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Random circuit sampling, the task of sampling bit strings from a random unitary operator, has been im-
plemented to demonstrate quantum advantage on the Sycamore quantum processor with 53 qubits and on the
Zuchongzhi quantum processor with 56 and 61 qubits. Recently, it was claimed that classical computers using
tensor network simulation could catch on to current noisy quantum processors for random circuit sampling.
While the linear cross-entropy benchmark fidelity was used to certify all these claims, it may not capture
statistical properties of outputs in detail. Here, we compare the bit strings sampled from classical computers
using tensor network simulation by Pan et al. [F. Pan, K. Chen, and P. Zhang, Phys. Rev. Lett. 129, 090502
(2022)] and by Kalachev et al. [G. Kalachev, P. Panteleev, P. Zhou, and M.-H. Yung, arXiv:2112.15083] with
the bit strings from the Sycamore quantum processor. It is shown that all of Kalachev et al.’s samples passed the
NIST random number tests. The heat maps of bit strings show that Pan et al.’s and Kalachev et al.’s samples are
quite different from the Sycamore or Zuchongzhi samples. The analysis with the Marchenko-Pastur distribution
and the Wasssertein distances demonstrates that Kalachev et al.’s samples are statistically closer to the Sycamore
samples than Pan et al.’s while the three datasets have similar values for the linear cross-entropy fidelity. Our
finding implies that further study is needed to certify or beat the claims of quantum advantage using random
circuit sampling.
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I. INTRODUCTION

Quantum advantage or quantum supremacy, the outperfor-
mance of quantum computers over classical computers for
some computational tasks, is one of the main subjects of
quantum computing research [1–3]. Random quantum circuit
sampling [4–6] and Boson sampling [7,8] are considered good
computational tasks for demonstrating quantum advantage
with current noisy quantum computers. In 2019, the Google
team claimed to have achieved quantum advantage for ran-
dom circuit sampling [9]. The Google Sycamore quantum
processor with 53 qubits took 200 seconds to sample ten
millions of bit-strings from a random quantum circuit while
a supercomputer at that time was estimated to take 10,000
years using the Schrödinger-Feynman algorithm to simulate
the random quantum circuits [9]. Subsequently, Wu et al. [10]
and Zhu et al. [11] implemented random circuit sampling on
the Zuchongzhi quantum processor with 56 and 61 qubits,
respectively. Also, quantum advantage for Boson sampling
with optical qubits was reported [12,13].

On the opposite side, to close the quantum advantage gap,
the tensor network simulation of random quantum circuits
was performed on classical computers [14–20]. For example,
Kalachev et al. [17] reported that a tensor-contraction algo-
rithm on a graphic processing unit took 14 days to sample
millions of bit strings from the same random circuit that was
implemented on the Sycamore processor with 53 qubits and
20 cycles. Similarly, Pan et al. [19,20] showed that graphic
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processing units using a tensor network took 1 day to sample
millions of bit strings from the same random quantum circuit
performed on the Sycamore processor with 53 qubits and 20
cycles. Thus, it was claimed that classical computers could
catch up to the current noisy quantum processors [21].

All of above arguments on quantum advantage for random
circuit sampling on quantum or classical processors are based
on two metrics: computational time and the linear XEB (cross-
entropy benchmark) fidelity. The first metric measures the
time it takes to accomplish a computational task and may be
a primary measure to compare the performance of computers.
The second metric is employed to ensure that the output of
noisy quantum processors is close to an ideal result. The linear
XEB is zero if the bit strings are sampled from a classical
uniform probability distribution. While a nonzero value of
the linear XEB was used to support the claims of quantum
advantage for random circuit sampling, the linear XEB has
some limitations in addition to the intrinsic scalability issue
[6]. The linear XEB could be spoofed without fully simulat-
ing a random quantum circuit [22,23]. Our previous works
[24,25] demonstrated that the linear XEB cannot capture the
statistical properties of samples in the sense that the Sycamore
bit strings are statistically different from the Zuchongzhi bit
strings while both processors show similar linear XEB values
as a function of the number of qubits or the number of cycles.

While the benchmark and certification of quantum proces-
sors are important to ensure the faithful calculation with a
quantum processor, they are not fully explored [26]. To val-
idate the claim of quantum advantage and to verify quantum
circuits, it would be better to directly compare the statistics of
outcomes generated by quantum or classical processors. The
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quantum advantage regime means the verification with clas-
sical processors is very inefficient. In this paper, we compare
bit strings sampled from the random circuits on the Sycamore
processor [27] and those calculated from tensor network sim-
ulation of the Sycamore random circuit on classical computers
by Kalachev et al. [28] and by Pan et al. [29]. The paper
is organized as follows. In Sec. II, we perform the NIST
random number tests on bit strings and plot the heat maps
of bit strings. In addition, we calculate the Marchenko-Pastur
distances and the Wasserstein distances between bit strings.
These statistical analyses will show that the samples from
classical simulations are quite different from those from the
Sycamore quantum processor. In Sec. III, we summarize our
results and discuss the recent claims of quantum advantage
for random circuit sampling on a quantum processor or on a
classical computer.

II. SAMPLING FROM RANDOM CIRCUITS

A. Random quantum circuit sampling

Let us start with a brief summary of random quan-
tum circuit sampling. The purpose of random quantum
circuit sampling is to sample n-bit strings, x ≡ a1a2 · · · an,
with ai = 0, 1 and i = 1, . . . , n from a probability p(x) =
|〈x|U |0⊗n〉|2 defined by a random unitary operator U . Here,
|x〉 = |a1a2 · · · an〉 stands for a computational basis of n qubits
and |0⊗n〉 = |00 · · · 0〉 for an initial state. In an ideal situation,
a random unitary operator U is sampled uniformly and ran-
domly from the unitary group U (N ) with N = 2n. A unique
probability measure that is invariant under group multiplica-
tion is known as the Haar measure. A set of random unitary
matrices drawn from U (N ) according to the Haar measure is
called the circular unitary ensemble, which was introduced by
Dyson [30].

A random unitary matrix with respect to the Haar measure
can be drawn using the Euler angle method [31–33] or the
QR decomposition algorithm [34]. Hurwitz [31] showed that a
unitary matrix can be constructed through the parametrization
of N2 elements with Euler angles. The QR decomposition
algorithm to generate a random unitary matrix U can be done
through the QR decomposition of a matrix Z with complex
normal random entries Z = QR where Q is a unitary matrix
and R is an upper-triangle matrix. Then U = Q� is a Haar-
measure random unitary where � is the diagonal matrix with
diagonal entries �ii = Rii/|Rii| and Rii are the diagonal entries
of the upper-triangle matrix R [34].

Emerson et al. [35] proposed the implementation of pseu-
dorandom unitary operators on a quantum computer by
applying single-qubit gates on each qubit and simultaneous
Ising interaction on all qubits. The Google and USTC exper-
iments implemented a pseudorandom unitary operator that is
composed of m cycles of the sequence of n single-qubit gates
selected randomly from {√X ,

√
Y ,

√
W } and fixed two-qubit

gates for according to tiling patterns.
A random unitary operator U transforms the initial state

|0⊗n〉 into a random quantum state

|ψ〉 = U |0⊗n〉 =
2n−1∑
x=0

√
px eiθx |x〉, (1)

where px = p(x). It is known that the probability distribu-
tion Pr of px with x = 0, . . . , 2n − 1 is given by Pr(p) =
(N − 1)(1 − p)N−2 with N = 2n, the eigenvector distribution
of the circular unitary ensemble [30]. For N � 1, it becomes
Pr(p) ≈ N exp(−N p) and is known as the χ2 distribution
with 2 degrees of freedom, or the exponential distribution
[36–38]. The output of random circuit sampling is a set of
M bit strings, D = {x1, x2, . . . , xM}, generated by M mea-
surements of |ψ〉 in computational basis. Note that a current
quantum processor could generate only a bit-strings x, but not
an amplitude

√
px eiθx , while a classical computer could cal-

culate both quantities. The phases θx are distributed uniformly
in the range [−π, π ].

Today quantum processors are noisy and imperfect so the
output of quantum computation could be deviated from an
ideal solution. It is important to verify whether quantum
computation is performed faithfully [26]. Gilchrist et al. [39]
suggested a golden standard for the distance measure between
ideal and noisy quantum processors. For sampling computa-
tion where the task is to sample outcomes x from an ideal
probability distribution p(x), Gilchrist et al. proposed the
Kolmogorov distance D(p, q) ≡ ∑

x |p(x) − q(x)|/2 and the
Bhattacharya overlap F (p, q) ≡ ∑

x

√
p(x)q(x) where p(x) is

an ideal distribution and q(x) is a real probability distribution
generated by a quantum processor. On the other hand, Arute
et al. introduced the linear XEB

FXEB = 2n

M

M∑
i=1

pideal(xi ) − 1, (2)

where the set of bit strings, D = {x1, x2, . . . , xM}, is the
measurement outcomes of a noisy quantum processor and
pideal(x) = |〈x|U |0〉⊗n|2 is an ideal probability of a quan-
tum circuit U . For a classical uniform random distribution
pideal = 1/2n, the linear XEB becomes zero. Basically, the
linear XEB is derived from the cross entropy between the ideal
distribution pideal(x) and the real distribution preal(x) or the
Kullback-Leibler divergence. However, the Kullback-Leibler
divergence is not a true metric because it is not symmetric and
does not satisfy the triangular inequality.

One of the main challenges in calculating the linear XEB
or the Kolmogorov distance is how to obtain the ideal proba-
bility distribution pideal(x) or the real probability distribution
preal(x). For sampling calculation, a quantum computer pro-
duces bit strings rather than p(x). In the quantum advantage
regime, it is hard or inefficient for a classical computer to
calculate p(x) from quantum simulation. Also it is impossible
to estimate the empirical probability distribution from the
measurement data of a quantum processor since the number of
measurements M is much smaller than 2n. In the Google ex-
periment with the Sycamore quantum processor, the number
of measurements M are in the order of 107 but the dimension
of the Hilbert space of 53 qubits is 253 ∼ 9 × 1015. Thus, to
verify the performance of quantum computers in the quantum
advantage regime, it would be better to directly compare two
data sets, D1 = {x1, x2, . . . , xM} and D2 = {y1, y2, . . . , yM},
without calculating the probability distributions p(x) or q(x).
For example, since classical uniform random bit strings give
rise to zero of the linear XEB, they could be one reference
point.
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TABLE I. Datasets of random circuit sampling. The datasets of Sycamore [27], Kalachev et al. [28], and Pan et al. [29] are available to the
public at the time of the writing of this paper.

Dataset n (No. of qubits) m (No. of cycles) M (Sample size) FXEB

Sycamore [27] 12, 14, . . . , 50, 51 14 5 × 105 ∼ 2.5 × 106

53 12, 14, 16, 18, 20 5 × 105 ∼ 3 × 106 2.24 × 10−3 for n = 53, m = 20
Zuchongzhi 2.0 [10] 15, 18, . . . , 54, 56 10 105 ∼ 2 × 105

56 12,14,16,18,20 2.5 × 107 6.62 × 10−4 for n = 60, m = 20
Zuchongzhi 2.1 [11] 15, 18, . . . , 57, 60 10

60 12,16,20,22,24 7 × 107 3.66 × 10−4 for n = 60, m = 24
Kalachev et al. sampling [28] 53 12, 14, 16, 18, 20 106

spoofing 53 20 3 × 106 6.00 × 10−3 for n = 53, m = 16
Pan et al. spoofing [29] 53 20 220 ≈ 106 3.70 × 10−3 for n = 53, m = 20

B. Statistics of samples of random circuits

1. Datasets of random circuit sampling

We compare the three datasets of bit strings sampled from
the Sycamore random circuits and the one dataset of classical
random bit strings. Table I shows the datasets of the random
circuit sampling where the Sycamore dataset, Kalachev et al.’s
dataset, and Pan et al.’s dataset are open to the public. Note
that our previous work [25] compared the Zuchongzhi dataset
for n = 53 [10] and the Sycamore dataset. The first is the
Google dataset used in quantum supremacy experiments with
the Sycamore quantum processor [27]. To compare with other
datasets, only the subdataset for n = 53 qubits and the num-
bers of cycles m = 12, 14, 16, 18, 20 are considered. Each
data file is identified using five parameters: n is the number
of qubits, m the number of cycles, s the seed for the pseu-
dorandom number generator, e the number of elided gates,
and p the sequence of coupler activation patterns. For exam-
ple, measurement-n53-m20-s0-e0-pABCDCDAB.txt stands
for the measurement data file for 53 qubits, 20 cycles and the
ABCDCDAB activation pattern.

The second dataset is Kalachev et al.’s [17]. They produced
one million bit strings for the Sycamore random circuit for up
to 20 cycles using the multitensor contraction algorithms and
a modified frugal rejection sampling method. To produce k bit
strings, they first calculated 2k random batches and then se-
lected k bit strings out of 2k batches using the frugal rejection
sampling. We obtained Kalachev et al.’s data from [28]. The
dataset is composed of five text files of one million bit strings
for the Sycamore random circuit with m = 12, 14, 16, 18, and
20 cycles (for example, samples-m20-f0-002.txt). For cycle
m = 12, 14, 16, 18, the target fidelity is 0.02 and for m = 20,
the target fidelity is 0.02. Also, one text file for spoofing the
linear XEB (spoofing-m20.txt) is provided.

The third dataset is generated by Pan et al. [29] using the
tensor network simulation. However, only the spoofing dataset
with about one million bit strings, samples-metropolis.txt,
is available. Finally, we prepare the file of bit strings
sampled from a classical uniform random distribution (n50-
classical.txt).

2. NIST random number tests

If one takes a close look at bit strings sampled from a
random quantum circuit, bit 0 and 1 seem to appear randomly.
Note that we focus on the randomness of bits of a sample,

not bit strings. As discussed, the probability of finding a bit
string x is given by p(x) = |〈x|U |0⊗n〉|2 and is not uniformly
random. So some bit strings are more likely to be sampled.
While it is not clear whether a random circuit produces bit 0
or 1 uniformly at random, our previous studies [25] showed
that some of the Zuchongzhi samples pass the NIST random
number tests [40]. Recently, Shi et al. [41] demonstrated a
possibility of using the Boson sampling method to generate
true random bits. They showed that bit strings generated from
the Boson sampling on optical qubits pass the NIST random
number tests while more simple ways of generating true quan-
tum random numbers exist [42]. Here, we perform the NIST
random number tests [40,43] on bit strings sampled form the
Sycamore random circuit using tensor network simulation:
Kalachev et al.’s five samples and Pan et al.’s spoofing sample.
As expected, Pan et al.’s spoofing sample does not pass the
NIST random number tests because the first several bits of 56
bit strings are fixed to 0s or 1s. We find that all five samples of
Kalachev et al. pass the NIST random number tests. The de-
tails of the NIST random number tests for the six samples are
shown in the Supplemental Material [44]. However, we leave
an open question as to whether bits of bit strings sampled from
a random circuit should be uniformly at random.

3. Heat maps of bit strings

A heat map is a good way of visualizing the statistical
properties of the outcomes of each qubit. The averages of
the outcomes at each qubit arranged in the two-dimensional
array of the Sycamore processor are plotted for the classical
random bits in Fig. 1(a), the Sycamore sample in Fig. 1(b),
the Kalachev sample in Fig. 1(c), and the Pan et al.’s sample
in Fig. 1(d); Kalachev et al.’s sample and Pan et al.’s sample,
both of which were obtained using the tensor network sim-
ulation, look like only that a random quantum circuit acts on
only some parts of 53 qubits. Specifically Pan et al.’s spoofing
sample is quite different from the other three samples. As
the animations in the Supplemental Material show [44], some
qubits of Pan et al.’s spoofing sample are turned always off
(and turned on later).

To see the statistical difference among the samples in
detail, we slice a 106 × 53 bit array, D = (x1, x2, . . . , xM )t ,
into 53 × 53 square arrays {A(i)} with i = 1, . . . , L and
L ≡ int(M/53). The heat maps of the averages of A(i),
(1/L)

∑
i A(i), for the classical random bit sample, the
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FIG. 1. (First row) For two-dimensional arrays of the Sycamore quantum processor with 53 qubits, the heat maps plot the averages of
finding outcome 1 of each qubit over one million measurements for (a) the classical random bit strings, (b) the Sycamore sample (measurement-
n53-m20-s0-e0-pABCDCDAB.txt), (c) Kalachev et al. sample (samples-m20-f0-002.txt), and (d) Pan sample (sample-metropolis.txt). The
number on a circle is a qubit index ranging from 0 to 52, which is the reverse of the qubit index of the Sycamore processor. (Second row)
The heat maps are plotted for (e) classical random bits, (f) the Sycamore sample, (f) Kalachev et al.’s sample, and (g) Pan et al.’s sample. The
average of finding bit 1 over the sample is denoted by p1.

Sycamore sample, the Kalachev et al.’ sample, and the Pan
et al.’s sample are plotted in Figs. 1(e), 1(f), 1(g), and 1(h),
respectively. The heat map of the classical random bits has no
stripe patterns, as expected. The heat map of Pan et al. sample
exhibits also the stripe patterns. However, it is quite different
from that of the Sycamore sample or Kalachev et al.’s. It is
interesting to see the heat map of Kalachev et al.’s samples,
Fig. 1(g), shows stripe patterns similar to that of the Sycamore
sample, Fig. 1(f), while the first passes the NIST random
number tests. One may expect that bit strings which pass the
NIST random number tests would do not show any patterns.
However, Kalachev et al.’s samples here and Zuchongzhi sam-
ples as shown in our previous work [25] may break a common
belief on random bit or random numbers.

We count the number of outcome 1 of a sample com-
posed of one million bit strings, denoted by p1. As shown in
Figs. 1(e), 1(f), 1(g), and 1(h), the averages of finding outcome
1 are estimated as p1 = 0.50001 for the classical random
bit sample, p1 = 0.48360 for the Sycamore sample, p1 =
0.50004 for Kalachev et al.’s sample, and p1 = 0.545000 for
Pan et al.’s sample. Note that the averages of finding outcome
1 for Zuchongzhi samples are almost 0.5. the Sycamore sam-
ples have p1 less than 0.5 because of the readout errors [45].

4. Marchenko-Pastur distances and Wasserstein distances

One expects that two classical processors will produce the
same output or statistically similar outputs. Similarly, two
quantum processors implementing similar quantum gates will
produce similar outcomes [46]. Suppose a unitary operator V
of an ideal processor is approximate to a unitary operators U
of a real processor. The error between U and V is defined
by E (U,V ) ≡ max|ψ〉 ||(U − V )|ψ〉||. If the difference in two
gates is small, then the measurement statistics of U |ψ〉 is

approximated by V |ψ〉. This is written as the inequality [46]

|pU − pV | � 2E (U,V ). (3)

If the error E (U,V ) is small, the difference in probabilities
between measurement outcomes pU and pV is also small.

If two processors, regardless of whether they are quan-
tum or classical, implement the similar unitary operators for
random circuit sampling, the statistical distances between
probabilities should be close to each other. In practice, the two
probability distributions, pU (x) and pV (y), may be unknown
or unavailable, but only outcomes DU = {x1, x2, . . . , xM} and
DV = {y1, y2, . . . , yM} sampled from pU (x) and pV (y) are
available. Thus one needs to calculate the statistical distances
between two samples DU and DV . To this end, we employ
the Marchenko-Pastur distances and the Wasserstein distances
between samples.

The linear XEB, Eq. (2), is zero if the bit strings are
sampled from classical uniform random bits and a sample
generated from a random circuit would be different. Ran-
dom matrix theory, here the Marchenko-Pastur distribution
of random matrices [47], could be helpful in capturing this
difference. An M × n binary array D = (x1, x2, . . . , , xM )T is
sliced into into the collection of k × n rectangular random
matrices X . Here we set k = 2n. If all entries of X are inde-
pendent and identically binary random variables {0, 1}, then
one has the mean μX = 1/2 and the variance σ 2

X = 1/4. We
calculate the distribution of the eigenvalues of the square
matrices (1/k)X T X as shown in Fig. 2. The eigenvalue distri-
bution of X is composed of the two parts: the bulk distribution
is the Marchenko-Pastur distribution corresponding to random
noise and the outlier represents the signal [24,25]. The random
matrices X can be written as Z = 2X − J where J has all
entries 1 and Z has entries with the zero mean μZ = 0 and the
variance σ 2

Z = 1. The square random matrix (1/k)X T X can be
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FIG. 2. (a) Marchenko-Pastur distribution of eigenvalues of (1/k)X T X , Eq. (5), for the Sycamore sample with n = 53 and m = 20
(red color) and for the Kalachev et al.’s sample with n = 53 and m = 20 (orange color). The inset shows the outlier peaks around n/4.
(b) Marchenko-Pastur distribution of eigenvalues of (1/k)X T X for Pan et al.’s spoofing sample (samples-metropolis.txt) and Kalachev et al.’s
spoofing sample (spoofing-m20.txt). The inset shows the outliers. (c) Marchenko-Pastur distances (outlier distances from n/4) as a function
of the number of cycles m for the Sycamore samples and Kalachev et al.’s samples with n = 53 qubits, and for the Zuchongzhi samples with
n = 56.

expressed as

1

k
X T X = 1

4k
(ZT Z + ZT J + JT Z + JT J ). (4)

Here, the eigenvalue distribution of the first term in Eq. (4) is
given by the Marchenko-Pastur distribution [47]

ρ(λ) = 1

2πσ 2γ

√
(λ+ − λ)(λ − λ−)

λ
, (5)

where γ = n/k is the rectangular ratio and λ± = σ 2(1 ±√
γ )2 are the upper and lower bounds. For k = 2n, one has

γ = 1/2 and λ+ = 1 + √
1/2. The eigenvalues of the last

term (1/4k)JT J are 0 and n/4. This is the location of the
outlier. We call the Marchenko-Pastur distance the distance
of the peak position of the outlier of a sample from n/4.
Note that, while the bulk shape of the Marchenko-Pastur dis-
tribution (5) depends on the rectangular ratio γ = n/k, i.e.,
the size of slices, the peak position of the outlier does not.
In the Appendix, the Marchenko-Pastur distributions for the
rectangular ratios γ = n/k = 1/4, 1/2, 1 are plotted. One can
see that the peak positions of the outliers are not affected by
the size of slices k.

Figure 2(a) plots the Marchenko-Pastur distribution of
eigenvalues of the ensemble of (1/2n)X T X for the Sycamore
sample (measurement-53-m20-s0-e0-pABCDCDAB.txt) and
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FIG. 3. Wasserstein-distances of the Sycamore samples qubits
with n = 53 and the Kalachev et al.’s samples with n = 53 from the
classical random bit sample.

the Kalachev et al.’s sample (samples-m20-f0-002.txt). The
majority of the eigenvalues follow the Marchenko-Pastur dis-
tribution given by Eq. (5). The inset of Fig. 2(a) shows
the outliers of the distribution of eigenvalues around n/4,
here 53/4 = 13.25 for n = 53 qubits. The distance of the
peak of the outliers from n/4, called the Marchenko-Pastur
distance, could be used to measure how a sample is devi-
ated from classical random bit strings. Figure 2(b) plots the
Marchenko-Pastur distribution for Pan et al.’s spoofing sam-
ple (samples-metropolis.txt) and Kalachev et al. spoofing file
(spoofing-m20.txt). As expected, the eigenvalue distributions
of both spoofing samples are quite different from those of the
Sycamore samples or Kalachev et al.’s samples. There is a big
peak at eigenvalue zero, λ = 0. Also, the outliers are far away
from n/4.

Figure 2(c) plots the Marchenko-Pastur distance of sam-
ples from n/4 as a function of the number of cycles m =
12, 14, 16, 18, and 20. As shown in Fig. 2(b), the Marchenko-
Pastur distances of Kalachev et al.’s samples are very close to
that of the classical random bit strings, approximately 0.36.
The closeness of Kalachev et al.’s samples to the classical
random bit strings are consistent with the fact that Kalachev
et al.’s samples pass the NIST random number tests discussed
above. Since for Pan et al.’s dataset, only one spoofing sample
with n = 53 and m = 20 is available, we do not plot the
distance of the outliers from n/4 as a function of the number
of cycles m.

To support the analysis above using the Marchenko-Pastur
distances between samples, we calculate the Wasserstein dis-
tances for samples [48]. In contrast to the Kullback-Leibler
divergence, the Wasserstein distance is a metric on probability
distributions. It is symmetric and satisfies the triangular in-
equality. The α-Wasserstein distance between two probability
distribution p(x) and q(y) is given by [48]

W (p, q) =
(

inf
π∈�(p,q)

∫
R×R

|x − y|α dπ (x, y)

)1/α

, (6)

where �(p, q) is the set of joint distributions π (x, y) whose
marginals are p(x) and q(y). If p(x) is the empirical dis-
tribution of a dataset D1 = {x1, x2, . . . , xM} and q(y) is the
empirical distribution of a dataset D2 = {y1, y2, . . . , yM}, then
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FIG. 4. The Marchenko-Pastur distributions for the Sycamore sample with n = 53 and m = 20 and Kalachev et al.’s sample with n = 53
and m = 20 are plotted for (a) γ = 1/4, (b) γ = 1/3, and (d) γ = 1. (d), (e), and (f) plot the Marchenko-Pastur distributions of Pan et al.’s
spoofing sample and Kalachev et al.’s spoofing sample for γ = 1/4, 1/3, and 1, respectively.

the α-Wasserstein distance is written as

Wα (p, q) =
(

M∑
i=1

|x(i) − y(i)|α
)1/α

, (7)

where x(k) denotes the order statistic of rank k, i.e., kth
smallest value in the dataset D1. Here, we calculate the first
Wasserstein distance for the datasets of random circuit sam-
pling using the PYTHON optimal transport library [49]. To this
end, each bit string x is converted to a value in range [0,1]
by dividing it by 1/2n. Also, we consider only one million bit
strings. Figure 3 plots the Wasserstein distances of samples
from the classical random bit strings as a function of the
number of cycles m. It is shown that the Wasserstein distances
between Kalachev et al.’s samples and the classical random
bit strings are very close. This result is consistent with the
analysis of the Marchenko-Pastur distance. The Wasserstein
distances of Pan et al.’s spoofing sample from the classi-
cal random sample, the Sycamore sample, Kalachev et al.’s
spoofing sample are about 0.0234, 0.01390, and 0.3275,
respectively.

III. CONCLUSION

In summary, we investigated the statistical properties of
bit strings sampled from random circuits on the Sycamore
quantum processor and obtained using the tensor network
simulation on classical processors. We considered Kalachev
et al.’s samples [17,18,28] and Pan et al.’s spoofing sample
[19,20,29], and compared them with the Sycamore dataset
[27] and the classical random bit strings. We found that
Kalachev et al.’s samples pass the NIST random number tests
while they have stripe patterns of the heat maps. The heat

maps of the two spoofing samples were shown to be quite
different from those of the Sycamore samples. Since some
parts of bit strings of the spoofing samples are fixed to 0s or
1s, the outcomes of the spoofing samples look like bit strings
that were generated by a random circuit applied on only a few
qubits. So one can easily distinguish them from the Sycamore
samples while the linear XEB values of the spoofing samples
are greater than 0s. Using the Marchenko-Pastur distribution
of eigenvalues of the samples and the Wasserstein distances
between the samples it is shown that Kalachev et al.’s sam-
ple is close to classical random bit strings and the spoofing
samples are far away from the classical samples or from the
Sycamore samples.

Google’s 2019 experiment on random circuit sampling
[9] was a landmark in quantum computing and has gen-
erated much interest as well as intense debate [50]. The
tensor network simulation on quantum circuits has proven
to be effective compared the Schrödinger-Feynman simula-
tion and can catch up with current noisy quantum processors
[17–21]. All claims are based on two metrics: computa-
tional time and the linear XEB. While the linear XEB
may serve as a good measure to verify quantum advantage,
its limitation was pointed out [17,20,22]. Other measures
could be used to verify quantum computation for sam-
pling [39]. For example, the random matrix analysis or the
Wasserstein distances [24,25] would tell us other aspects
of outcomes of random circuit sampling. As more results
from quantum processors and advanced simulation on clas-
sical processors become available, a comparative study could
deepen our understanding of quantum advantage. Our results
raise a question about the claim that quantum advantage
for random circuit sampling is faded by classical computers
[20,21].
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APPENDIX: EFFET OF THE RECTANGULAR RATIO γ

ON THE MARCHENKO-PASTUR DISTRIBUTION

Here, we show how the Marchenko-Pastur distribution (5)
and the position of outliers are affected by the rectangular ratio
γ = n/k of a k × n matrix X , i.e., k the size of a slice of a

bit-string sample. Equation (5) describes the eigenvalue distri-
bution of the first term of Eq. (4), (1/4k)ZT Z , where the mean
and the variance of its entries are 0 and 1, respectively. Clearly,
the shape of the Marchenko-Pastur distribution, Eq. (5), de-
pends on the rectangular ratio γ . However, the position and
the shape of the outlier are determined by the remaining three
terms of Eq. (4), (1/4k)(ZT J + JT Z + JT J ). Note that the
eigenvalues of (1/4k)JT J are 0 or n/4, and thus do not depend
on γ . Figure 4 plots the eigenvalue distributions of (1/k)X T X
of the Sycamore sample, Kalachev et al.’s, and Pan et al.’s for
γ = 1/4, 1/3, 1. Figure 4 shows the peak positions of outliers
depend little on the size of slices, k, i.e., γ = n/k.
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