Proof. See Appendix C. �
A combination of the invariants from Theorem II.1(2) is

plotted in Figs. 2(a) and 2(b) for the Re(Cσα,σ β (0, 0, �X , t )) and
Im(Cσα,σ β (0, 0, �X , t )) and shows decisively the importance of
the imaginary part. Similar results for other invariants are
illustrated in Appendix C. Certain assertions are apparent
from Theorem II.1. Firstly, as a direct corollary [proven in
Appendix C as Corollary Eq. (5.1)], one can deduce analytical
expressions for Cσα,σ β (0, 0, �X , τ ) as

Cσα,σ β (0, 0, �X , τ )=cos(τ )+i〈σ z(vk, 0)σ z(hm, 0)〉ρth ( �X )sin(τ )
(7)

Equation (7) guarantees that temporal behavior of the OTOC
in Eq. (6) is oscillatory in nature due to the SU (2) algebra
associated with the unitary rotation of σβ (hm, t ) (β ∈ {x, y})
around the z axis induced by the generator Hotoc = H in
Eq. (2). The frequency associated with the rotation for both
terms in Eq. (7) is expectedly dictated by the strength of the
interaction (W k

m) shared by the kth visible neuron and mth
hidden neuron. Note that training of G amounts to hopping
between OTOC trajectories (each of which is generated with a
frozen incumbent instance of �X ) in phase space as we traverse
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FIG. 2. (a) The profile for the real part of the compound invariant
I2
1 +I2

2
4 (see Appendix C, Corollary 5.2) obtained from the simple

invariants of Theorem II.1 where α = β = x and Cr,σα,σβ ( �X , τ ) =
Re(Cσα,σβ (0, 0, �X , τ )) has been substituted for ξσα,σβ ( �X , τ ) in
Theorem II.1(2) (b) Similar to (a) but for Ci,σα,σβ ( �X , τ ) =
Im(Cσα,σβ (0, 0, �X , τ )). Note the subscript “r” (“i”) denotes the
real(imaginary) part of Eq. (6) in the plots. Both quantities are
evaluated at (κ1 = 0, κ2 = 0), hence the explicit dependence on
(κ1, κ2) has been dropped for notational brevity. The trajectory in
the phase space for both cases is a circle (Corollary 5.2) whose
radius remains conserved during training in (a) but changes in
(b). This is further corroborated by the two green subplots along-
side, which for (b) shows that the radius is exactly equal to
〈σ x (vk, 0), σ x (hm, 0)〉ρth ( �X ,�v,�h) and is sensitive to �X unlike in (a).

This indicates why the Im(Cσα,σβ (0, 0, �X , τ )) of the OTOC string
in Eq. (6) can yield important insight about the training process of G.

the parameter space by varying �X [see Fig. 2(b)]. We see that
the amplitude of the Im(Cσα,σ β (0, 0, �X , t )) yields directly a
two-body correlation function 〈σ z(vk, 0)σ z(hm, 0)〉

ρth ( �X ,�v,�h) of
spins in the visible and hidden register of the learner [see
Fig. 2(b)], which is sensitive to �X and thus probes the chang-
ing correlation content between hm and vk during training.

D. Lie-algebraic generators associated with invariants of OTOC

It is possible to define generators associated with the in-
variants defined in Theorem II.1 possessing an underlying
Lie-algebraic structure. For example for the invariant type
given in Theorem II.1(1) with the following expression:

I1 = −2ξ̇σ α,σ β ( �X , τ )cos(τ ) − 2ξσα,σβ ( �X , τ )sin(τ ), (8)

where ξσα,σβ ( �X , τ ) can be either Crσα,σ β (0, 0, �X , τ ) or
Ciσα,σ β (0, 0, �X , τ ) one can deduce the following transforma-

tion Â(φ, τ ):

Â(φ, τ )(ξσα,σβ ( �X , τ )) = e
φcos(τ ) ∂

∂ξ
σα ,σβ ( �X ,τ ) (ξσα,σβ ( �X , τ ))

= ξ ′
σα,σ β ( �X , τ ). (9)

Note that the derivative in the exponent is with respect to
ξσα,σβ ( �X , τ ) itself. Such a transformation Â(φ, τ ) : {ξ}I1 �→
{ξ}I1 where {ξ}I1 is a solution space marked by the given
value of the invariant I1. In other words, a given solution
ξσα,σβ ( �X , τ ) with a specific value of the invariant I1, the trans-
formation changes it to another solution ξ ′

σα,σ β ( �X , τ ), which
possesses the same value for the invariant. This can be verified
by explicit computation too. For instance, if ξσα,σβ ( �X , τ ) =
Crσα,σ β (0, 0, �X , τ ), then from the Corollary 5.1 it is clear
that ξσα,σβ ( �X , τ ) = Crσα,σ β (0, 0, �X , τ ) = cos(W k

mt ) = cos(τ ).
Substituting this in Eq. (8), one gets the value of I1 as 0. If the
transformation A(φ, τ ) is applied on ξσα,σβ ( �X , τ ) = cos(τ ),
the new solution is (1 + φ)cos(τ ), which has the same value
of the invariant as before. Similarly, one can also deduce an
invariant-preserving transformation for I2 type invariants in

Theorem II.1(2) as e
φsin(τ ) ∂

∂ξ
σα ,σβ . It can be shown that the

generators of the two transformations commutes. For other
invariants in in Corollary 5.2 one can similarly deduce other
transformations like this. The generators of a full set of such
transformations forms a closed single parameter Lie group
(with respect to parameter φ), which can be shown using
their commutation algebra. Such a structure is characteristic
of systems with harmonic degrees of freedom, but discov-
ering it within the abstract phase space of OTOC string for
the learner is interesting and worth further investigation. The
ramifications of such generators on the full phase-space of the
OTOC strings and its effect on the training of the learner will
be explored in the future. We thus see that instead of a direct
evaluation of the OTOC, evaluation through the invariants
described in Theorem 1 offers a fuller characterization of
the phase space with richer insight into the geometry of the
manifold.

E. Inter-relationship with covariance and quantum
mutual information (I (vk, hm))—Mapping training

trajectories to I − η(�X ) space

We further consolidate the importance of
Im(Cσα,σ β (0, 0, �X , t )) concretely in this section by
showing that the quantity can be related to quantum
mutual information. To do that it is imperative to first
establish a direct relationship of the said quantity with
Cov(σ z(vk, 0), σ z(hm, 0))ρth

by using the results of Theorem
II.1(1–2) as follows,

η( �X ) = Cov(σ z(vk, 0), σ z(hm, 0))ρth

= Cσα,σ β (κ1, 0, �X , t1) + Cσα,σ β (0, κ2, �X , t1)

− Cσα,σ β (κ1, κ2, �X , t1) (10)

with κ1 = √
i〈σ z(vk, 0)〉, κ2 = √

i〈σ z(hm, 0)〉 and t1 = π
8W k

m
.

η( �X ) in Eq. (10) can only attain a value of zero if the neurons
vk and hm are uncorrelated. We shall now connect η( �X ) to
other well-known correlation measures like Von-Neumann
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FIG. 3. The upper bound(UB) and lower bound (LB) in the
convex I − η space for network G as described in Theorem II.2
in Eqs. (12) and (13) respectively. In all plots in this panel, we
shall use α = β = x in Eq. (10). Provided alongside in green is the
conventionally known lower bound for any general bipartition of an
arbitrary system [57]. The lower bound (LB) for G is thus stricter
than the known general bound. Representative learning trajectories
of the network G are shown.

entropies of and incipient mutual information (I (vk, hm))
[53–56] of subsystems of G using the following theorem.

Theorem II.2. The two particle-density matrices
2ρ(vk, hm) and one particle-density matrices 1ρ(vk ) and
1ρ(hm) of the learner G can be computed for a given �X from
Eq. (3) (see Appendix E). Using these one can construct
I (vk, hm) = S(1ρ(vk )) + S(1ρ(hm)) − S(2ρ(vk, hm)) where
S(Y ) = −Tr(Y lnY ). The following statement is true

LB � I (vk, hm) � UB (11)

wherein the lower bound (LB) is

LB = 2 − 2L
(

1 + η( �X )

4

)
− 2L

(
1 − η( �X )

4

)
(12)

and the corresponding upper bound (UB) is

UB =L

⎛
⎜⎝1 +

√
1 + (−1)γ η( �X )

2

⎞
⎟⎠

+ L

⎛
⎜⎝1 −

√
1 + (−1)γ η( �X )

2

⎞
⎟⎠ (13)

with −1 � η( �X ) � 1 as defined in Eq. (10) and L(x) =
−xln(x) ∀ x ∈ R+ and γ = 0 if η( �X ) < 0 or γ =
1 if η( �X ) � 0

Proof. See Appendix E. �
The implication of Theorem II.2 is profound and is il-

lustrated diagrammatically in Fig. 3. It introduces an newly
emergent I − η space to probe learning trajectories. In this
space, the bounds together define a convex set (see Fig. 3)
within which resides the acceptable values of I (vk, hm) and
η( �X ), that the learner G can access during the course of its
training. One must note that LB in Eq. (12) is more stringent

compared to previously known bound of η( �X )2

2 [57] as seen in
Fig. 3.

III. COMPUTATIONAL DETAILS

A. Training algorithm and efficient polynomially scaling
construction of I − η(�X ) space

In this section we discuss in detail the computational al-
gorithm used for training the network G = (V, E ) and for
subsequent estimation of I and η( �X ) through sampling to
extract the features of the learner in this emergent space.

For a given driver Hamiltonian H ∈ Cd×d , the variational
form of the target state, which is used to train the learner as
ansatz is defined in Eq. (4). Since we are interested in ground
state of the respective drivers, training as explained before
is done minimizing the cost function J ( �X ) (in this case the
energy) with respect to the parameters �X of the trial ansatz
ψ (�v, �X ) as follows:

J ( �X ) = 〈ψ (�v, �X )|H |ψ (�v, �X )〉
〈ψ (�v, �X )|ψ (�v, �X )〉 . (14)

For updating the parameters of Eq. (14) we follow the
algorithm in Ref. [58] closely, which is based on Sorella’s
stochastic reconfiguration technique [59]. In this technique the
parameters of the cost function are updated using a precondi-
tioner F ∈ C p∗n×p∗n defined as follows:

�X → �X − l ∗ F−1( �X )S( �X ), (15)

where

F i
j = 〈D†

i D j〉 − 〈D†
i 〉〈Dj〉 (16)

Si = 〈ElocD†
i 〉 − 〈Eloc〉〈D†

i 〉 (17)

Di|�v〉 = ∂ �Xi
ψ (�v, �X )

ψ (�v, �X )
|�v〉 ∀ �Xi ∈ (�a, �b, �W ) (18)

Eloc = 〈�v|H |ψ (�v, �X )〉
ψ (�v, �X )

. (19)

The indices (i, j) in Eqs. (15)–(19) run over all p ∗ n parame-
ters in �X . Also l ∈ R+ is known as the learning rate and |�v〉 is
the computational basis of configuration of the visible node
register. The above expressions are true for any variational
ansatz. For the particular graph neural network encoding G =
(V, E ), the components of Di can be analytically expressed
as diagonal matrix elements in the computational basis as
follows:

〈�v′|Dai |�v〉 = σ z(vi )δ�v�v′ , (20)

〈�v′|Dbj |�v〉 = tanh

(
b j +

∑
i

W i
j σ

z(vi )

)
δ�v�v′ , (21)

〈�v′|DW i
j
|�v〉 = σ z(vi )tanh

(
b j +

∑
i

W i
j σ

z(vi)

)
δ�v�v′ . (22)

The averaging 〈...〉 defined in Eqs. (16) and (17) is over the

distribution |ψ (�v, �X )|2
〈ψ (�v, �X )|ψ (�v, �X )〉 . This distribution in accordance to

Eq. (4) is dependant on configurations of {σ (vi )}n
i=1. Exactly
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computing all such 2n configurations would yield an exponen-
tially scaling protocol. Hence the algorithm in Ref. [58] uses
a Monte Carlo based sampling protocol using Metropolis-
Hastings procedure. The primary workhorse of the protocol
relies on starting with one of the arbitrary [say {σ (vi )}n

i=1] 2n

configuration and then randomly choosing one of the spins
σ (vi ) and mutating/flipping it to generate a new configura-
tion [say {σ (vi )′}n

i=1]. The new configuration is accepted or
rejected using the following rule:

P
({σ (vi )}n

i=1 → {σ (vi)
′}n

i=1

) = min

⎛
⎝1,

∣∣∣∣∣ψ (�v′, �X )

ψ (�v, �X )

∣∣∣∣∣
2
⎞
⎠. (23)

Reference [58] establishes that the computational cost of
each such Monte Carlo sweep is O(n ∗ p). If the number of
sweeps used is NS then the total cost of computing the gradient
updates by computing F would be O(n ∗ p ∗ NS ) as there are
O(n ∗ p) parameters over which the matrix F and vector S
needs to be computed. We use Netket library [60] to perform
computations using this algorithm. If the condition number of
F is large, invertibility may be a problem, which is obviated

using a infinitesimal shift, which has been fixed at 0.01 in
our calculations. The total number of independent Markov
chains is set to 1000 and 60 sweeps are used at each step
along a chain. All parameters of �X is randomly initialized
from a normal distribution of zero mean and 0.01 standard
deviation. The maximum number of iterations kept were 200
and learning rate (l ) for training G = (V, E ) is set to 0.1.
With these set of parameters we were able to achieve an error
threshold of �0.1% for convergence.

Once the training of G = (V, E ) has commenced to the
desired accuracy threshold, we have now obtained the trained
parameter vector [say �X ∗ = (�a∗, �b∗, �W ∗) where ∗ is not com-
plex conjugation as all parameters are real but denotes a
specific instance of the trained �X procured after training]
of the learner G. Using these one can easily construct the
eigenvalues of the two 2ρ(vk, hm) and one-particle reduced
density matrices [1ρ(vk ) or 1ρ(hm)] as obtained from the con-
traction of Eq. (3). The four eigenvalues {λi(2ρ(vk, hm))}4

i=1
of the two-particle density matrix 2ρ(vk, hm) for the learner G
between a specific pair of visible and hidden spins [say (k, m)]
as deduced in Appendix D 1 are expressed as follows:

λ1(2ρ(vk, hm)) = λ(2ρ(vk = 1, hm = 1)) = N1

Z
e−a∗

k −b∗
m−W k∗

m ×
*
�

p
j �=m2cosh

(
b∗

j +
n∑

i �=k

W i∗
j vi + W k∗

j

)+
P({vi}n

i �=k ,hm=1)

(24)

λ2(2ρ(vk, hm)) = λ(2ρ(vk = 1, hm = −1)) = N−1

Z
e−a∗

k +b∗
m+W k∗

m ×
〈
�

p
j �=m2cosh

(
b∗

j +
n∑

i �=k

W i∗
j vi + W k∗

j

)〉
P({vi}n

i �=k ,hm=−1)

(25)

λ3(2ρ(vk, hm)) = λ(2ρ(vk = −1, hm = 1)) = N1

Z
ea∗

k −b∗
m+W k∗

m ×
〈
�

p
j �=m2cosh

(
b∗

j +
n∑

i �=k

W i∗
j vi − W k∗

j

)〉
P({vi}n

i �=k ,hm=1)

(26)

λ4(2ρ(vk, hm)) = λ(2ρ(vk = −1, hm = −1)) = N−1

Z
ea∗

k +b∗
m−W k∗

m ×
〈
�

p
j �=m2cosh

(
b∗

j +
n∑

i �=k

W i∗
j vi − W k∗

j

)〉
P({vi}n

i �=k ,hm=−1)

(27)

where each of the averages in Eqs. (24)–(27) are computed
over the distribution P({vi}n

i �=k, hm) and Nhm is the associated
normalization constant. These are defined as

P
({vi}n

i �=k, hm
) = e−(

∑n
i �=k a∗

i vi+W i∗
m vihm )

Nhm

, (28)

Nhm = �n
i �=k2cosh

⎛
⎝a∗

i +
n∑

i �=k

W i∗
m hm

⎞
⎠. (29)

The corresponding eigenvectors of the two particle density
matrix for the eigenvalues in Eqs. (24)–(27) are |0(vk )0(hm)〉,
|0(vk )1(hm)〉, and |1(vk )0(hm)〉, |1(vk )1(hm)〉, respectively for
the four eigenvalues Eqs. (24)–(27) where (0,1) is notationally
equivalent to (1,−1) for each spins (vk, hm).

The quantity Z is the partition function defined as

Z =
∑
(�v,�h)

e(− ∑n
i −a∗

i vi−
∑m

i b∗
j h j−

∑n,m
i, j W i∗

j vih j ). (30)

However, Z need not be explicitly computed as it can be
eliminated using the unit normalization condition of the
eigenvalues. The corresponding eigenvalues for one-particle

density matrix 1ρ(ξi, 0) for a neuron ξi in the learner G, can
thereafter be constructed by contraction from Eqs. (24)–(27)
are

λ1(1ρ(ξi )) = λi(2ρ(vk, hm)) + λ j (2ρ(vk, hm))

(if ξi = vk, (i, j) = (1, 3))

(if ξi = hm, (i, j) = (1, 4)), (31)

λ2(1ρ(ξi)) = λi(2ρ(vk, hm)) + λ j (2ρ(vk, hm))

(if ξi = vk, (i, j) = (2, 4))

if (ξi = hm, (i, j) = (2, 3)), (32)

with respective eigenvectors are |0(ξi)〉 and |1(ξi)〉 where ξi ∈
(vk, hm).

Using the eigenvalues of 2ρ(vk, hm) and one-particle re-
duced density matrices (1ρ(vk ) or 1ρ(hm)) one can compute
I (vk, hm) vs |η( �X )| as illustrated in Appendix E and construct
the entire space. From Eqs. (24)–(27) and (29) it is clear that
the underlying probability distribution P({vi}n

i=1,i �=k, hm) from
which the eigenvalues are computed is defined over the 2n−1
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configurations {σ (vi )}n
i �=k of the visible node register (also

independent of {hi}i �=m but is dependant on hm = ±1, which
is kept fixed for a given eigenvalue) . Accurate estimation
of the entire distribution would require exponentially scaling
resources. However, we shall now demonstrate a polynomially
scaling algorithm based on Gibbs sampling technique. The
distribution can be marginalized easily as it is completely
factorizable over individual {vi}i �=k spins due to lack of con-
nectivity among the visible spins in the network G, which
is the key feature required in our sampling. We estimate the
eigenvalues using Gibbs sampling from this distribution (29).
For each pair (k, m) of visible and hidden neurons, the sam-
pling technique for a given drawn/sampled configuration of
visible neurons (say �v1) performs a sum over all visible neu-
rons to construct each of the primitive operators 2cosh(b∗

j +∑n
i �=k W i∗

j vi + W k∗
j ). Each such primitive operator is indexed

by j. The primitive operators are then constructed for every
j ∈ {1, 2...p} and then multiplied together to yield the com-
pound operator � j �=m2cosh(b∗

j + ∑n
i �=k W i∗

j vi + W k∗
j ). This

step thus incurs a cost of O(np) alone. This step is repeated
for many drawn samples of visible node configurations (say �v2

now) with the total number of samples drawn be NE thereby
introducing a total cost of O(np ∗ NE ) for this step. This
yields the four eigenvalues as given in Eqs. (24)–(27) and
completes the computation of I (vk, hm) vs |η( �X )| for one
pair of (k, m) neurons. The entire process is repeated for
every pair of (k, m) neurons. Since there are O(np) neurons
and each of which gives a two particle density matrix, the
total computation of all pn two-particle density matrices in-
curs a cost of O(n2 p2 ∗ NE ). Thus from start to finish our
entire protocol of training the network G = (V, E ) and the
subsequent construction of the I (vk, hm) vs |η( �X )| space is
O(poly(n, p)).

B. Hamiltonian of the drivers

To exemplify the consequences further, we now use two
drivers namely the transverse field Ising model (TFIM) and
the concentric-TFIM [61] (c-TFIM) for a system of N =
4, 6, 8, 10, 12, 14, 16, 18, 20, 24 spins. The generic Hamilto-
nian for the drivers can be written as

H = −B
N∑
id

σ x(id ) −
∑
id jd

Jid jd σ
z(id )σ z( jd ). (33)

For TFIM the matrix elements of Jid jd are

Jid jd =
{

J0, if i f jd = id ± 1 ∀ id
0 otherwise

. (34)

For c-TFIM, the elements Jid jd are

Jid jd =

⎧⎪⎨
⎪⎩

J0, if id = N
2 − (q − 1),

jd = N
2 + q

0 otherwise

with ∀ q ∈
[

1,
N

2

]
. (35)

While Eq. (34) due to nearest-neighbor interactions [see
Fig. 4(a)] admits an area-law scaling ground state, which can
only be augmented to a logarithmic correction [62,63], the
connectivity graph of Eq. (35) [see Fig. 4(b)] necessitates a
volume-law scaling (refer to Appendix I for direct corrob-
oration). Since we choose (B � 0, J0 � 0), the ground state
of both drivers have non-negative coefficients due to Perron-
Frobenius theorem [64,65] and undergoes a phase transition
from an ordered ferromagnet to the disordered phase owing to
spontaneous breaking of Z2 symmetry [σ z(id ) → −σ z(id ) or
π rotation around σ x(id )] as g = B

J0
is enhanced.

IV. RESULTS AND DISCUSSION

To simulate the drivers discussed in Sec. III B for N =
4, 6, 8, 10, 12, 14, 16, 18, 20, 24 spins, we use n = p = N in
the learner G and run several numerical experiments with
different randomly chosen initial parameters with the error
threshold for convergence set to �0.1% (see Sec. III for the
training algorithm and Appendix D for convergence plots of
training) for each. To see the effect of changing hidden node
density p/n see Appendix G. We use the finally converged
�X ∗ obtained from the training to construct the eigenvalues of

2ρ(vk, hm) and one-particle reduced density matrices [1ρ(vk )
or 1ρ(hm)] and eventually compute I (vk, hm) and |η( �X )| as
illustrated in Sec. III. We do this for each pair (k, m) choosing
one from the set of visible and the other from the set of
hidden neurons in the learner G = (V, E ). We display the
results of our computation in the I − η space (illustrated in
Fig. 3) in Figs. 4(c)–4(j) for all such pairs at various g values
of the drivers (see Sec. III B for a definition of g). For N =
4, 6, 10, 20 in the respective models, we see surprisingly that
the representation chosen by the trained learner in the I − η

space always saturates LB in Figs. 4(c)–4(f) and slides along
it monotonically for g ∈ (0,∞]. For g = 0, the representation
of G is devoid of any correlation between subsystems of the
visible and hidden neurons ∀(k, m) with a cluster of points
near the green dot (0,0) [especially marked in Figs. 4(c) and
4(g) but is true for all plots in Figs. 4(c)–4(j)] corresponding
to the uncorrelated, twofold degenerate ferromagnetic ground
state (|0000〉 or |1111〉) [64]. For a direct corroboration for
all other sizes and in a wide variety of other driver spin
models even beyond the drivers discussed in Sec. III B, see
Appendix F. From such numerical evidences, we infer a newly
discovered learning principle that has never been discussed or
investigated before. For a wide variety of drivers, we see that
the trained network G = (V, E ) when entrusted with learning
a probability density function to mimic the amplitude field of a
desired quantum state, invariably chooses a representation that
minimizes mutual information [I (vk, hm)] between the visible
and the hidden sub-units for a given covariance [η( �X )]. This
further highlights the importance of the I (vk, hm) vs η( �X )
space we investigate here. The pursuance of universality of
this result through a formal proof of the statement or under
what conditions it fails if at all may be undertaken in the
future.

While lower bound saturation remains true at all values of
g, as is evident from Figs. 4(c) and 4(j) that for 0 � g � 1 the
density of points associated with the representation chosen
by G shifts dramatically away from the green dot towards
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FIG. 4. (a) The schematics of the interactions among the spin registers in the area-law entangled ground state of the driver Hamiltonian
defined in Eq. (34) (TFIM) [66–68]. (b) The schematics of the interactions among the spin registers in the volume-law entangled ground
state of another driver system defined in Eq. (35) (c-TFIM) [61] (see text for more details and Appendix I). The I(vk, hm ) and η( �X ) values
corresponding to the finally converged parameter �X ∗ of the trained network G = (V, E ) for the ground state of Eq. (34) for (c) N = 4, (d) N
= 6, (e) N = 10, and (f) N = 20 spins in the driver in Eq. (34) (TFIM). The I(vk, hm ) and η( �X ) values corresponding to the finally converged
parameter �X of the trained network G for the ground state of Eq. (35) (c-TFIM) for (g) N = 4, (h) N = 6, (i) N = 10, and (j) N = 20 spins in
the driver. In all eight plots (c)–(j) we see that the representation chosen by the trained network in the emergent I − η space always saturates
the LB [Eq. (12)] for all g ∈ (0,∞]. The behavior remains intact irrespective of the changing size of the driver system and has been observed
for a wider class of drivers too arising in different physical problems (see also Appendix F).

the red points and then eventually returns back towards the
uncorrelated state (blue points) [∀ (k ∈ 
n�, m ∈ 
p� where
n = p = N , i.e., n ∗ p pairs of (k, m) values]. This is explicitly
marked in Figs. 4(c) and 4(g) but is true for all plots in
Figs. 4(c)–4(j). To study the details of such an occurrence
and consolidate the observation, we plot in Figs. 5(a)–5(d) the
sample means of I (vk, hm) and |η( �X )| as constructed from the
finally converged �X ∗ by training G averaged not only over all
pairs (k, m) for a given experiment but also over converged
runs arising from different initialization (i.e., the averages of
points plotted along LB in Figs. 4(c)–4(j) over all pairs of
(k, m) and over several initialization such that for a given g
there is a single representative I (vk, hm) and |η( �X )| value).
To get better idea about the statistic, the standard deviations
associated with the averaging process and the standard error
of the mean is displayed in Appendix H. For g → 0+ the
ground state of the driver exhibits a superposition of sev-
eral bit-strings/spin configurations, which the network G now
mirrors by choosing a representation that has a significantly
higher I (vk, hm) and η( �X ) (and hence correlation) among the
bi-partitions between visible and hidden neurons [red dots in
Figs. 4(c)–4(j)]. This is further reflected in the higher mean
I (vk, hm) in Figs. 5(a) and 5(c) and higher mean η( �X ) in
Figs. 5(b) and 5(d) for each nonzero value of g than in the
g = 0 case.

For g → ∞, the drivers once again display an uncorrelated
state with each spin in state |0〉+|1〉√

2
. To ape this limit, the repre-

sentation chosen by G thus gradually slides towards the (0,0)

point in I − η space [blue dots in Figs. 4(c)–4(j)] with a con-
comitant decline in the respective averages in Figs. 5(a)–5(d)
as g is enhanced. For a given finite g, the crucial difference
between the drivers in Eqs. (34) and (35) is captured in the
higher variability in the respective means [see Figs. 5(c) and
5(d)] indicating many compatible/equivalent representations
chosen by the network for a correlated volume-law entangled
state for all sizes. This is true for each individual size of
the driver model used, i.e., for each N and is best illustrated
from the plot of the standard deviations (associated with the
averages in Fig. 5) displayed in Appendix H, which shows that
in c-TFIM at a given g (especially g → 0+ regime), the trained
learner consists of several different (k, m) pairs with widely
varying correlation properties [I (vk, hm) and |η( �X )| values]
arising from compatible chosen for the same learned state.
This is much more than the case for TFIM even at a given
size N and given g value indicating the ability of the learner
to distinguish area-law vs volume-law connectivity. However,
with increasing g unanimity sets in as both models displays
uncorrelated ground state with unique configurations (see also
Appendix H).

Thus in summary the observations indicate three important
inferences. Apart from the saturation of LB in I (vk, hm) vs
|η( �X )| space (corroborated for all sizes and many other spin
models in Appendix F) as illustrated in Figs. 4(c)–4(j), we
also see mirroring of the spin correlation behavior across
phase transition between spins of the driver in the correlation
introduced between the spins of the visible and latent neurons
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FIG. 5. [(a),(c)] The plot of the mean of I(vk, hm ) vs g from the likes of Figs. 4(c)–4(j) where the averaging is done over all pairs of (k, m)
and over many initialization at a given g for various values of driver spins N = 4, 6, 8, 10, 12, 14, 16, 18, 20, 24 for both models defined by
Eq. (34) in (a) and Eq. (35) in (c). [(b),(d)] Similar plot as in (a) and (c) but for η( �X ) as a function of g for various sizes of driver spins in
both the models. In all plots [(a),(d)] transference of spin correlation from both drivers to the visible and latent units of the learner across
phase boundaries for drivers of even large sizes is apparent (see also Fig. 11) and so is the higher range of variability of the mean in volume
law connected ground states in (c) and (d). It must be emphasized that the mean I(vk, hm )or mean η( �X ) [see Eq. (10)] defined is between the
visible and the latent/hidden spins. The hidden spins are oblivious to the driver and are only known to the learner network. The configurations
of the visible spins of the driver provides a convenient basis to the spins of the driver in both the models. The hidden spins on the other hand
are just responsible for supporting the visible spins in adequate feature extraction. Yet, we see in these plots that the spin correlation that exists
between the spins/sub-units of the driver across a phase transition is directly transferred or mirrored between the visible and latent spins of
the trained learner as desirable features. Such an observation affords a direct numerical quantification to the assistance provided by the hidden
spins in training the network G = (V, E ). This kind of emergent insight into the training of the graph-neural network is central to our paper
and as evidentiated can easily be procured through the newly constructed I (vk, hm ) vs |η( �X )| space.

of the trained state of the learner G in Figs. 5(a)–5(d). We also
see many equivalent representations of the network for dif-
ferentiating exotic volume-law connectivity in the driver (see
Fig. 5 and Appendix H). It must be emphasized that the last
two assertions are true even though the latent neurons are di-
rectly oblivious and unrelated to the driver (see the description
of the network and how it acts an a variational ansatz for the
neural-network encoding of the quantum state as illustrated in
Sec. II A). Only the configurations of the visible node register
are directly related to the spins of the driver and forms a basis
for the eigenspace of the driver. The conventional wisdom is
that latent neurons with their respective additional parameters
provide support by enhancing the expressibility of the network
G. Our observations thus collectively can serve as a stepping
stone towards formalizing and quantifying the important role

performed by the latent spins of the learner G from a newly
obtained perspective of the I (vk, hm) vs |η( �X )| where physical
behavior of such neurons are investigated from the lens of
correlation exchange, which happens surreptitiously under the
hood during training of G.

V. CONCLUSIONS

In this paper, we established a number of key physical in-
sights about the training of the learner network G. The choice
of this specific network is attributed to its astonishing success
in simulating a wide variety of quantum systems in condensed
matter physics like strongly correlated fermionic assemblies
[41,69,70], topologically nontrivial phases [71,72], anyonic
symmetries [73], in quantum dynamical evolution [58,74], in
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chemistry like 2D-materials [13,44,75] and molecules with
multireference correlation [76] under geometric distortion
[45], and even in classification tasks [43,77] with quantum or
classical data. In fact, G has been proven to act as a universal
approximator for any probability density [35,78] thereby pro-
viding a guarantee to the range of its representational capacity.
Prior work has also established that the network is capable
of mimicking the amplitude of a 2n dimensional volume-law
entangled quantum state even with a sparse representation
[79], i.e., using O(n) parameters as opposed to O(np) in the
usual case. Reference [80] has established that the task of
retrieving the full distribution encoded within G would always
entail exponential classical resources unless the polynomial
hierarchy collapses. However, quantum circuits to efficiently
sample from the same with quadratic qubit and gate costs
(O(np)) already exist. Another feature enjoyed by the net-
work is its easy extension to d-dimensional spins [71], which
makes encoding higher dimensional quantum states of a driver
tractable.

For such a widely recognized network, we have illus-
trated how changing communication within the sub-units
of the learner can be understood by introducing imaginary
components of OTOC and have analytically established its
relationships with bipartite mutual information. Use of the
real part of OTOCs are gaining attention in learning al-
gorithms [81–83] including how quantum learning may be
advantageous with such scrambling measures [84], experi-
mental measurement of OTOC on quantum circuits [30,85],
bounds on loss function by OTOCs [83], presence of bar-
ren plateaus for simulating large scrambling unitaries using
parameterized circuits [86]. We see from our analytical deduc-
tion that the real part of OTOC between the kth visible neuron
and mth hidden neuron even though sensitive to W k

m through
an oscillatory temporal dependance, is completely insensitive
to (�a, �b) unlike the imaginary part. It must be emphasized
that the imaginary-part of OTOC is hitherto unexplored and
unreported and is not only new for this network but even for
other problems wherein OTOC has been used.

A direct byproduct of our mathematical approach are the
discovery of the several conservation theorems/invariants of
motion (see Theorem II.1) each of which is equipped with
a Lie-algebraic generator that preserves the phase space of
OTOC by mapping the the invariants onto itself. We plot both
the invariants in Appendix C 1 for a prototypical example of
TFIM with N = 10 spins. It is clear from the analysis that only
the ones constructed using imaginary components actually
change during training. The invariants from real components
remain fixed and is insensitive to training epoch. This deci-
sively shows that the importance of imaginary components
emphasizing the fact that to procure any information about the
learning landscape from these invariants, these components
are invincible and the only options available. Such insight
into the phase space of OTOC trajectories of network G and
the connection to a hidden Lie-algebraic framework was not
procured before and thus provides a richer characterization
of the problem, which has escaped prior attention. The math-
ematical machinery so developed could be used for making
similar deductions of OTOC strings in other physical systems
and other neural network architectures too.

A direct inter-relationship between the imaginary part of
such a four-point correlation function and a two-point corre-
lation function and eventually with mutual information was
thereafter deduced. Using the newly framed lens of I − η

space, we have established three different conclusions asso-
ciated with training the network - saturation of lower bound
for a wide variety of spin models, quantifiable transference
of spin correlation from the driver to the hidden and visible
units of the learner (this is further corroborated using another
property computed solely from the learner as demonstrated
in Appendix J) and compatible representations chosen by
the learner for distinguishing complex connectivity. Such a
study begins to probe into the rich underlying universe of the
training mechanism and shows that the representations cho-
sen by the learner during the training epoch are quantifiably
tuned to readjust the correlation content among the pairwise
bi-partitions of visible and hidden neurons commensurate
with the changing quantum correlation in the actual driver
system. This is despite the fact that the latent spins of the
learner are not directly involved in emulating the spins of
the driver, they act merely as supportive instruments to acces-
sorize the spins in the visible-node register by enhancing their
expressivity.

Applications of such observations may be beneficial to
physics-inspired learning [87–89] and also can be leveraged
to expedite training through a priori informed initialization
near lower bound (LB). Extension to explore the ramifica-
tions of the findings in classical ML tasks like collaborative
filtering and to other important networks like dreaming neu-
ral networks [90–92], single-layer autoencoders [93] may be
undertaken. Although all results are analytically established,
since direct measurement of OTOCs is a possibility even on
a quantum circuit [30,31], experimental measurement of the
imaginary component of the OTOC string for our learner
can be undertaken and its relationship with I be exploited.
With the present-day promise of machine/deep learning, the
authors hope that more such studies will be initiated, which
in spirit “humanizes” already-established black-box models
by probing into their learning universe, removes the shroud
of mystery behind their training, and will hopefully lead to
enhanced cross pollination with physical sciences and ame-
liorated standards in model development. The benefits of such
a pipeline can surely be harvested to achieve unprecedented
feats in simulating the natural world.

ACKNOWLEDGMENTS

The authors would like to acknowledge the financial sup-
port from the Quantum Science Center, a National Quantum
Information Science Research Center of the U.S. Department
of Energy (DOE). We also acknowledge funding from Na-
tional Science Foundation (NSF) under Award No. 1955907.

APPENDIX A: GENERAL FORMULATION FOR OTOC

As indicated in the text, every OTOC comprises of
two unitary operators U1(0),U2(0) chosen usually at two
nonlocal sites (here {1, 2} for instance) within a system.
The rate at which the information propagates through the
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system in real-time is thereafter quantified using the
CU1,U2 (t ) = 〈U †

1 (0)U †
2 (t )U1(0)U2(t )〉. For measurement pur-

poses, the Re(CU1,U2 (t )) is often related in literature to the
commutator product given as 〈[U1(0),U2(t )]†[U1(0),U2(t )]〉
where by virtue of construction of the observable, positive
semi-definiteness is ensured. The origin of such a choice is
attributed to studying chaotic classical systems wherein an
analogous expression for Poisson bracket {x(0), p(t )}PB is
used to probe sensitivity to initial conditions. Since in our
paper we show that the imaginary part Im(CU1,U2 (t )) can also
be informative about correlation content within the subunits
of the learner G, we offer herein a general formulation for
OTOCs of arbitrary systems using newly constructed positive
semidefinite operators involving not only commutators ([·])
as above but anticommutators ({·}+). The advantage of the
formulation is the offered generality in the theory of OTOCs
in the quantum domain and also the flexibility in projecting
both the real and imaginary component of CU1,U2 (t ) based
on user-defined preferences while still maintaining positive
semidefiniteness of the observables probed. To this end, let
us define a probe as

LU1,U2 (λ1, λ2, t ) = λ1A(U1,U2, t ) + iλ2B(U1,U2, t ), (A1)

A(U1,U2, t ) = {U1(0),U2(t )}+, (A2)

B(U1,U2, t ) = [U1(0),U2(t )], (A3)

λ1, λ2 ∈ R. (A4)

Using Eq. (A1) and the definition for CU1,U2 (0, 0, �X , t ), it is
easy to show

Re(CU1,U2 (0, 0, �X , t ))

= Re(〈U †
1 (0)U †

2 (t )U1(0)U2(t )〉)

= 1 − 〈B(U1,U2, t )†B(U1,U2, t )〉
2

∵ Eq. (A3)

= 1 − 〈LU1,U2 (0, 1, t )†LU1,U2 (0, 1, t )〉
2

∵ Eq. (A1)

(A5)

and

Im(CU1,U2 (t ))

= Im(〈U †
1 (0)U †

2 (t )U1(0)U2(t )〉)

= − 1
2 (〈A(U1,U2, t )†iB(U1,U2, t )〉) ∵ Eqs. (A2), (A3)

= 1
4 〈LU1,U2 (0, 1, t )†LU1,U2 (0, 1, t )〉
+ 1

4 〈LU1,U2 (1, 0, t )†LU1,U2 (1, 0, t )〉
− 1

4 〈LU1,U2 (1, 1, t )†LU1,U2 (1, 1, t )〉 ∵ Eq. (A1).
(A6)

Note that all combinations of LU1,U2 (λ1,λ2, t )†

LU1,U2 (λ1, λ2, t ) are positive semidefinite by construction
and hence is used in the same vein as the usual commutators
for OTOCs are traditionally defined but nonetheless offers a
much more general framework for investigating the operator
string CU1,U2 (t ).

APPENDIX B: TIME DEPENDENCE OF {σα(vk, 0), σβ(hm, t )}+ AND [σα(vk, 0), σβ(hm, t )]

To define the time-dependence of {σα (vk, 0), σ β (hm, t )}+ and [σα (vk, 0), σ β (hm, t )], it is essential to establish time depen-
dence for σβ (hm, t ) where α, β ∈ {0, x, y, z} with σ 0 = I2×2. To this end, we prove the following lemma.

Lemma 1. For an operator σβ (hm, t ) satisfying the equation σ̇ β (hm, t ) = i[H, σ β (hm, t )], [generator H defined in Eq. (1) in
main text], the solution would be σβ (hm, t ) = e2iH′tσβ (hm, 0) ∀ β ∈ {0, x, y, z} with

H′ = δβ∈{x,y}(H −
∑

l

alσ
z(vl , 0) −

∑
j �=m

bjσ
z(h j, 0) −

∑
l, j �=m

W l
j σ

z(vl , 0)σ z(h j, 0)).

Proof.

σ̇ β (hm, t ) = i[H, σ β (hm, t )] = ieiHt [H, σ β (hm, 0)]e−iHt

= ieiHt (bm[σ z(hm, 0), σ β (hm, 0)] +
∑

l

W l
m[σ z(vl , 0)σ z(hm, 0), σ β (hm, 0)])e−iHt

= 2iδβ∈{x,y}eiHt (bmσ z(hm, 0)σβ (hm, 0) +
∑

l

W l
mσ z(vl , 0)σ z(hm, 0)σβ (hm, 0))e−iHt

= 2iδβ∈{x,y}(bmσ z(hm, 0) +
∑

l

W l
mσ z(vl , 0)σ z(hm, 0))σβ (hm, t )

= 2iδβ∈{x,y}(H −
∑

l

alσ
z(vl , 0) −

∑
j �=m

bjσ
z(h j, 0) −

∑
l, j �=m

W l
j σ

z(vl , 0)σ z(h j, 0))σβ (hm, t ) = 2iH′σβ (hm, t ),

σ β (hm, t ) = e2iH′tσβ (hm, 0). �
Lemma 2. The explicitly time dependant forms of [σα (vk, 0), σ β (hm, t )] and {σα (vk, 0), σ β (hm, t )}+ are

1. �̂α,β (t ) = [σα (vk, 0), σ β (hm, t )] = −2i Sin
(
2W k

mt
)

det

⎛
⎝δαz δαβ δαγ

1 δzβ δzγ

δχz δχβ δχγ

⎞
⎠F̂ σχ (vk, 0)σγ (hm, 0)
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2. �̂α,β (t ) = {σα (vk, 0), σ β (hm, t )}+

= −2i Sin
(
2W k

mt
)

det

⎛
⎝δαz δαβ δαγ

1 δzβ δzγ

δχz δχβ δχγ

⎞
⎠F̂ σχ (vk, 0)σγ (hm, 0) + 2e2iH′tσα (vk, 0)σβ (hm, 0)

with F̂ = e2ibmσ z (hm,0)t�l �=ke2iW l
mσ z (vl ,0)σ z (hm,0)t being a unitary operator. For definition of H′ see Lemma. 1. Here we restrict

α, β ∈ {x, y, z} as the commutation/anticommutation relations with I2×2 are trivial.
Proof.

1. �̂α,β (t ) = [σα (vk, 0), σ β (hm, t )]

= [σα (vk, 0), e2iH′t ]σβ (hm, 0) ∵ Lemma 1

= e2ibmσ z (hm,0)t�l �=ke2iW l
mσ z (vl ,0)σ z (hm,0)t [σα (vk, 0), e2iW k

mσ z (vk ,0)σ z (hm,0)t ]σβ (hm, 0)

= F̂[σα (vk, 0), iσ z(vk, 0)σ z(hm, 0)]σβ (hm, 0) Sin
(
2W k

mt
)

= −2i(εαzχ )(εzβγ ) Sin
(
2W k

mt
)
F̂ σχ (vk, 0)σγ (hm, 0)

= −2i Sin
(
2W k

mt
)

det

⎛
⎜⎝δαz δαβ δαγ

1 δzβ δzγ

δχz δχβ δχγ

⎞
⎟⎠F̂ σχ (vk, 0)σγ (hm, 0)

2. �̂α,β (t ) = {σα (vk, 0), σ β (hm, t )}+
= {σα (vk, 0), e2iH′tσβ (hm, 0)}+ ∵ Lemma 1

= [σα (vk, 0), e2iH′t ]σβ (hm, 0) + e2iH′t {σα (vk, 0), σ β (hm, 0)}+
= [σα (vk, 0), e2iH′t ]σβ (hm, 0) + 2e2iH′tσα (vk, 0)σβ (hm, 0)

= −2i Sin
(
2W k

mt
)

det

⎛
⎜⎝δαz δαβ δαγ

1 δzβ δzγ

δχz δχβ δχγ

⎞
⎟⎠F̂ σχ (vk, 0)σγ (hm, 0) + 2e2iH′tσα (vk, 0)σβ (hm, 0)

∵ Lemma 2(1) �
Lemma 3. As defined in Lemma 2, if �̂α,β (t ) = [σα (vk, 0), σ β (hm, t )] and �̂α,β (t ) = {σα (vk, 0), σ β (hm, t )}+, then ∀ α, β ∈

{0, x, y, z}, �̂α,β (t ) and �̂α,β (t ) satisfies the following operator differential equations:

1.
1

2

(
∂2�̂α,β (t )†�̂α,β (t )

∂t2

)
= δα∈{x,y}δβ∈{x,y}

(
4W k

m

)2
(
I2×2 − �̂α,β (t )†�̂α,β (t )

2

)

2.
∂2�̂α,β (t )†�̂α,β (t )

∂t2
= δα∈{x,y}δβ∈{x,y}

(
4W k

m

)2
�̂α,β (t )†�̂α,β (t )

Proof.
(1) Using products like �̂α,β (t )†�̂α,β (t ) ensures the unitary operator F cancels. The satisfaction of (1) can thereafter be

verified explicitly as

1

2

(
∂2�̂α,β (t )†�̂α,β (t )

∂t2

)
= 2δα∈{x,y}δβ∈{x,y} (σχ (vk, 0)σγ (hm, 0))2 ∂2

(
Sin2

(
2W k

mt
)
F†F

)
∂t2

I2×2 ∵ Lemma 2(1)

= δα∈{x,y}δβ∈{x,y}
(
4W k

m

)∂Sin
(
4W k

mt
)

∂t
I2×2

= δα∈{x,y}δβ∈{x,y}
(
4W k

m

)2
(1 − 2Sin2

(
4W k

mt
)
)I2×2

= δα∈{x,y}δβ∈{x,y}
(
4W k

m

)2
(
I2×2 − �̂α,β (t )†�̂α,β (t )

2

)

(2) Similarly (2) above can be verified explicitly too as follows:

1

2

(
∂2�̂α,β (t )†�̂α,β (t )

∂t2

)
(B1)

= 1

2

(
∂2

∂t2
(�̂†

α,β (t )�̂α,β (t ) + 2σα (vk, 0)σα (hm, 0)e−2iH′t�̂α,β (t ))

)
∵ Lemma 2(2)
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= 1

2

(
∂2

∂t2
(�̂†

α,β (t )�̂α,β (t ))

)
+ σα (vk, 0)σα (hm, 0)

(
∂2

∂t2
e−2iH′t�̂α,β (t )

)

= 1

2

(
∂2

∂t2
(�̂†

α,β (t )�̂α,β (t ))

)
− 2iεαzχεzβγ σ α (vk, 0)σα (hm, 0)

∂2

∂t2

(
e−2iH′tFσχ (vk, 0)σγ (hm, 0)sin

(
2W k

mt
))

see Lemma 2(1) for F

= 1

2

(
∂2

∂t2
(�̂†

α,β (t )�̂α,β (t ))

)
− 2iεαzχεzβγ σ α (vk, 0)σα (hm, 0)

∂2

∂t2

(
σχ (vk, 0)σγ (hm, 0)cos

(
W k

mt
)
sin

(
2W k

mt
) + εzχωεzγ ησ

ω(vk, 0)ση(hm, 0)sin2
(
2W k

mt
))

= 1

2

(
∂2

∂t2
(�̂†

α,β (t )�̂α,β (t ))

)
− 2iεαzχεzβγ σ α (vk, 0)σα (hm, 0)

∂2

∂t2

(
σχ (vk, 0)σγ (hm, 0)cos

(
W k

mt
)
sin

(
2W k

mt
)) − 1

2

(
∂2

∂t2
(�̂†

α,β (t )�̂α,β (t ))

)

= −2iεαzχεzβγ σ α (vk, 0)σα (hm, 0)
∂2

∂t2

(
σχ (vk, 0)σγ (hm, 0)cos

(
W k

mt
)
sin

(
2W k

mt
))

= 2iεαzχεzβγ εαχκεβγω

∂2

∂t2

(
σκ (vk, 0)σω(hm, 0)cos

(
W k

mt
)
sin

(
2W k

mt
))

= −2i
∂2

∂t2

(
σ z(vk, 0)σ z(hm, 0)cos

(
W k

mt
)
sin

(
2W k

mt
))

= 1

2

∂2

∂t2

( − 2iσ z(vk, 0)σ z(hm, 0)sin
(
4W k

mt
))

= −(
4W k

m

)2
�̂α,β (t )†�̂α,β (t ), (B2)

where the last equality follows from Eqs. (B1) and (B2), which shows 1
2 ( ∂2�̂α,β (t )†�̂α,β (t )

∂t2 ) =
1
2

∂2

∂t2 (−2iσ z(vk, 0)σ z(hm, 0)sin(4W k
mt )) thereby implying �̂α,β (t )†�̂α,β (t )= −2iσ z(vk, 0)σ z(hm, 0)sin(4W k

mt ). �

APPENDIX C: INVARIANTS OF MOTION-PROOF OF THEOREM 1 IN MAIN TEXT

We are now in a position to prove the assertions of Theorem 1 in the main text ∀α, β ∈ {x, y}.
(1) To establish the assertions of Theorem 1 (1) we need to prove the following primitive lemmas first for completeness.
Lemma 4. σα f (σ z )(σα )† = f (−σ z ) ∀α ∈ {x, y}
Proof.

σασ z(σα )† = iσαεzαkσ
k = i2εzαkεαkωσω = i2δωzσ

ω = −σ z ∵ (α ∈ {x, y})

σα f (σ z )(σα )† = σα[β0 + β1σ
z + β2(σ z )2 + · · · ](σα )†

= β0σ
α (σα )† + β1σ

ασ z(σα )† + β2[σασ z(σα )†]2 + · · ·
= β0 − β1σ

z + β2(σ z )2 − β3(σ z )3 + · · ·
= f (−σ z )

�
Lemma 5. For a diagonal matrix A and an off-diagonal matrix B, Tr(AB) = 0.
Given: Bk

i = 0 ∀ i = k and Ak
i = aiδ

k
i

Proof.

Tr(AB) =
∑

i

(AB)i
i =

∑
i

Ai
kBk

i =
∑

i

aiδ
i
kBk

i =
∑

aiB
i
i = 0.

�
Theorem C.1. [Theorem II.1(1) in main text] For a given parameter vector �X , one can define H( �X , �v, �h) [see Eq. (2)] and

a thermal state ρth( �X , �v, �h). Let us thereafter define the following OTOC with U1(0) = σ̃α = σα (vk, 0) − κ1I, and operator
U2(0) = σ̃β = σβ (hm, 0) − κ2I and the generator Hotoc = H( �X , �v, �h) [in Eq. (5) in main text] ∀ {α, β} ∈ {x, y}.

Cσα,σ β (κ1, κ2, �X , t ) = 〈σ̃ α (vk, 0)σ̃ β (hm, t )σ̃ α (vk, 0)σ̃ β (hm, t )〉. (C1)
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Note that {κ1, κ2} ∈ C2 are arbitrary user-defined mean translations. Also 〈·〉 indicates averaging over the thermal state
ρth( �X , �v, �h), which activates the �X dependence. Using 6, one can then make the following statements: For (κ1, κ2) ∈ C2,

Cσα,σ β (κ1, κ2, �X , t ) = 〈σ̃ α (vk, 0)σ̃ β (hm, t )σ̃ α (vk, 0)σ̃ β (hm, t )〉 = Cσα,σ β (0, 0, �X , t ) + |κ1|2|κ2|2 + |κ2|2 + |κ1|2

where α, β ∈ {x, y}.
Proof. Let us define Ũ1(0) = U1(0) − κ1I and Ũ2(0) = U2(0) − κ2I where U1(0) and U2(0) are two unitary operators as

defined in the main text

〈Ũ1(0)†Ũ2(t )†Ũ1(0)Ũ2(t )〉 = 〈U1(0)†U2(t )†U1(0)U2(t )〉 + |κ1|2|κ2|2 − κ2〈U1(0)†U2(t )†U1(0)〉 − κ1〈U1(0)†U2(t )†U2(t )〉
− κ∗

2 〈U1(0)†U1(0)U2(t )〉 − κ∗
1 〈U2(t )†U1(0)U2(t )〉 + |κ2|2〈U †

1 (0)U1(0)〉
+ |κ1|2〈U †

2 (t )U2(t )〉 + κ∗
1 κ2〈U †

2 (t )U1(0)〉 + κ1κ
∗
2 〈U †

1 (0)U2(t )〉
+ κ∗

1 κ∗
2 〈U1(0)U2(t )〉 + κ1κ2〈U †

1 (0)U †
2 (t )〉 − κ1|κ2|2〈U1(0)†〉

− |κ1|2κ2〈U2(t )†〉 − κ∗
1 |κ2|2〈U1(0)〉 − |κ1|2κ†

2 〈U2(t )〉. (C2)

Let us now substitute U1(0) = σα (vk, 0) and U2(t ) = σβ (hm, t ) in Eq. (C2).
By definition

〈σα (vk, 0)σβ (hm, t )σα (vk, 0)σβ (hm, t )〉 = Cσα,σ β (0, 0, �X , t ). (C3)

Also one can show the following:
(a)

〈σα (vk, 0)σβ (hm, t )σα (vk, 0)〉 = Tr(ρth( �X , vk, hm)σα (vk, 0)σβ (hm, t )σα (vk, 0))

= Tr(σα (vk, 0)ρth( �X , vk, hm)σα (vk, 0)σβ (hm, t ))

= Tr(ρth( �X ,−vk, hm)eiHtσβ (hm, 0)e−iHt ) see Lemma 4 and Lemma 1

= Tr(e−iHtρth( �X ,−vk, hm)eiHtσβ (hm, 0))

= Tr(ρth( �X ,−vk, hm)σβ (hm, 0)) ∵ eiHt & ρ are diagonal

= 0 see Lemma 5 (C4)

(b)

〈σβ (hm, t )σα (vk, 0)σβ (hm, t )〉 = Tr(ρth( �X , vk, hm)σβ (hm, t )σα (vk, 0)σβ (hm, t ))

= Tr(σβ (hm, t )ρth( �X , vk, hm)σβ (hm, t )σα (vk, 0))

= Tr(eiHtσβ (hm, 0)e−iHtρth( �X , vk, hm)eiHtσβ (hm, 0)e−iHtσα (vk, 0))

= Tr(eiHtσβ (hm, 0)ρth( �X , vk, hm)σβ (hm, 0)e−iHtσα (vk, 0)) ∵ eiHt & ρ are diagonal

= Tr(eiHtρth( �X , vk,−hm)e−iHtσα (vk, 0)) see Lemma 4

= Tr(ρth( �X , vk,−hm)σα (vk, 0)) ∵ eiHt & ρ are diagonal

= 0 see Lemma 5 (C5)

(c)

〈σα (vk, 0)σβ (hm, t )σβ (hm, t )〉 = 〈σα (vk, 0)〉 = Tr(ρth( �X , vk, hm)σα (vk, 0)) see Lemma 5 (C6)

(d)

〈σα (vk, 0)σα (vk, 0)σβ (hm, t )〉 = 〈σβ (hm, t )〉 = Tr(ρth( �X , vk, hm)σβ (hm, t ))

= 0 see Lemma 5 (C7)

(e)

〈σβ (hm, t )σα (vk, 0)〉 = Tr(ρth( �X , vk, hm)σβ (hm, t )σα (vk, 0)) = Tr(ρth( �X , vk, hm)e2iH′tσβ (hm, 0)σα (vk, 0)) see Lemma 1

= 0 see Lemma 5 (C8)

Here ρe2iH′t is diagonal, σβ (hm, 0)σα (vk, 0) is off-diagonal.
Similarly we can show 〈σα (vk, 0)σβ (hm, t )〉 = 0,

〈σα (vk, 0)〉 = 〈σβ (hm, t )〉 = 0 see Lemma 5
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Substituting the results of Eqs. (C3)–(C8) in Eq. (C2) establishes the claim of the theorem. �
(2) Now we establish the assertions of Theorem II.1(2) in the main text.
Theorem C.2. [Theorem II.1(2) in main text] For a given parameter vector �X , one can define H( �X , �v, �h) [see Eq. (2)] and

a thermal state ρth( �X , �v, �h). Let us thereafter define the following OTOC with U1(0) = σ̃α = σα (vk, 0) − κ1I, and operator
U2(0) = σ̃β = σβ (hm, 0) − κ2I and the generator Hotoc = H( �X , �v, �h) [in Eq. (5) in main text] ∀ {α, β} ∈ {x, y}.

Cσα,σ β (κ1, κ2, �X , t ) = 〈σ̃ α (vk, 0)σ̃ β (hm, t )σ̃ α (vk, 0)σ̃ β (hm, t )〉. (C9)

Note that {κ1, κ2} ∈ C2 are arbitrary user-defined mean translations. Also 〈·〉 indicates averaging over the thermal state
ρth( �X , �v, �h), which activates the �X dependence. Using 6, one can then show the following invariants of motion exists for
Cσα,σ β (0, 0, �X , t ):

(1) I1 = −2ξ̇σ α,σ β ( �X , τ )Cos(τ ) − 2ξσα,σβ ( �X , τ )Sin(τ )
(2) I2 = −2ξ̇σ α,σ β ( �X , τ )Sin(τ ) + 2ξσα,σβ ( �X , τ )Cos(τ )

where ξσα,σβ ( �X , τ ) can either be the real or the imaginary part of (Cσα,σ β (0, 0, �X , τ )) and is with τ = 4W k
mt

Real part
For the real part of Cσα,σ β (0, 0, �X , τ ) we substitute in Theorem C.2 (1)

ξσα,σβ ( �X , τ ) = Re(Cσα,σ β (0, 0, �X , τ )) = Cr,σ α,σ β (0, 0, �X , τ ). (C10)

Thus we have
(a)

Ir1 = −2Ċr,σ α,σ β (0, 0 �X , τ )cos(τ ) − 2Cr,σ α,σ β (0, 0, �X , τ )sin(τ ). (C11)

Proof. To prove Ir1 as an invariant, we have to show that ˙Ir1 = 0. Using the definition of Cr,σ α,σ β (0, 0, �X , τ ) as

Crσα,σ β (0, 0, �X , τ ) = 〈
I2×2 − 1

2 �̂
†
α,β (τ )�̂α,β (τ )

〉
ρth

, (C12)

where �̂α,β (t ) = [σα (vk, 0), σ β (hm, t )] (see Lemma 2) one can show the following:

˙Ir1 =
〈
∂2�̂

†
α,β (τ )�̂α,β (τ )

∂τ 2
Cos(τ ) + ∂�̂

†
α,β (τ )�̂α,β (τ )

∂τ
Sin(τ ) − ∂�̂

†
α,β (τ )�̂α,β (τ )

∂t
Sin(τ )

−2(I2×2 − 1

2
�̂

†
α,β (τ )�̂α,β (τ ))Cos(τ )

〉
ρth

=
〈
∂2�̂

†
α,β (τ )�̂α,β (τ )

∂τ 2
Cos(τ ) − 2

(
I2×2 − 1

2
�̂

†
α,β (t )�̂α,β (τ )

)
Cos(τ )

〉
ρth

= 2

〈
1

2

∂2�̂
†
α,β (τ )�̂α,β (τ )

∂τ 2
−

(
I2×2 − 1

2
�̂

†
α,β (t )�̂α,β (τ )

)〉
ρth

Cos(τ )

= 2(
4W k

m

)2

〈
1

2

∂2�̂
†
α,β (t )�̂α,β (t )

∂t2
− (

4W k
m

)2
(
I2×2 − 1

2
�̂

†
α,β (t )�̂α,β (t )

)〉
ρth

Cos
(
4W k

mt
)

∵ τ = 4W k
mt

= 0 ∵ Lemma 3(1) ∀ α, β ∈ {x, y}
�

(b) For this one we have to substitute in in Theorem C.2 (2)

ξσα,σβ ( �X , τ ) = Re(Cσα,σ β (0, 0, �X , τ )) = Cr,σ α,σ β (0, 0, �X , τ ) (C13)

After substitution, we have

Ir2 = −2Ċr,σ α,σ β (0, 0 �X , τ )sin(τ ) + 2Cr,σ α,σ β (0, 0, �X , τ )cos(τ ) (C14)

Proof. As before to prove invariance one has to show ˙Ir2 = 0. Similar to Eq. (C11), Eq. (C14) can either be verified explicitly
or by noting Ir2 = Ir1(τ → τ − π

2 ). The invariance of Ir2 thereafter follows from the invariance of Ir1 proven above. �
Imag part
For the imaginary part of Cσα,σ β (0, 0, �X , τ ) we substitute in Theorem C.2 (1)

ξσα,σβ ( �X , τ ) = Im(Cσα,σ β (0, 0, �X , τ )) = Ci,σ α,σ β (0, 0, �X , τ ) (C15)
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Thus we have now
(a)

Ii1 = −2Ċi,σ α,σ β (0, 0 �X , τ )cos(τ ) − 2Ci,σ α,σ β (0, 0, �X , τ )sin(τ ) (C16)

Proof. To prove Ii1 as an invariant, we have to show that ˙Ii1 = 0. Using the definition of Ciσα,σ β (0, 0, �X , τ ) as

Ciσα,σ β (0, 0, �X , τ ) = − i

2
〈�̂†

α,β (t )�̂α,β (τ )〉ρth (C17)

where �̂α,β (t ) = {σα (vk, 0), σ β (hm, t )}+ (see Lemma 2), one can show the following:

˙Ii1 = i

〈
∂2�̂

†
α,β (τ )�̂α,β (τ )

∂τ 2
Cos(τ ) − ∂�̂

†
α,β (τ )�̂α,β (τ )

∂τ
Sin(τ ) + ∂�̂

†
α,β (τ )�̂α,β (t )

∂τ
Sin(τ ) + �̂

†
α,β (τ )�̂α,β (τ )Cos(τ )

〉
ρth

= i

〈
∂2�̂

†
α,β (τ )�̂α,β (τ )

∂τ 2
Cos(τ ) + �̂

†
α,β (τ )�̂α,β (τ )Cos(τ )

〉
ρth

= i(
4W k

m

)2

〈
∂2�̂

†
α,β (t )�̂α,β (t )

∂t2
Cos

(
4W k

mt
) + (

4W k
m

)2
�̂

†
α,β (t )�̂α,β (t )Cos(4W k

mt )

〉
ρth

∵ τ = 4W k
mt

= 0 ∵ Lemma 3(2) ∀ α, β ∈ {x, y}
�

(b) For this one we substitute in Theorem C.2 (2)

ξσα,σβ ( �X , τ ) = Im(Cσα,σ β (0, 0, �X , τ )) = Ci,σ α,σ β (0, 0, �X , τ ). (C18)

Thus after substitution we have

Ii2 = −2Ċi,σ α,σ β (0, 0 �X , τ )sin(τ ) + 2Ci,σ α,σ β (0, 0, �X , τ )cos(τ ) (C19)

Proof. Similar to Eq. (C16), (C19) can either be verified explicitly or by noting Ii2 = Ii1(τ → τ − π
2 ). The invariance of Ii2

thereafter follows from the invariance of Ii1 proven above. �
Using the definitions for �α,β,τ = [σα (vk, 0), σ β (hm, t )] and �α,β,τ = {σα (vk, 0), σ β (hm, t )}+ as given in Lemma 2, one can

enlist the initial conditions satisfied by Crσα,σ β (0, 0, �X , τ ) and Crσα,σ β (0, 0, �X , τ ) as follows:

Crσα,σ β (0, 0, �X , 0) =
〈
I2×2 − 1

2
�̂

†
α,β (0)�̂α,β (0)

〉
ρth

= 1 (∵ �̂α,β (0) = 0), (C20)

Ċrσα,σ β (0, 0, �X , 0) = −1

2

〈
∂

∂τ
�̂

†
α,β (τ )�̂α,β (τ )

〉
ρth

∣∣∣∣
0

= 0 (∵ �̂α,β (0) = �̂
†
α,β (0) = 0), (C21)

Ciσα,σ β (0, 0, �X , 0) = − i

2
〈�̂†

α,β (0)�̂α,β (0)〉ρth = 0 (∵ �̂α,β (0) = 0), (C22)

Ċiσα,σ β (0, 0, �X , 0) = − i

2

〈
∂

∂τ
�̂

†
α,β (τ )�̂α,β (τ )

〉
ρth

∣∣∣∣
0

=
〈

∂

∂τ
σ z(vk, 0)σ z(hm, 0)Sin

(
4W k

mt
)〉

ρth

∣∣∣∣
0

= 〈σ z(vk, 0)σ z(hm, 0)〉ρth (see Lemma 2(2)). (C23)

Using Eqs. (C20)–(C23) one can establish the following corollary to Theorem 1 in the main text.
Corollary 5.1. The following statements are true:

(i) Crσα,σ β (0, 0, �X , τ ) = Cos(4W k
mt )
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Proof.
Crσα,σ β (0, 0, �X , τ ) = Ir2

2
Cos(τ ) + Ir1

2
Sin(τ ) (∵ Eq. (C11 × Sin(τ ) − Eq. (C14 × Cos(τ ))

= Cos(τ ) (see Eq. C20, C21) = Cos
(
4W k

mt
)

∵ τ = 4W k
mt �

Ciσα,σ β (0, 0, �X , τ ) = 〈σ z(vk, 0)σ z(hm, 0)〉Sin(4W k
mt )

Proof.

(ii) Ciσα,σ β (0, 0, �X , τ ) = Ii2

2
Cos(τ ) + Ii1

2
Sin(τ ) (∵ Eq. (C16 × Sin(τ ) − Eq. (C19 × Cos(τ ))

= 〈σ z(vk, 0)σ z(hm, 0)〉Sin(τ ) (see Eq. C22, C23) = 〈σ z(vk, 0)σ z(hm, 0)〉Sin
(
4W k

mt
) (

∵ τ = 4W k
mt

)
�

Corollary 5.2. In addition to the above invariants, following are also the invariants of motion for Crσα,σ β (0, 0, �X , τ ) and
Ciσα,σ β (0, 0, �X , τ )

(i) (Ċrσα,σ β (0, 0, �X , τ )2 − Crσα,σ β (0, 0, �X , τ )2)Sin(2τ ) − 2Ċrσα,σ β (0, 0, �X , τ )Crσα,σ β (0, 0, �X , τ )Cos(2τ )

Proof. Can be verified through explicit evaluation using the
solution Crσα,σ β (0, 0, �X , τ ) in Corollary 5.1, or by combining
the invariants Ir1, Ir1 in Eqs. (C11) and (C14) as 1

2 Ir1Ir2. This
invariant is plotted in Fig. 6 for the real part. Exactly similar
profile for the invariant exists for the imaginary part too. �

FIG. 6. The profile for the real part of the invariant I1I2
2

(see Appendix C, Corollary 5.2), where Cr,σα,σβ ( �X , τ ) =
Re(Cσα,σβ (0, 0, �X , τ )) = ξσα,σβ ( �X , τ ) and α = β = x is substituted
in Theorem 1(2) in main text for a specific vis-hid neuron pair (k, m)
[see Eq. (6) in main text]. Subscript “r” denotes the real part in the
plot. The quantity has been evaluated at (κ1 = 0, κ2 = 0), hence
the explicit dependence on (κ1, κ2) has been dropped for notational
brevity. Each hyperbolic curve is the loci of points with the same
fixed value of the invariant and a particular fixed value of τ = 4W k

mt
as the dependant variable (see colorbar). The loci of all points
touching several hyperbolic curves with a fixed value of the invariant
alone but wherein τ is continuously changed ∈ [0, π ] forms a circle
at the center. Since τ = 4W k

mt , this change can be administered by
changing real-time (t ) or the parameter vector �X during training
which affects W k

m . Exactly similar profile exists for the imaginary part
too where Ci,σα,σβ ( �X , τ ) = Im(Cσα,σβ (0, 0, �X , τ )) = ξσα,σβ ( �X , τ ) is
substituted.

FIG. 7. (a) The harmonic behavior of Cr,σα,σβ ( �X , τ ) in real-time
with the frequency equal to 4W k

m . Note while training G, a typical
learning trajectory in parameter space �X amounts to hopping from
one such curve to another as indicated. (b) The harmonic behavior
of Ci,σα,σβ ( �X , τ ) in real-time with the same frequency as in (a), i.e.,
4W k

m but phase-shifted from (a) by π

2 (refer to Appendix C, Corollary
5.1).
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FIG. 8. (a) The invariant Ii1 computed from Eq. (C16) using the imaginary part of the OTOC string [defined in Eq. (6)] as a function of
training epoch. This invariant changes as the training vector �X varies during training and hence can provide information about the learning
landscape (b) The invariant Ii2 computed from Eq. (C19) using the imaginary part of the OTOC string [defined in Eq. (6)] as a function of
training epoch. (c) Same invariant as in (a) but computed with the real part Eq. (C11) of the OTOC string [defined in Eq. (6)]. This remains
constant during training (d) Same invariant as in (c) but computed with the real part Eq. (C14) of the OTOC string [defined in Eq. (6)]. This

remains constant during training (e) The compound invariant
I2
i1+I2

i2
4 obtained from (a) and (b) vs training epoch. Such compound invariants are

plotted in Fig. 2(b) in main text in (Ciσα,σβ ( �X , τ )) vs (Ċiσα,σβ ( �X , τ )) space. Since (a), (e) is sensitive to �X and hence changes during training it
is evident why studying such invariants generated from the imaginary part of OTOC strings can be useful compared to the real part alone. (f)
The compound invariant as in (e) but for the real part. It shows no change during the training of the network.

(ii) (Ċrσα,σ β (0, 0, �X , τ )2 + Crσα,σ β (0, 0, �X , τ )2)

Proof. Can be verified through explicit evaluation using the
solution Crσα,σ β (0, 0, �X , τ ) in Corollary 5.1, or by combining
the invariants Ir1, Ir1 in Eqs. (C11) and (C14) as 1

4 (I2
r1 + I2

r2).
This invariant is plotted in Fig. 2(a) in the main text for the real
and imaginary part. The profile for the invariant is different
in two cases with the imaginary part being sensitive to the
training process of the network G unlike the real part and
hence can be used to deliver meaningful insight about the
learning dynamics. �

Exactly similar invariants can be obtained for
Crσα,σ β (0, 0, �X , τ ) by substituting Crσα,σ β (0, 0, �X , τ ) →
Ciσα,σ β (0, 0, �X , τ ) in the above expressions. Note that we also
display the real-time behavior of the real and imaginary part
in Fig. 7.

1. Profile of invariants during training

For demonstration as how these invariants of motion
changes during training of the network G to learn the ground
state of a given driver in epoch time, we have used the
TFIM model [see Eqs. (33) and (34)] as the driver with
N = 10 spins. We have discussed the training algorithm in
Appendix D. We use n = m = N = 10 spins in the network
G and plot the primitive invariants Ir1, Ir2, Ii1, Ii2, which are
discussed and proven in Theorem II.1 in main text and proven
in this section before in Theorem C.2 (2). We also plot the

compound invariants I2
i2+I2

i1
4 for each k, m pair where k belongs

to visible neurons and m to hidden neurons and I2
r2+I2

r1
4 , which

is displayed in Figs. 2(a) and 2(b) and proven in this section in
Corollary 5.2. We use 100 epochs for comparison of all in-
variants. For a given epoch with the incumbent instance of the
parameter vector �X one can plot each invariant in the space of
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FIG. 9. TFIM.

ξσα,σβ ( �X , τ )- ξ̇σ α,σ β ( �X , τ ) space where ξσα,σβ ( �X , τ ) can either
be the real or the imaginary part of (Cσα,σ β (0, 0, �X , τ )) as has
been done in the main text. We see that certain invariants
computed using the imaginary parts of OTOC string [see
Eq. (6) in main text] have nontrivial evolution [for example,
see Figs. 8(a) and 8(e)] unlike those computed using the real
parts. This gives us a direct evidence why imaginary part of
OTOC strings can be of use to gain insight into the learn-
ing mechanism, which may not be obtainable from the real
part—a claim central to the thesis of our paper. One functional
importance that may stem from analyzing such invariants
using the imaginary part is identifying certain pair of neurons
(k, m), which reports an invariant value that remains nearly
conserved and close to 0 during the entire course of training.
Such neurons can be considered to not undergo information
exchange (and hence remains nearly uncorrelated). A com-
mon set of neurons of the hidden node, which shares such a
property with any of the neurons of the visible set may be
considered redundant neurons and hence can be discarded for
more compact subsequent trial, which can reduce the cost of
the training. Designing markers through which identification
of such markers can be enabled through estimation of the
invariants may be a fruitful future direction that can benefit
from a thorough investigation.

FIG. 10. c-TFIM.

APPENDIX D: TRAINING OF TFIM AND c-TFIM
AND DEDUCTION OF EIGENVALUES OF 2ρ(vk, hm)

The Figs. 9 and 10 depict the training of RBM network
G for TFIM and c-TFIM model respectively. It shows the
variation of Energy accuracy with epochs for training G.
For each training process parameters of RBM are initialized
randomly. For training the network we use Variational Monte
Carlo technique with Stochastic Reconfiguration based gradi-
ent updates as illustrated in Ref. [73] of main text. Learning
rate used is 0.05 and (n, p) = (4, 4) in the network G. The
convergence threshold set is �10−2. The relative error in
the converged state is less than 0.1%. Energy accuracy =
〈ψ ( �X )|H |ψ ( �X )〉 − λ0 where Hamiltonian H is that of the
driver (TFIM or c-TFIM) and the state ψ ( �X ) is the ansatz for
the corresponding ground state. λ0 is the smallest eigenvalue
(true ground state energy) of the Hamiltonian.

For Figs. 3(d), 3(e), 3(g), and 3(h) in the main text, to
obtain each point, we average over all pairs of visible and
hidden indices for I (vk, hm) and η( �X ) (i.e., k = {1, 2, 3, 4},
m = {1, 2, 3, 4} implying 16 pairs) and another averaging
over a sample of 100 best-converged points obtained from the
training of 1000 randomly initialized networks.

1. Deduction of the eigenvalues of 2ρ(vk, hm)

In this subsection we explicitly deduce the eigenvalues of 2ρ(vk, hm) in Eqs. (24)–(27) in the main text. To do that let us
compute a specific matrix element [say (vk, hm, v′

k, h′
m)th element] of 2ρ(vk, hm) by direct contraction of ρth( �X , �v, �h) in Eq. (3)

as follows:

2ρ(σ z(vk ), σ z(hm))vk ,hp

v′
k ,h

′
m

= δvk ,v
′
k
δhm,h′

m

Tr{v,h}e−H( �X ,�v,�h)

∑
vi �=vk

e−β
∑n

i aivi
∑

h j �=hm

e−β
∑p

j b j h j−β
∑n,p

i j W i
j vih j

= δvk ,v
′
k
δhm,h′

m

Tr{v,h}e−H( �X ,�v,�h)

∑
vi �=vk

e− ∑n
i aivi e−bmhm−∑n

i W i
mvihm

∑
h j �=hm

�
p
j �=me−b j h j−

∑n
i W i

j vih j

= δvk ,v
′
k
δhm,h′

m

Z

∑
vi �=vk

e−akvk−bmhm−W k
mvkhm e− ∑n

i �=k aivi−W i
mvihm

∑
h j �=hm

�
p
j �=me−b j h j−

∑n
i W i

j vih j

= δvk ,v
′
k
δhm,h′

m
e−akvk−bmhm−W k

mvkhm

Z

∑
vi �=vk

e− ∑n
i �=k aivi−W i

mvihm
∑

h j �=hm

�
p
j �=me−b j h j−

∑n
i W i

j vih j
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= δvk ,v
′
k
δhm,h′

m
e−akvk−bmhm−W k

mvkhm

Z

∑
vi �=vk

e− ∑n
i �=k aivi−W i

mvihm�
p
j �=m2 cosh

(
−b j −

n∑
i

W i
j vi

)

= δvk ,v
′
k
δhm,h′

m
Nhm e−akvk−bmhm−W k

mvkhm

Z

〈
�

p
j �=m2cosh

(
b j +

n∑
i

W i
j vi

)〉
P({vi}n

i �=k ,hm )

, (D1)

where in Eq. (D1) the following definitions are used

cosh(x) = cosh(−x) (D2)

P({vi}n
i �=k, hm) = e−(

∑n
i �=k aivi+W i

mvihm ))

Nhm

(D3)

Nhm = �n
i �=k2Cosh

⎛
⎝ai +

n∑
i �=k

W i
mhm

⎞
⎠ (D4)

Z = Tr{v,h}e−H( �X ,�v,�h) =
∑
(�v,�h)

e(− ∑n
i −aivi−

∑p
i b j h j−

∑n,p
i, j W i

j vih j ) (D5)

Equation (D1) indicates due to the presence of δvk ,v
′
k
δhm,h′

m
factors that 2ρ(vk, hm) is an entirely diagonal matrix. Thus the 4

eigenvalues of 2ρ(vk, hm) can be written as

λi(
2ρ(vk, hm)) = λ(2ρ(vk = x, hm = y))

= Ny

Z
e−ak x−bmy−W k

m xy

〈
�

p
j �=m2cosh

(
b j +

n∑
i �=k

W i
j vi + W k

j x

)〉
P({vi}n

i �=k ,hm=y)

∀(x, y) ∈ {−1, 1}2. (D6)

Equation (D6) yields the four eigenvalues displayed in Eqs. (24)–(27) for various values of (x, y).

APPENDIX E: RELATIONSHIP BETWEEN η(�X ) [SEE EQ. (9) IN MAIN TEXT]
AND I (vk, hm)—PROOF OF THEOREM 2 IN MAIN TEXT

The four eigenvalues {λi(2ρ(vk, hm))}4
i=1 of the two-particle density matrix 2ρ(vk, hm) for the learner G between a specific

pair of visible and hidden spins [say (k, m)] as deduced in the previous section can be readily expressed as

λ1(2ρ(vk, hm)) = λ(2ρ(vk = 1, hm = 1)) = N1

Z
e−ak−bm−W k

m

〈
�

p
j �=m2Cosh

(
b j +

n∑
i �=k

W i
j vi + W k

j

)〉
P({vi}n

i �=k ,hm=1)

, (E1)

λ2(2ρ(vk, hm)) = λ(2ρ(vk = 1, hm = −1)) = N−1

Z
e−ak+bm+W k

m

〈
�

p
j �=m2Cosh

(
b j +

n∑
i �=k

W i
j vi + W k

j

)〉
P({vi}n

i �=k ,hm=−1)

, (E2)

λ3(2ρ(vk, hm)) = λ(2ρ(vk = −1, hm = 1)) = N1

Z
eak−bm+W k

m

〈
�

p
j �=m2Cosh

(
b j +

n∑
i �=k

W i
j vi − W k

j

)〉
P({vi}n

i �=k ,hm=1)

, (E3)

λ4(2ρ(vk, hm)) = λ(2ρ(vk = −1, hm = −1)) = N−1

Z
eak+bm−W k

m

〈
�

p
j �=m2Cosh

(
b j +

n∑
i �=k

W i
j vi − W k

j

)〉
P({vi}n

i �=k ,hm=−1)

, (E4)

where each of the averages are computed over the distribution P({vi}n
i �=k, hm) and Nhm is the associated normalization constant.

These are defined as

P
({vi}n

i �=k, hm
) = e−(

∑n
i �=k aivi+W i

mvihm )

Nhm

, (E5)

Nhm = �n
i �=k2Cosh

⎛
⎝ai +

n∑
i �=k

W i
mhm

⎞
⎠. (E6)

The corresponding eigenvectors of the two particle density matrix for the eigenvalues in Eqs. (E1)–(E4) are |0(vk )0(hm)〉,
|0(vk )1(hm)〉 and |1(vk )0(hm)〉, |1(vk )1(hm)〉 respectively for the four eigenvalues Eqs. (E1)–(E4) where (0,1) is notationally
equivalent to (1,−1) for each spins (vk, hm).
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The quantity Z is the partition function defined as

Z =
∑
(�v,�h)

e(− ∑n
i −aivi−

∑p
i b j h j−

∑n,p
i, j W i

j vih j ). (E7)

However Z need not be explicitly computed as it can be eliminated using the normalization condition of the eigenvalues. The
eigenvalues for one-particle density matrix 1ρ(ξi, 0) for a neuron ξi in the learner G, by contraction from Eqs. (E1)–(E4) are

λ1(1ρ(ξi )) = λi(2ρ(vk, hm)) + λ j (2ρ(vk, hm))

(if ξi = vk, (i, j) = (1, 3))

(if ξi = hm, (i, j) = (1, 4)), (E8)

λ2(1ρ(ξi )) = λi(2ρ(vk, hm)) + λ j (2ρ(vk, hm))

(if ξi = vk, (i, j) = (2, 4))

if (ξi = hm, (i, j) = (2, 3)) (E9)

with respective eigenvectors are |0(ξi)〉 and |1(ξi )〉 where ξi ∈ (vk, hm).
Now using these information, one can deduce expressions for S(2ρ(vk, hm)) and S(1ρ(vk )), S(1ρ(hm)) and hence of I (vk, hm)

as follows:

I (vk, hm) = S(1ρ(vk )) + S(1ρ(hm)) − S(2ρ(vk, hm))

= − λ1(1ρ(vk ))log2(λ1(1ρ(vk ))) − λ2(1ρ(vk ))log2(λ2(1ρ(vk ))) − λ1(1ρ(hm))log2(λ1(1ρ(hm)))

− λ2(1ρ(hm))log2(λ2(1ρ(hm))) + λ1(2ρ(vk, hm))log2(λ1(2ρ(vk, hm))) + λ2(2ρ(vk, hm))log2(λ2(2ρ(vk, hm)))

+ λ3(2ρ(vk, hm))log2(λ3(2ρ(vk, hm))) + λ4(2ρ(vk, hm))log2(λ4(2ρ(vk, hm)))

− (λ1(2ρ(vk, hm) + λ3(2ρ(vk, hm))log2(λ1(2ρ(vk, hm)) + λ3(2ρ(vk, hm)))

− (λ2(2ρ(vk, hm) + λ4(2ρ(vk, hm))log2(λ2(2ρ(vk, hm)) + λ4(2ρ(vk, hm)))

− (λ1(2ρ(vk, hm) + λ4(2ρ(vk, hm))log2(λ1(2ρ(vk, hm)) + λ4(2ρ(vk, hm)))

− (λ2(2ρ(vk, hm) + λ3(2ρ(vk, hm))log2(λ2(2ρ(vk, hm)) + λ3(2ρ(vk, hm)))

+ λ1(2ρ(vk, hm))log2(λ1(2ρ(vk, hm))) + λ2(2ρ(vk, hm))log2(λ2(2ρ(vk, hm)))

+ λ3(2ρ(vk, hm))log2(λ3(2ρ(vk, hm))) + λ4(2ρ(vk, hm))log2(λ4(2ρ(vk, hm))) (E10)

wherein in the last equality in Eq. (E10), contraction schemes from Eqs. (E8) and (E9) were used. Equation (E10) thus expresses
I (vk, hm) in terms of the eigenvalues of 2ρ(vk, hm). Apart from this the normalization condition also inter-relates the eigenvalues
as

λ1(2ρ(vk, hm)) + λ2(2ρ(vk, hm)) + λ3(2ρ(vk, hm)) + λ4(2ρ(vk, hm)) = 1. (E11)

The expression for the η( �X ) as follows:

η( �X ) = Cov(σ z(vk, 0), σ z(hm, 0)) = Tr(σ z(vk, 0)σ z(hm, 0) 2ρ(vk, hm)) − 〈σ z(vk, 0)〉1ρvk
〈σ z(hm, 0)〉1ρhm

= λ1(2ρ(vk, hm)) − λ2(2ρ(vk, hm)) − λ3(2ρ(vk, hm)) + λ4(2ρ(vk, hm)) −
⎛
⎝∑

i=1,3

λi(
2ρ(vk, hm)) −

∑
i=2,4

λi(
2ρ(vk, hm))

⎞
⎠

×
⎛
⎝∑

i=1,4

λi(
2ρ(vk, hm)) −

∑
i=2,3

λi(
2ρ(vk, hm))

⎞
⎠. (E12)

Also to ensure positive semidefiniteness of 2ρ(vk, hm), we have

λi(
2ρ(vk, hm)) � 0 ∀i ∈ {1, 2, 3, 4}. (E13)

Thus we see that Eq. (E10) combined with (E11), Eq. (E13) for a given value of η( �X ) in Eq. (E12) completely defines the I − η

space in terms of the spectrum of 2ρ(vk, hm).
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Lower bound (LB)
The minimization of Eq. (E10) over the spectrum of 2ρ(vk, hm) with the constraints defined in Eqs. (E11), (E13), and (E12))

[for a fixed value of η( �X )] gives the following condition:

λ1(2ρ(vk, hm)) = λ2(2ρ(vk, hm)) = λa(say),

λ3(2ρ(vk, hm)) = λ4(2ρ(vk, hm)) = λb(say). (E14)

Substituting the above conditions in Eq. (E11) and in Eq. (E10) leads to the following:

λb = 1
2 − λa, (E15)

η( �X ) = 4λa − 1 [∵ Eq. (E15)]. (E16)

Substituting Eqs. (E16), (E15) and the conditions in Eq. (E14), in Eq. (E10) yields the lower bound LB as

LB = ILB(vk, hm) = 2 + 2λalog2(λa) + 2λblog2(λb)

= 2 + 2λalog2(λa) + 2

(
1

2
− λa

)
log2

(
1

2
− λa

)

= 2 + 2λalog2(λa) + (1 − 2λa)log2

(
1

2
− λa

)

= 2 +
(

η( �X ) + 1

2

)
log2

(
η( �X ) + 1

4

)
+

(
1 − η( �X )

2

)
log2

(
1 − η( �X )

4

)
∵ Eq. (E16). (E17)

Note that LB is symmetric about η( �X ) = 0 and remains unchanged on substitution of η( �X ) → −η( �X ). Also, LB is mathemat-
ically only defined if −1 � η( �X ) � 1, which is true for covariances of Pauli operators in the learner G (a direct byproduct of
Cauchy-Schwartz inequality and idempotency of Pauli operators, which bounds their respective variances to within 1).

Upper bound (UB)
The maximization of Eq. (E10) over the spectrum of 2ρ(vk, hm) with the constraints defined in Eqs. (E11), (E13), and (E12)

[for a fixed value of η( �X )] gives the following condition:

λ1(2ρ(vk, hm)) = λ2(2ρ(vk, hm)) = 0, λ3(2ρ(vk, hm)) = λa(say), λ4(2ρ(vk, hm)) = λb(say). (E18)

Now using Eq. (E18) in (E11) and (E12) we get

λb = 1 − λa, (E19)

η( �X ) = −1 + (2λa − 1)2 = 4λa(4λa − 1) [∵ Eq. (E19)],

λa =
1 ±

√
1 + (−1)γ η( �X )

2
, (E20)

wherein in the last equality to maintain positive semidefiniteness of λa (hence for λ3) in both the roots, a factor of (−1)γ was
used along with the condition −1 � η( �X ) � 1. Note that γ = 0 when η( �X ) < 0 and γ = 1 when η( �X ) � 0. Now substituting
Eqs. (E18), (E19), and (E20) in (E10) we obtain UB as

UB = IUB(vk, hm) = −λalog2(λa) − λblog2(λb) = −λalog2(λa) − (1 − λa)log2(1 − λa) [∵ Eq. (E19)]

= −
(

1

2
+

√
1 + (−1)γ η( �X )

2

)
log2

(
1

2
+

√
1 + (−1)γ η( �X )

2

)
−

(
1

2
−

√
1 + (−1)γ η( �X )

2

)
log2

(
1

2
−

√
1 + (−1)γ η( �X )

2

)
(E21)

[∵ Eq. (E20)] (E22)

where substitution of either root from Eq. (E20) would lead to the same UB due to symmetry.

APPENDIX F: SATURATION OF LOWER BOUND (LB)
IN I (vk, hm) AND η(�X ) SPACE IN EIGENPAIR

LEARNING OF NETWORK G

In this section we discuss the several systems we have used
as a driver for our task of learning eigenpairs and training
the network G = (V, E ). We use for demonstration a wide
variety of systems wherein the ground state is non-negative

due to Perron-Frobenius theorem as discussed in the main
text. Each of these model is endowed with a hamiltonian
H (λ1, λ2, λ3...λn) with several generic controllable parame-
ters {λ}n

i=1. Tuning these controllable parameters allows one
to access ground states with various phase properties for
different sizes of the system. We show that for each cases
for different sizes, both the assertions in the text—(a) satu-
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FIG. 11. (a) The saturation of the lower bound for g = 0.1. (b) Same as in (a) for g = 1.0 (c) for g = 10.0 and N = 8. The plots also show
clustering of (|η( �X )|,I(vk, hm )) near upper regime for g = 0.1, middle and lower regime in g = 1.0 and close to the origin in g = 10.0 (d)–(f)
Same as in (a-c) but for N = 12. (g)–(h) Same as in (a)–(c) but for N = 16. For the c-TFIM panel we have similar plots as in TFIM (a)–(i).
Note that the spread of the points in c-TFIM is larger than in TFIM, feature consistent with the discussion in the main text, which says many
equivalent representations the network chooses for volume-law connectivity.

ration of lower bound (LB) in the I (vk, hm) and η( �X ) space
by the representation chosen by the trained/learned network,
(b) sliding of the (|η( �X )|, I (vk, hm)) points on the LB as
the controllable parameters {λ}n

i=1 are tuned across the phase
boundaries. The last point evidentiates how spin correlation
among the sub-units or spins of the actual driver system gets
translated or mimicked on the spin correlation between the
visible and hidden sub-units of the learner network G. It
must be emphasized this associates a functionally quantifiable
importance of the neurons of the hidden layer, which are
oblivious to the spins of the driver. It is only the spins of
the visible neurons whose state in the basis of its acceptable
configurations is trained to represent the physical ground state
of the driver.

We start with the familiar TFIM and c-TFIM, which has
been explicitly discussed in the main text. We have shown in
Fig. 4 that for N = 4, 6, 10, 20 for both TFIM and c-TFIM the
lower bound (LB) in the I (vk, hm) and η( �X ) space is saturated
and in Fig. 5 we show that mean I (vk, hm) and |η( �X )| values

slides along the LB as the controllable parameter g in H (g) is
changed from a ferromagnet to a disordered phase for sizes
N = 4, 6, 8, 10, 12, 14, 16, 18, 20, 24. Herein we show that
the same assertions hold for all intermediate sizes as well for
both the models TFIM and c-TFIM with n = p = N for the
network G. The results are displayed in Fig. 11

We next discuss the Sherrington-Kirkpatrick (SK) model
with transverse magnetic field. The form of the Hamiltonian
is

H = −B
N∑
id

σ x(id ) −
∑
id jd

Jid jd σ
z(id )σ z( jd ) (F1)

where unlike in TFIM and c-TFIM, each of the the coupling
matrix elements Jid jd are different and is randomly sampled
from a normal distribution, i.e., N (0, 1). Note that this can
mean a model with extreme inhomogeneous couplings too
such that interaction strength along the length of the sites
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FIG. 12. The saturation of the lower bound in the I(vk, hm ) and η( �X ) space for all five samples studied of the SK model. The sample
indices are displayed in the corresponding legend.

do not change monotonically unlike the connectivity pattern
used in c-TFIM and TFIM which. We draw five samples from
that distribution and for each train the model to show the
representation chosen by the network for the ground state
and display the results in Fig. 12. In each case we see the
(|η( �X )|, I (vk, hm)) pair saturates the lower bound. Note that
there is no analogous definition of g in this case as has
been defined for TFIM and c-TFIM as the couplings are
inhomogeneous. We use N = n = p = 10 and B = 1 for all
calculations.

We now turn our attention to another spin model that unlike
the previous set of models also have another set of interaction
terms involving σ y(id )σ y( jd ). Moreover the interactions are
even anisotropic. The Hamiltonian of the system is

H = − B
N∑
id

σ x(id ) −
∑
〈id jd 〉

J (1 + γ )σ z(id )σ z( jd )

−
∑
〈id jd 〉

J (1 − γ )σ y(id )σ y( jd ). (F2)

The system possesses ground state with non-negative co-
efficients too as a consequence of Perron-Frobenius theorem.

We demonstrate even for this system with anisotropic YZ type
interaction profile the representation chosen by the trained
state of the learner ground state saturates the lower bound in
the I (vk, hm) and η( �X ) space. We choose n = p = N = 10
spins and vary (g, γ ) in Eq. (F2) as shown in Fig. 13. The
parameter g = B/J is defined as in the case of TFIM and
c-TFIM.

APPENDIX G: EFFECT OF HIDDEN NODE DENSITY
ON TRAINING OF NETWORK G

In this section we provide a systematic study of the varia-
tion in hidden node density for the network G while training
the latter network for obtaining the ground state of TFIM
model [see Eqs. (33) and (34) in main text]. The hidden
node density is defined as the ratio of the number of hidden
neurons p vs the number of visible n neurons used in the
network G = (V, E ), i.e., α = p

n . We use for demonstration
the said TFIM model as the driver with N = 10 spins, which
corresponds to a Hilbert space of dimension 220. We vary the
g = [0.2, 1.0, 5.0] parameter of the driver to study the ground
states in various phases (see main text for details). The net-
work G is trained with n = N = 10 spins in the visible layer
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FIG. 13. The saturation of the lower bound in the I(vk, hm ) and η( �X ) space for the trained learner for the ground state of Eq. (F2)
corresponding to (a) (g, γ ) = (0.5,0.5), (b) (g, γ ) = (0.5,1.0), (c) (g, γ ) = (0.5,1.5), (d) (g, γ ) = (1.0,0.5), (e) (g, γ ) = (1.0,1.0), (f) (g, γ ) =
(1.0,1.5), (g) (g, γ ) = (1.5,0.5), (h) (g, γ ) = (1.5,1.0), (i) (g, γ ) = (1.5,1.5).

and p = αn spins in the hidden layer wherein α ∈ [1, 2, 3].
The results are displayed in the Fig. 14. In Figs. 14(a)–14(c)
shows the accuracy threshold reached compared to exact diag-
onalization when the network is trained using different α for
various values of g. We see in all cases the acquired energy
error in the trained network is 10−2 − 10−4, which registers a
relative error percentage of �0.1% in the worst case with no
appreciable dependance on α within the range studied.

We use α = 1 for all results in the main text and in the
remaining portion of Appendix unless otherwise specified.
In Figs. 14(d)–14(f) we see that the final trained state is an
eigenstate of the Hamiltonian with a very low energy variance
of � 10−2. In Figs. 14(g) and 14(h) we plot the representations
chosen by the trained network in the I (vk, hm) and η( �X ) space
discussed in main text. We see both our assertions are individ-
ually valid, i.e., remain true even when α is varied. Firstly
we see the trained state for all values of α saturates the lower
bound and secondly the mean density of points shifts towards
the origin in the I (vk, hm) and η( �X ) space signalling that the
trained state of the learner G is devoid of spin correlation
between the hidden and the visible units mirroring the same
behavior between the spins of the driver when g → ∞ even
though the hidden units are not directly related to the driver
spins.

APPENDIX H: STANDARD DEVIATION ASSOCIATED
WITH THE MEAN I (vk, hm) AND MEAN η(�X )

FOR TFIM AND c-TFIM

In this section we display the standard deviation (
√

Var(X )
where X can be the mean values of variates [like I (vk, hm)
etc.] obtained from the mean I (vk, hm) and η( �X ) values
displayed in Figs. 5(a)–5(d). Var(·) is the variance of the
respective variate. We see from the standard deviation plot
below that the quantity for c-TFIM is nearly 1.5–2.0 times
higher than that of TFIM for a given g and a given size
N especially in the low g limit (g → 0+). The results are
displayed in Fig. 15.

APPENDIX I: VON-NEUMANN ENTROPY
OF TFIM AND c-TFIM

The von Neumann entropy of the ground state for (a) TFIM
(Fig. 16) and (b) c-TFIM (Fig. 17) models across the central
cut (passing through the mid-point of the chain) for varying
system sizes (N) is depicted. The ground state of the TFIM
model obeys the area-law (and hence is constant in 1D) while
that of c-TFIM follows the Volume-Law scaling of entangle-
ment entropy and increases proportionally to the increasing
size of the chain.
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FIG. 14. The energy error (with respect to exact diagonalization) acquired for training TFIM model with n = N = 10, p = αn and α =
[1, 2, 3] for (a) g = 0.2, (b) g = 1 (critical point), and (c) g = 5. The resultant energy variance of the trained state with α = [1, 2, 3] for
(a) g = 0.2, (b) g = 1 (critical point), and (c) g = 5. The representation of the trained state in I(vk, hm ) and η( �X ) space for (a) g = 0.2,
(b) g = 1 (critical point), and (c) g = 5 showing saturation of lower bound in all cases and progressive mirroring of the correlation induced
between the visible and hidden spins due to the spin correlation within the driver model.

APPENDIX J: FISHER INFORMATION
OF TFIM AND c-TFIM

The variation of the largest eigenvalue of the Fisher infor-
mation matrix with g for (a) TFIM and (b) c-TFIM models.

The color gradation depicts the increasing value of g from
red to blue. Each point on the Figs. 18 and 19 is obtained
by averaging over several best-converged points after training
many randomly initialized networks.

013146-26



IMAGINARY COMPONENTS OF OUT-OF-TIME-ORDER … PHYSICAL REVIEW RESEARCH 5, 013146 (2023)

FIG. 15. (a) The standard deviation associated with the averaging process of I(vk, hm ) [where the mean is obtained by averaging over all
mn (k, m) pairs of visible and hidden neurons and different initializations; see Sec. IV] for TFIM for all sizes of the driver. (c) The standard
deviation associated with the averaging process of the mean η( �X ) [where the mean is obtained by averaging over all mn (k, m) pairs of visible
and hidden neurons and different initializations; see Sec. IV] for TFIM for all sizes of the driver. [(b),(d)] Same as in [(a),(c)] but for c-TFIM.
It is clear from the standard deviation plots that the variance of the I(vk, hm ) and η( �X ) is much larger by almost 1.5–2.0 times (especially in
the low g limit) in c-TFIM [see (b),(d)] than in TFIM [see (a),(c)] for all values of N . Since the variance is computed over all (k, m) pairs and
over many initialization, this indicates many compatible configurations/representations for a given N that the trained network can “learn” and
display for the volume-law entangled c-TFIM than the area-law entangled TFIM. In the higher g limit unanimity sets in both models as both
the drivers display an unentangled ground state devoid of spin correlation. (See Sec. IV.)

FIG. 16. TFIM.

FIG. 17. c-TFIM.
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FIG. 18. TFIM.
FIG. 19. c-TFIM.
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