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Abstract: Efficient methods for encoding and compression are likely to pave the way toward the
problem of efficient trainability on higher-dimensional Hilbert spaces, overcoming issues of barren
plateaus. Here, we propose an alternative approach to variational autoencoders to reduce the
dimensionality of states represented in higher dimensional Hilbert spaces. To this end, we build
a variational algorithm-based autoencoder circuit that takes as input a dataset and optimizes the
parameters of a Parameterized Quantum Circuit (PQC) ansatz to produce an output state that can
be represented as a tensor product of two subsystems by minimizing Tr(ρ2). The output of this
circuit is passed through a series of controlled swap gates and measurements to output a state with
half the number of qubits while retaining the features of the starting state in the same spirit as
any dimension-reduction technique used in classical algorithms. The output obtained is used for
supervised learning to guarantee the working of the encoding procedure thus developed. We make
use of the Bars and Stripes (BAS) dataset for an 8× 8 grid to create efficient encoding states and report
a classification accuracy of 95% on the same. Thus, the demonstrated example provides proof for the
working of the method in reducing states represented in large Hilbert spaces while maintaining the
features required for any further machine learning algorithm that follows.

Keywords: entropy; encoding; quantum machine learning

MSC: 81P68

1. Introduction

Variational quantum algorithms in the NISQ [1] era provide a promising route toward
developing useful algorithms that allow for optimizing states in higher dimensional spaces
by tuning the polynomial number of parameters. The most prominent techniques within
variational methods include the Variational Quantum Eigensolver (VQE) [2], Quantum
Approximate Optimization Algorithm (QAOA) [3], and other classical machine learning-
inspired ones. We ask the readers to refer to [4] for an exhaustive study on quantum
machine learning with applications in chemistry [5], physics [6], supervised learning and
optimization [7]. Within the context of optimization and machine learning in general, some
of the major problems that need to be addressed include encoding classical data, finding
an expressible enough ansatz (Expressibility) [8], and efficiently computing gradients
(Trainability) [9], generalizability [10]. These problems are interlinked and thus not treated
independently in general.

As we move away from the NISQ era toward deep parameterized quantum circuits
(PQC), one of the major problems with regard to trainability that needs addressing is
the problem of vanishing gradients referred to as barren plateaus [11]. This might be an
effect of working with a large number of qubits [11], expressive circuit ansatz [12], noise
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inducement [13] or the use of global cost functions in the learning [14]. Having efficient
procedures to reduce the dimensionality the representation of the input quantum state
helps create efficient encoding schemes that could later be used as inputs to other machine
learning algorithms, where the cost functions on higher dimensional spaces with expressive
ansatz are less likely to be trainable. To this end, we develop machine learning techniques
that allow for compact representations of a given input quantum state.

Within the classical machine learning community, autoencoders have been effec-
tively used to develop low-dimensional representation of samples generated from a given
probability distribution [15]. Inspired by these techniques, work on Quantum Autoen-
coders [16,17] have allowed for people to develop compact representations against a fixed
finite state. It is not clear that such tensor product states with a fixed finite state are always
possible while retaining the maximal possible information. Here, we show that if one
were to relax the condition toward maintaining a fixed finite state, a better compact repre-
sentation can be generated that can be post-processed toward classification. We develop
techniques to create subsystem purifications for a given set of inputs and follow it by
creating superpositions of these purifications indexed using the subsystem number. This
representation is further used for doing classification achieved by applying variational
methods over parameterized quantum circuits restricted to this compact representation and
showing the learning of the method. We apply an ansatz to create subsystem purification
on the Bars and Stripes (BAS) dataset and show that one can reduce the number of qubits
required to represent the data by half and achieve a 95% classification accuracy on the Bars
and Stripes (BAS) dataset. The demonstrated example shows proof for the working of
the method in reducing states represented in large Hilbert spaces while maintaining the
features required for any further machine learning algorithm that follows. The scheme thus
proposed can be extended to problems with states in large Hilbert spaces where dimen-
sionality reduction plays a key role with regard to the trainability of the parameterized
quantum circuit.

2. Method

Given an ensemble of input states, E = {|ψi〉}, the objective is to construct a low-
dimensional representation of states sampled from this distribution E. Let |ψi〉 be a state
over nA + nB qubits. We design a protocol that allows for us to create an equivalent compact
representation of |ψ〉with max(nA, nB) + 1 qubits. To simplify the discussion, let us assume
that nA = nB, and thus, we create a representation using half the qubits. We do this in
2 stages.

Stage 1:
In the first stage, we apply a unitary U(~θ) that decomposes |ψi〉A,B into |α(θ)i〉A ⊗

|β(θ)i〉B. To produce such a tensor product structure, we could minimize the entropy
on either subsystem A or B till a zero entropy is achieved. Thus, we could optimize the
cost function,

CB(~θ) =

〈
S
(

trA

[
U(~θ) |ψ〉AB 〈ψ|AB U†(~θ)

])〉
{|ψ〉}

(1)

where trA represents the tracing operation over the qubits of subsystem A, < . >{|ψ〉}
represents the averaging over the {|ψ〉}, and S(ρ) = tr(ρlog(ρ)) is the entropy of a given
density matrix ρ. The cost function CB(~θ) attains a maximum value equal to log(nB) when
ρB is maximally mixed and equal to 0 when ρB is in a pure state. Figure 1 shows a schematic
representation of the ansatz used for U(θ). The hardware efficient ansatz used here is
restricted to Ry gates on each qubit followed by a ladder of CNOT operators that couples
adjacent qubits. This is sufficient for our purpose as the input data vectors used here,
associated with bars and stripes, are vectors with real amplitudes.
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Figure 1. Ansatz used for the Encoding circuit U(~θ) in stage 1. The circuit shows D repeating layers
of a unit consisting of Ry gates parameterized by one independent angle each and a ladder of CNOT
operators. The circuit is optimized over the dataset to generate equivalent states with a subsystem
tensor product structure. Thus, we obtain U(~θ) |ψ〉 = |φ〉 ⊗ |η〉. φ is the first subsystem and shall be
indexed later with an ancilla state |0〉 and |η〉 is the second subsystem, which shall be indexed by |1〉.

Variational quantum algorithms have been studied in the past to create thermal
systems by minimizing the free energy of the output state [18,19]. The main problem
tackled in these papers involves developing techniques that allow one to compute the
gradients of Entropy required to be optimized over the training. The issue arises from not
having exact representations that can compute the logarithm of a given density matrix
efficiently. Furthermore, to avoid numerical instabilities in the entropy function arising
from the density matrix of pure states being singular, here, we alternatively maximize over
the cost function,

CAB(~θ) =
1
2

〈
TrA(ρA

2) + TrB(ρB
2)

〉
{|ψ〉}

(2)

where ρA = TrB(U(~θ) |ψ〉AB 〈ψ|AB U†(~θ)) and ρB = TrA(U(~θ) |ψ〉AB 〈ψ|AB U†(~θ)). CAB at-
tains a maximum value of 1 when ρA or ρB are pure states resulting in Tr(ρ2

A/B) = Tr(ρA/B) = 1
and attains a least value 2/2n. CAB is a convex function as Tr(ρ2

A/B) is a convex function of
ρA/B [18]. Figure 2 shows a schematic representation to compute Tr(ρ2) using a destructive
swap test. The optimization landscape thus has one local minimum dictated by the expressivity
of the ansatz used to capture it.

Figure 2. The quantum circuit above implements a destructive swap test. Given 2 different density
matrices as inputs, the circuit computes the fidelity of states F(γ, σ) = (Tr(

√√
γσ
√

γ)2, where γ and
σ are 2 density matrices. Here, we use γ = σ = |ρ〉 〈ρ|. Post-processing of measurements with the
input as 2 copies of |ρ〉 is used to compute Tr(ρ2) [20].

The parameters ~θ are variationally optimized to obtain ~θ∗ = argmax~θ CAB(~θ). If
CAB(~θ) reaches an optimal value of zero, we can express |ψ〉AB = |φ〉A

⊗ |η〉B, thus
expressing a state with 2n+m degrees of freedom, effectively using 2n + 2m degrees of
freedom. Having expressed the input state as a tensor product of subsystems, we now
move to stage 2 of the algorithm.
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Stage 2:
Note that the above representation still makes use of 2n qubits to capture the features

of |ψ〉. If the subsystems are not equal in size, additional ancillary qubits are included to
match the system size. We now show how this representation can be compressed using
n + 1 qubits. To carry this out, we apply an ancillary CSWAP (controlled swap/Fredkin)
gate acting on the qubits of systems A and B. The additional ancillary qubit works as an
index register for these states. Thus, we obtain |0〉 |φ〉 |η〉+ |1〉 |η〉 |φ〉. If |η〉 and |φ〉 are not
orthogonal states, then there exists at least one basis element |g〉 in the computational basis
with a nonzero coefficient in both these states. Without a loss of generality, let us assume
that the measurement collapses onto |g〉, giving rise to 1√

1+c2 (|0〉 |φ〉+ ceiα |1〉 |η〉)⊗ |g〉,
where c and α are real numbers. The factor ceiα is generated from the relative difference in
the coefficients of the state corresponding to |g〉. Figure 3 shows a schematic representation
of the main steps involved in creating a superposition, with the ancilla register being used
as an index to the subsystem outputs of Stage 1.

Figure 3. A schematic representation of the steps involved in Stage 2 to prepare the superposition
state using an extra ancilla from the product state output of Stage 1. Controlled swap gates are used
to generate 1√

1+c2 (|0〉 |φ〉+ ceiα |1〉 |η〉). Following this, the second subsystem is measured in the
computational basis imparting relative phase and amplitude (not shown in the above representation)

Output:
Thus, we have successfully managed to map the input state |ψ〉 to 1√

1+c2 (|0〉 |φ〉+
ceiα |1〉 |η〉), apart from an arbitrary relative phase φ and amplitude c in the representation.
Note that this procedure is reversible, thus preserving all information content encoded into
input state |ψ〉. To show that it is reversible, one just needs to take two copies of the output
state 1√

1+c2 (|0〉 |φ〉+ ceiα |1〉 |η〉), measure the corresponding ancilla to project out |φ〉 |η〉,
and then apply the inverse of U(~θ), giving back |ψ〉. Thus, the encoding scheme allows for
us to create a representation of the input state |ψ〉 with 2n qubits into only n + 1 qubits. We
now show that the presence of the arbitrary phase and relative coefficient can be ignored
if we work with an ansatz with a specific structure for an L2 cost function, which can be
generalized to other cost functions as well.

Let V(~α) be the ansatz used for classification after creating the compact state repre-
sentation. We calculate the label corresponding to each state by averaging the expectation
value across an ensemble of representative states for each datapoint obtained via projection
of the second state. The expected label for a datapoint indexed by t is thus given by

Expected Label = ∑
i

P(i) 〈ψ̃i,t|V†(~α)[Z⊗ I⊗n]V(~α) |ψ̃i,t〉 (3)

where i indexes the projection of the second subsystem and P(i) is the probability of that
projection. Using the L2 norm, the classification cost function with respect to this ansatz is
given by
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Classification Cost = ∑
t

(lt −∑
i

P(i) 〈ψ̃i,t|V†(~α)[Z⊗ I⊗n]V(~α) |ψ̃i,t〉)2 (4)

where |ψ〉 = 1√
1+c2 (|0〉 |φ〉+ ceiα |1〉 |η〉). Note here V(~α) is an ansatz that acts on n + 1

qubits. The cost expression chosen abive can be re-expressed on the non-projected state
as follows:

Classification Cost = ∑
t

(lt − 〈ψ|V†(~α)⊗ I⊗n[Z⊗ I⊗n ⊗ I⊗n]V(~α)⊗ I⊗n |ψ〉)2 (5)

where |ψ〉 = |0〉 |φ〉 |η〉+ |1〉 |η〉 |φ〉. The above extension is supported by the presence
of P(i) in the original expression. We now choose an ansatz that allows us to get rid
of the effects of arbitrary relative phase and amplitude via the projection of the second
subsystem in our original expression. Let V(~α1, ~α2) = |0〉 〈0| ⊗ V0(~α0) + |1〉 〈1| ⊗ V1(~α1),
where~α = (~α0, ~α1). Thus we obtain

Classification Cost = ∑
t

(lt − 〈φ|V†
0 (~α0)[Z⊗ I⊗n−1]V0(~α0) |φ〉 − 〈η|V†

1 (~α1)[Z⊗ I⊗n−1]V1(~α1) |η〉)2 (6)

The above expression thus obtained is akin to the averaging over the ensemble for
each datapoint producing a state that is oblivious to the relative amplitude and phase
factor produced via the projection. For both V0(~α0) and V1(~α1), we use the hardware
efficient ansatz, as shown in Figure 1, which we shall employ for supervised learning in the
next section.

3. Results

To demonstrate the working of the method described above, we pick a toy dataset
with images of Bars and Stripes (BAS) and build a compact representation of it. The BAS
dataset we consider is a square grid with either some columns being only vertically filled
(Bars) or some rows being horizontally filled (Stripes) [21]. One can easily generate such a
supervised dataset and realize that the distribution from which these images are sampled
has a low entropy characterization. We randomly sample 1000 data points from a grid size of
16× 16 from the BAS dataset consisting of 131,068 datapoints represented using amplitude
encoding on eight qubits. Note that, despite other classically trained and more efficient
encodings that could be straightforwardly employed, here, we use amplitude encoding, as
the representation is efficient in the number of qubits while remaining data-agnostic.

Applying the protocol described above, we reduce the representation of the state
into a tensor product of two subsystems of equal size. Figure 4 shows the learning of
optimal parameters~θ as the cost function falls. Note that the dataset has been factorized
from a non-trivially entangled state. We use the standard gradient descent [22] approach
in performing the training. Note that the cost function drops to zero, implying that the
representation thus created is exact with a lossless transformation created by U(~θ). For the
16 × 16 grid case, the ansatz U(~θ) is made of D = 5 layers, while that for the 8 × 8 grid is
made of D = 3 layers. At this point, we apply a layer of swap gates to reduce the eight-qubit
representation of 16 × 16 grid samples into five qubits and the six-qubit representation of
8 × 8 grid samples into four qubits.
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(a) (b)

(c) (d)

Figure 4. The above graphs show the cost of training the parameters of U(~θ) according to Equation (2)
as a function of iterations and the 1 norm change in the absolute gradients for 1000 samples from a
16 × 16 grid on 8 qubits and 508 samples from 8 × 8 grid on 6 qubits. The unitary circuit thus trained
creates equivalent tensor product representations using two equal half subsystems of 4 and 3 qubits
for samples from the 16 and 8 grids, respectively. Notice that in (a,c), 1–Cost eventually saturates
at 0, allowing us to create pure state product subsystems, while in (b,d), the variation in angle as
computed using the gradient of Equation (2) is minimized as one gets near the saturation point (|∆~θ|1
measures the 1 norm increase in the angle contribution from the computed gradients with increasing
epochs). (a) Stage 1: Training cost vs. iterations for 16× 16 grid; (b) stage 1: Training cost vs. ∑i |∆~θi|1
for 16 × 16 grid; (c) stage 1: Training cost vs. iterations for 8 × 8 grid; (d) stage 1: Training cost vs.
∑i |∆~θi|1 for 8 × 8 grid.

We now use this as input for performing supervised classification. We use approxi-
mately 80% of the samples from the output of the encoded samples for training and keep
the remaining 20% of the samples for testing. An ansatz V(~α1, ~α2) = |0〉 〈0| ⊗ V0(~α0) +
|1〉 〈1| ⊗V1(~α1) with the same number of qubits as that of the input samples is trained, with
the expectation value of pauli-Z operator being used as a label for differentiating between
bars and stripes. The input image is classified as an image of bars if the expectation value
is positive and as stripes image if it is negative. We use the sum of two norm errors over
the dataset labels (1 for bars and −1 for stripes) as the cost function (6) to be minimized
over, i.e,

Classification Cost = ∑
t

(lt − 〈φ|V†
0 (~α0)[Z⊗ I⊗n−1]V0(~α0) |φ〉 − 〈η|V†

1 (~α1)[Z⊗ I⊗n−1]V1(~α1) |η〉)2 (7)

where the summation index i labels the dataset, li refers to the labels corresponding to the
sample input and |ψi〉 is used to denote the compact representation of the state that the
above encoding scheme provides. For the 8 × 8 grid, a total of 508 bars and stripe images
are produced, with half of them belonging to each category. We use 400 of these samples
for training and 108 samples for testing. By default, we have used 8192 shots for each
measurement during the training for creating subsystem purifications and carrying out the
classification. We use 1000 representative samples corresponding to each datapoint, which
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are characterized by an arbitrary relative phase and amplitude. Figure 5 shows the cost of
optimizing the parameters of V(~θ) as a function of the number of iterations. We achieved a
95% accuracy on the testing data, showing that the method used to generate the compact
representation did not destroy the features of the input state.

(a) (b)

Figure 5. Optimization of parameters of V(~θ) towards classification on a compact representation of
images of 8 × 8 BAS dataset generated using the variational method described above. (a) shows the
saturation of classification cost as per Equation (7) after 13 iterations. (b) shows that the variation in
angle as computed using the gradient of Equation (7) is minimized as one gets near the saturation
point. (|∆~θ|1 measures the 1 norm increase in the angle contribution from the computed gradients
with increasing epochs). (a) Classification cost vs. iterations for 8 × 8 grid. (b) Classification cost vs.
∑i |∆~θi|1 for 8 × 8 grid.

4. Runtime Analysis of Encoding Scheme

Here we shall analytically compute the required runtime for the protocol described
above. Let us assume that the input ensemble of N quantum states over n qubits supports
a compact representation, allowing us to use the above protocol to encode with half the
number of qubits. Let our ansatz to be optimized be made of d layers. Thus, stage 1
involves optimization over 2ndN parameters for N samples. Using a destructive swap test
to compute fidelity with an error ε, we would require O(1/ε2) samples. Thus, the runtime
complexity scales evaluate O(ndN/ε2) quantum circuits per iteration for Stage 1. Stage 2
involves sampling output states after measuring the second system in a fixed basis. If K
representative samples characterized by arbitrary phase and amplitude are used for each
data point, then the overall runtime is bounded by O(KNTnd/ε2).

5. Discussion and Conclusions

We discuss a scheme that allows for a compact representation of states in higher-
dimensional Hilbert spaces using half the number of qubits. The output thus created
serves as a good starting state for any further machine learning algorithm that might
follow. The protocol is based on designing a quantum circuit that allows creating a tensor
product subsystems and demonstrates results on bars and stripes datasets for 8 × 8 grid
and 16 × 16 grid. We further use this output to create compact representations with half
the number of qubits as compared to the starting state. To show that this representation
is a lossless encoding, we use it to perform supervised learning using variational circuits
on the entire dataset of an 8 × 8 grid and reproduce a 95% accuracy on the training
dataset (consisting of 108 samples). Unlike quantum autoencoders where the compact
representations rely on being able to optimize against a fixed garbage state, here, the
relaxed restriction on the tensor product helps provide compact representations in cases
where a fixed garbage state would not be feasible. The protocol described works in the
absence of noise, as it requires creating pure tensor product subsystems. Further future
investigation with regard to how one might overcome this hurdle is required across all
quantum autoencoder protocols that aspire to create efficient codes. One might also be



Mathematics 2023, 11, 4678 8 of 9

interested in carrying out machine learning by using weighted quantum circuits that run
on the subsystems independently and compare their performance against the compact
representations created thereby. One can also imagine using low entropic entangled
states that stage 1 protocol outputs as input states for entanglement forging [23] and look
for useful applications with them. We would like to conclude by saying that efficient
methods for encoding and compression are likely to pave the way toward the problem of
efficient trainability on higher-dimensional Hilbert spaces, and this work serves as a step
in that direction.
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