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ABSTRACT: We introduce a general method based on the
operators of the Dyson-Masleev transformation to map the
Hamiltonian of an arbitrary model system into the Hamiltonian
of a circuit Quantum Electrodynamics (cQED) processor.
Furthermore, we introduce a modular approach to programming
a cQED processor with components corresponding to the mapping
Hamiltonian. The method is illustrated as applied to quantum
dynamics simulations of the Fenna-Matthews-Olson (FMO)
complex and the spin-boson model of charge transfer. Beyond
applications to molecular Hamiltonians, the mapping provides a
general approach to implement any unitary operator in terms of a
sequence of unitary transformations corresponding to powers of
creation and annihilation operators of a single bosonic mode in a
cQED processor.

1. INTRODUCTION
The development of quantum computing simulations for
modeling chemical systems is a subject of immense interest.
Recent studies have already explored the potential of quantum
computing as applied to electronic structure calculations,1−8

quantum dynamics simulations,9−19 and simulations of
molecular spectroscopy.20−23 Currently quantum computing
facilities are often called noisy intermediate-scale quantum
(NISQ) computers,24 due to their intrinsic limitations,
including architectures based on superconducting circuits,6

trapped ions,25,26 and nuclear magnetic resonance.27,28 To
achieve moderate accuracy and reliability in spite of noise and
decoherence, simulations of chemical systems have relied on
hybrid quantum-classical algorithms, including the variational
quantum eigensolver (VQE) method20,29,30 and quantum
machine learning methods31,32 where only part of the
computation is performed on the quantum computer,
sometimes applied with the aid of error mitigation
techniques,33 while the rest of the calculation is run on a
conventional computer.

New hardware settings that can fundamentally reduce the
aforementioned errors in quantum computing architectures are
necessary to enable fault-tolerant quantum computations of
chemical systems. A promising paradigm-shifting technology
involves the development of bosonic circuit Quantum
Electrodynamics (cQED) processors, where information is
stored as microwave photons in the unbounded Hilbert space

of oscillator modes. The nonlinearity necessary for control and
readout procedures is provided by quantum circuits based on
ancillary Josephson junctions.34,35 Bosonic cQED devices offer
favorable platforms for quantum error correction codes as a
result of the well understood dominant source of errors in
oscillator modes, namely, the single-photon loss.36 Moreover,
encoding information in multiple levels of an oscillator can be
more efficient compared to conventional cQED architectures,
where the storage of information utilizes only the first two-
levels of a transmon.

Bosonic cQED devices have already been shown to offer
unparalleled capabilities for simulations of vibronic spectra of
small molecules such as water, ozone, nitrogen dioxide, and
sulfur dioxide, when mapping the calculation of Franck−
Condon factors into a boson sampling problem.37 The
corresponding calculations on a conventional quantum
computer would require 8 qubits and (10 )3 gates, exceeding
the capabilities of current technologies. Therefore, it is natural
to anticipate that bosonic cQED devices could be applied to
solve other classes of interesting problems in chemistry and
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offer advantages beyond the capabilities of conventional
quantum computers. However, a general approach to design
a quantum circuit to simulate an arbitrary molecular system has
yet to be established. Here, we address the fundamental
question regarding how to map the Hamiltonian of a molecular
system to the corresponding Hamiltonian of a programmable
bosonic cQED simulator. We introduce the single-bosonic-
mode (SBM) mapping, allowing us to represent any square
matrix as a polynomial of creation and annihilation operators
of a bosonic mode. The mapping thus provides a general
protocol for transforming any Hamiltonian into the Hamil-
tonian of a cQED device, since the Hamiltonian of a cQED
device can be written as a polynomial of creation and
annihilation operators of a single bosonic mode.37 Addition-
ally, we introduce a modular approach to program a cQED
processor according to the SBM mapping Hamiltonian. In
particular, we identify circuits with Superconducting Nonlinear
Asymmetric Inductive eLements (SNAILs)38−40 that could be
coupled by beam splitters, or by nearly quartic elements41 for
programming one-qubit gates and the two-qubit controlled-Z
gate that enable universal computing.

We illustrate the SBM mapping in conjunction with SNAIL
gates as applied to model simulations of quantum dynamics in
the photosynthetic Fenna-Matthews-Olson (FMO) complex, a
system that mediates excitation energy transfer from light-
harvesting chlorosomes to the bacterial reaction center.
Additionally, we illustrate the SBM mapping as applied to
simulations of charge or energy transfer processes with
dissipation according to the spin-boson model. Beyond
applications to molecular Hamiltonians, the SBM mapping
provides a general approach for implementing any unitary
operator in terms of a sequence of unitary transformations
corresponding to powers of creation and annihilation operators
of single-bosonic modes in a cQED processor.

The rest of the article is organized as follows. Section 2
introduces the SBM mapping method. Section 3 provides the
implementation of one-qubit gates with capacitively shunted
SNAILs, and the two-qubit controlled-Z gate with nearly
quartic elements. Section 4 demonstrates the SBM mapping
with SNAIL circuit implementation, as applied to quantum
dynamics simulations of a series of models typically employed
to simulate charge and energy transfer processes. Conclusions
are outlined in section 5.

2. SINGLE-BOSONIC MODE MAPPING
The SBM mapping transforms an arbitrary Hermitian operator,

= | |
= =

H H
k k

0

1

0

1

(1)

in the basis set {|α⟩} of the system of interest, into the
following polynomial of products of powers of operators of a
single bosonic mode (a,̂a†̂), as follows:
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with

= k N a(( 1) )k (4)

where N̂ = a†̂a.̂ Appendix A shows that Γ̂k corresponds to the
operator Ŝ+

† of the Dyson-Maleev transformation.42−45

To derive the mapping introduced by eq 2, we map the
operators |α⟩⟨α′| introduced by eq 1 into the corresponding
transition operators |m⟩⟨n| in the basis of the 1-dimensional
harmonic oscillator (HO), satisfying

| = | | = + | +†a m m m a m m m1 , 1 1

We can verify that
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k
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( 1)

k
k 1

3/2 (5)

in the subspace of the first k eigenstates of the HO (Appendix

B). Therefore,
!k( 1)

k
k 1

3/2 effectively acts as the transition

operator |0⟩⟨k − 1|. As shown in Appendix B, the definition
of Γ̂k leads to a block diagonal representation of operators. For
example, for k = 3, we obtain

showing that the matrix representation of |0⟩⟨2| is indeed
recovered from the top 3 × 3 diagonal block.

Next, substituting eq 5 into the expression of |n⟩⟨m|, and

c o n s i d e r i n g t h a t | = |
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†
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m k a1 ( )k m m
k
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, we obtain that any operator

P̂nm ≡ |n⟩⟨m|, with n, m < k, can be represented according to eq
3.

Note that eq 2 is an operator of a single bosonic mode,
which corresponds to a single k-qudit gate for the mapping of a
k × k Hamiltonian. In particular, when k = 2, eq 2 provides the
mapping of any 2 × 2 hermitian operator into an operator of a
single bosonic mode, allowing for construction of any bosonic
1-qubit gate with readily available superconducting devices.

Appendix A describes the relationship between the SBM
mapping and the established Dyson-Maleev (DM) and
Holstein-Primakoff (HP) mappings used to map spin
operators into bosonic operators. The DM and HP mappings
use one bosonic mode per spin site so they do not allow for the
possibility of a single k-qudit gate. Furthermore, although both
DM and HP mappings use bosonic operators, they are not able
to construct the well-restricted bosonic Hamiltonian necessary
for a quantum computing scheme. The DM mapping uses non-
Hermitian bosonic operators that do not directly transfer to be
unitary quantum gates upon exponentiation, while the operator
square root term in the HP mapping is known to be hard to
represent without a perturbative approach, which restricts
implementation into quantum gates.
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3. MODULAR QUANTUM CIRCUITS
This section introduces a modular design of quantum circuits
based on driven Superconducting Nonlinear Asymmetric
Inductive eLements (SNAIL) with a capacitive shunt,46

parametrized according to SBM Hamiltonians.
We begin by introducing the SBM mapping of 2 × 2

hermitian matrices describing 1-qubit gates. The operator Γ̂k
introduced by eq 4, with k = 2, is defined as follows:

=

=

†

†

a a a

a a a

(1 ) ,2

2 (6)

so any 2 × 2 matrix can be written according to eq 2, as
follows:

=
=
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2
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where P̂12 = a ̂ − a†̂a2̂, P̂22 = a†̂ − a,̂ P̂11 = 1 − a†̂ − a,̂ and P̂21 =
a†̂ − (a†̂)2a.̂

Defining H12 = R12eiϕ12 with real valued R12 and ϕ12, and
introducing the substitution b̂ = aêiϕ12, we obtain
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where ℏω = H22 − H11, and =g R
3 3

12 .
In circuit QED, the charge and magnetic flux variables of a

superconducting circuit are quantized and identified as
polynomials of bosonic creation and annihilation operators.35

For the implementation of eq 8, we consider the Hamiltonian
of a capacitively shunted SNAIL (Figure 1):46

= + + + +† † †
H b b g b b g b b( ) ( )SPA 3

3
4

4
(9)

we can readily identify the Hamiltonian Ĥ, introduced by eq 8,
as the Hamiltonian of a linearly driven (displaced) SNAIL,

= + + + + +† †
H H R b b H g b b2 ( ) ( )sbm SPA11 12 3

33

(10)

with the fourth-order term turned off (g4 = 0).
Note that the term g3 (b̂†3 + b̂3) in eq 10 can be produced by

driving the SNAIL at a frequency of ω3 ≈ 3ω. Indeed, a four-
wave mixing interaction would be able to implement such
terms in a frame rotating at ω3/3.47 We want to emphasize
that, despite the assumption of g4 = 0, four-wave mixing can
still be implemented by cascaded three-wave mixing
processes.48

More generally, a SNAIL can be substituted by an arbitrary
flux-biased Josephson circuit,49 providing additional freedom
for the choice of ω and g3 coefficients in the Hamiltonian
introduced by eq 9. Consequently, a wide range of
combinations of coefficients Hij can be engineered at the
hardware level. We note that despite the generality of eqs 8 and
10, cases with ω ≤ 0 for a physical oscillator might be
energetically unstable, which would impose limitations on the
construction of arbitrary 2 × 2 hermitian matrices. However, it

is verified in Appendix C that all of the R̂z and R̂x gates can be
implemented under this restriction. As these gates constitute a
one-qubit universal set, the hardware setting proposed in
Figure 1 can be used to construct arbitrary 1-qubit gates.

To establish a universal set of quantum gates, a 2-qubit
entangling gate (e.g., a controlled-Z gate) is required. This
requirement can be fulfilled by a modular design of driven
SNAIL circuits nonlinearly coupled by nearly quartic elements,
effectively described by a 4 × 4 Hamiltonian, as shown in
Figure 2(a).

A nearly quartic element can be implemented, for instance,
by a SNAIL designed with an unusual combination of
Josephson junctions or a dc-SQUID.41 More in general, any
superconducting two-terminal circuit whose potential energy
function U can be approximated as

!
+U

a
O( )

4
( ) (( ) )0

4
0

5

(11)

can implement such a nearly quartic element. In eq 11, φ is the
phase difference across the terminals of the superconducting

circuit implementing the potential energy U and =a d U
d

4

4

0

is

the fourth-order Taylor expansion coefficient of the function
U, evaluated at the point φ0 which minimizes U. While it is
possible to implement the potential energy in eq 11 exactly,41

in practice, any two-terminal circuit including one or more
Josephson tunnel junctions is shunted by an intrinsic
capacitance that introduces a weak linear coupling between
the two terminals. Such linear capacitive coupling arises from
the intrinsic capacitance of the Josephson tunnel junctions and
can be neglected when the fourth order nonlinearity
implemented by U is the dominant coupling mechanism
between the two terminals (i.e., the “nearly quartic” coupling
limit).

A nearly quartic element can be used to implement
ultrastrong cross-Kerr couplings41 between photonic modes
described by the interaction Hamiltonian,

= † †
H b b b bcross Kerr 1 1 2 2 (12)

Figure 1. Capacitively shunted SNAIL with a series of stray
inductance. Cross-in-box symbol represents a Josephson tunnel
junction, including an intrinsic shunt capacitance, while the circled
arrow indicates a constant external flux Φ with tunable intensity. The
phase operator φ̂ associated with the active node of the circuit (white-
filled circle) is related to ladder operators via φ̂ = φzpf(b̂ + b̂†).
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where b̂1 and b̂2 are the annihilation operators of the two
coupled photonic modes. The nearly pure and ultrastrong
cross-Kerr coupling can enable the construction of many
photonic 2-qubits gates, including a controlled-Z gate as shown
in Appendix D. Therefore, with a combination of one-qubit
gates and the two-qubit gate, constructed as quartic-connected
SNAILs, it is possible to map any physical Hamiltonian into a
modular cQED processor.

Design of a multiple-qubit entangling gate is realized by the
circuit of multiple SNAILs coupled with nearly quartic

elements. As an example, Figure 2(b) illustrates the circuit
that effectively maps the 8 × 8 Hamiltonian corresponding to a
3-qubit entangling gate. Alternatively, bilinear couplings can
also be established by beams splitters,50,51 as previously
investigated for transmons.52,53 The 4 × 4 and 8 × 8 circuits
in Figure 2 can be generalized as well to include arbitrary flux-
biased Josephson circuits as a replacement for the SNAILs and
the nearly quartic couplers.

4. DYNAMICS OF CHARGE AND ENERGY TRANSFER
A variety of important dynamical processes in molecular
systems of chemical, biological, and technological importance
involve electronic energy and charge transfer. The simulation
of the inherently quantum-mechanical electronic dynamics
underlying these processes is a subject of great interest. In this
section, we illustrate the SBM mapping based on the SNAIL
circuit as applied to quantum dynamics simulations of energy
and charge transfer in model systems, including a multilevel
system describing energy transfer in the FMO light-harvesting
complex, and a spin-boson model that describes charge transfer
in the presence of dissipation, schematically represented in
Figure 3.

4.1. Two-Level System (TLS). The simplest model of
energy or charge transfer is given by the 2 × 2 donor−acceptor
Hamiltonian,54

=
i
k
jjjj

y
{
zzzzHTLS

(13)

describing two coupled electronic states, with ε = 50 cm−1 and
Δ = 20 cm−1 for a typical charge transfer process in molecules.

Figure 2. Modular assembly of capacitively shunted SNAILs for
mapping (a) 4 × 4 and (b) 8 × 8 (bottom) hermitian matrices. The
dynamics of the i-th capacitively shunted SNAIL is described by a
phase operator φ̂i = φzpfdi

(b̂i + b̂i
†). The SNAILs are coupled via nearly

quartic elements, represented as distorted cross-in-box symbols (in
orange). Consequently, the eigenmodes can be assumed to be the
same as those of the uncoupled system.

Figure 3. Schematic representation of model systems for quantum
dynamics simulations of energy transfer (top) and electron transfer
(bottom).
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To map the 2 × 2 Hamiltonian into the circuit of Figure 1, the
SNAIL parameters are obtained according to eq 10, with
oscillator frequency ω = 100 cm−1, linear displacement R12 =
50 cm−1 and third-order coupling g3 = −16.7 cm−1. With these
parameters, the right side of eq 10 is programmed on a classical
computer and numerically exponentiated to obtain the
corresponding propagator for dynamics simulations. Figure
5(a) shows the simulation results for the time-dependent
population of the donor state. The exact agreement with
benchmark calculations obtained by numerically integrating
the Schrödinger equation demonstrates the SBM mapping and
the proposed SNAIL-based circuit.
4.2. Fenna-Matthews-Olson Complex. Energy transfer

through the chlorophyll pigments of the Fenna-Matthews-
Olson (FMO) complex corresponds to exciton transfer across
chromophore sites. Figure 3(a) shows the seven chromophores
in each monomer of the FMO complex, where the arrows
depict the energy transfer pathways. For the sake of simplicity,
we consider energy transfer through sites 1−4. The excitons
are modeled as hard-core bosons,55−57 according to the
Frenkel exciton Hamiltonian,58,59

= + ++ + +H E J ( )j
j

j j jk
j k

j k k j

4

,

4

(14)

where σj
+ and σj

− are the Pauli-raising operator and lowering
operators, corresponding to the creation and annihilation of an
excitation in chromophore j, with commutation rules [σj

−,σk
+] =

δjk (1−2 σj
+σk

−).
The parameters of the 4-site Hamiltonian are contained in

the following 4 × 4 Hamiltonian matrix:59

=

i

k

jjjjjjjjjjjjjj

y

{

zzzzzzzzzzzzzz
H

310.0 97.9 5.5 5.8
97.9 230.0 30.1 7.3
5.5 30.1 0.0 58.8
5.8 7.3 58.8 180.0

FMO

(15)

with parameters in cm−1. Diagonal terms correspond to the
energies of the chromophore (Ej in eq 14) while off-diagonal
terms are the couplings between them (Jjk in eq 14).

To parametrize the superconducting circuit for dynamics
simulations, with an integration time-step τ, we obtain the
propagator ÛFMO = e−iτĤFMO/ℏ as a 4 × 4 unitary matrix. This 2-
qubit gate is then transpiled in terms of SNAILs parametrized
according to the set of elementary gates including 1-qubit
rotations and controlled-Z gates. Note that we are able to
convert the Pauli operators into single boson operators based
on the SBM mapping, offering advantages over conventional
bosonization methods such as the Holstein−Primakoff60 or the
Dyson−Maleev transformation42−45 (Appendix A). Analogous
implementations could also be applied to model Fermionic
Hamiltonians commonly encountered in quantum chemistry,
when converted into sums of tensor products of Pauli
operators in conjunction with the Jordan-Wigner trans-
formation and then mapped into bosonic gates.

To obtain the SNAIL parameters for a 1-qubit rotation
Û1‑qubit, we compute the effective Hamiltonian Ĥeff = −i
log(Û1‑qubit), then we map that Hamiltonian as Ĥeff,sbm
according to eq 10, and we obtain the corresponding rotation
gate, as follows: Ûeff,SBM = e−iĤeff,sbm. The circuit is simulated by
arranging the gates Ûeff,SBM according to the transpiled circuit
diagram, with CZ gates corresponding to two SNAILs coupled
by a nearly quartic element, as described in section 3. Figure 4
shows a schematic representation of the resulting simulation.

Figure 4. Scheme for simulating the SBM-SNAIL circuit that propagates energy transfer in the FMO 4-site model. The three parameters in the first
circuit diagram are rotation angles that define the 1-qubit rotation operations, following ref 61. The four parameters in the bottom circuit diagram
are the SNAIL gate parameters in eq 10. From left to right: oscillator frequency ω, third-order coupling term g3, constant term H11, and half of
displacement R12.
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Figure 5(b) shows the results of simulations of the exciton
dynamics for site 1, which is initially fully populated and
becomes depopulated according to the energy transfer process.
The agreement between the results obtained with the SBM-
mapped Hamiltonian and the reference calculations further
demonstrates the capabilities of the SBM-SNAIL circuit
design. We also simulated the SBM mapping with the qudit
implementation according to eqs 2−6. The agreement with
reference calculations shows the potential of SBM mapping in
conjunction with multiple bosonic excitations. We note that
the energy transfer process in the FMO complex is dissipative.
Coupling to the environment is important for stabilizing
energy transfer.62−64 However, dissipation has not been
included in our calculations (Figure 5(b)) since the main
purpose of our analysis was to show the capabilities of the
quantum circuit to simulate fully quantum coherent dynamics.
In future work, we will demonstrate how to couple the SNAIL-
SBM architecture to a bath of microwave cavity modes.
4.3. Dynamics of Open Quantum Systems. This

section demonstrates the capabilities of the modular design
of quantum circuits based on SBM-mapping, as applied to
dynamics simulations of open quantum systems. We focus on
the spin-boson model including two electronic states coupled
to a bath of displaced harmonic oscillators, described in

Appendix E, recently analyzed with tensor-train thermo-field
memory kernels for generalized quantum master equations.65

Our propagation scheme is based on the so-called
population-only Liouville space superoperator t( )pop that
satisfies the following equation:

=t t( ) ( ) (0)pop pop pop (16)

where σ̂(t) = Trn [ρ̂(t)] is the reduced density matrix for the
electronic DOFs, with ρ̂(t) being the density matrix for the full
vibronic system. Here, σ̂pop(t) = (σ00 (t),σ11(t))T includes only
the diagonal elements of σ̂(t), which are necessary to describe
the electronic population dynamics. The preparation of the
superoperator t( )pop is described in Appendix E.

We compare the elements of σ̂pop(t) obtained according to
eq 16 with the corresponding time-dependent populations
obtained according to the quantum computational scheme
based on the SBM-mapping. To perform quantum computing
simulations based on eq 16, we first transform t( )pop into a
unitary matrix using the Sz.-Nagy dilation theorem,66 as
follows:67,68

=
†

† †

i

k

jjjjjjjjjjj

y

{

zzzzzzzzzzz
t

t I t t

I t t t
( )

( ) ( ) ( )

( ) ( ) ( )

pop pop pop

pop pop pop
pop

(17)

Figure 5. Population dynamics for (top) spin-up state of the two-level system and (bottom) chlorophyll 1 of the 4-site FMO complex, obtained
from single-boson-mapped Hamiltonians with simulated SNAIL circuit (eq 10, blue dots), benchmarked with results obtained from directly
integrating the Schrödinger equation (red lines). Also shown (bottom panel) are the results obtained with the SBM mapping with qudit
implementation (eqs 2−4, orange triangles).
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The vectorized vσ(0) is dilated by appending ancillary zero
elements as follows:

=
=

(0) ( (0), (0)) (0)

( (0), (0), 0, 0)

T

T

pop
00 11

pop

00 11 (18)

The dilated time-updated population-only density matrix is
obtained as follows:

=t t( ) ( ) (0)pop pop
pop (19)

The dilation scheme thus provides the unitary matrix
t( )pop governing the time-evolution of σ̃pop(t), the first two

digits of which agree with those of σ̃pop(t). Therefore, eqs 19
and 16 describe the same dynamics, with eq 19 allowing for
simulations on a quantum device. For the spin-boson model of
interest t( )pop is a 4 × 4 unitary matrix, corresponding to a
2-qubit gate. Therefore, the SBM-SNAIL circuit is analogous
to that of the FMO 4-site model. The simulation of the circuit
thus follows the scheme in Figure 4. The transpiled circuit and
t h e c o r r e s p o n d i n g S N A I L g a t e p a r a m e t e r s f o r

=t( 1 a.u.)pop are given in Figure 6.
Figure 7 shows the comparison of time-dependent

populations for the two electronic states corresponding to
the spin-boson model, as described by elements of σ̃sbm

pop(t)
obtained with the SBM-mapping with SNAIL circuit scheme,
and the corresponding populations σ̃pop(t) obtained directly

with eq 19, with initial condition σ̃pop(0) = (1,0,0,0)T. The
excellent agreement demonstrates the capabilities of the SBM
mapping as applied to a model of electron transfer with
dissipation due to coupling to a surrounding environment.

5. CONCLUDING REMARKS
We have introduced a general method to map the Hamiltonian
of molecular systems to the Hamiltonian of quantum circuits
for cQED simulations. Additionally, we have identified the
nonlinear bosonic components that need to be assembled for a
modular implementation of the corresponding circuit Hamil-
tonians. We have illustrated the SBM mapping, in conjunction
with SNAIL circuits, as applied to simulations of energy
transfer in the photosynthetic FMO model system and charge
transfer in donor−acceptor systems coupled to a dissipative
environment.

Beyond the modular design based on SNAILs, we have
shown that the SBM mapping allows for implementation of
Hamiltonians on the basis of qudits (i.e., eq 2, with N > 2),
corresponding to continuous-variable (CV) modes represented
as N-dimensional discrete-variable (DV) states. These DV
states could naturally implement the well-known Discrete
Variable Representation (DVR),69−71 extensively used for the
representation of molecular Hamiltonians. The SBM, there-
fore, offers a convenient mapping for simulations of chemical
systems on the cQED platforms.

For circuits with multiple qudits, the cross-Kerr Hamiltonian
may also be generalized to perform a qudit controlled-Z gate,
allowing for construction of a universal set of gates for
simulations on bosonic devices. The hardware efficiency of a
qudit-based cQED can significantly reduce the circuit depth
and simplify the experimental setup.

■ A. DYSON-MALEEV AND HOLSTEIN-PRIMAKOFF
MAPS

Dyson and Maleev introduced a transformation42−45 to
represent spin operators in terms of bosonic operators
according to the ladder operators,

= [ ]

=

=

+
†S a s N

S a

S N s

2 ,

,

,z (20)

with N̂ = a†̂a,̂ and [a,̂a†̂] = 1. Notice that Ŝ−
† ≠ Ŝ +, so the

ladder operators are not Hermitian conjugates of each other
and thus the transformation is not unitary. Nevertheless, eq 20
satisfies the Lie algebra of the original spin operators,

Figure 6. Transpiled circuit (up) and SNAIL circuit (down) for =t( 1 a.u.)pop .

Figure 7. Time dependent population of the electronic states,
corresponding to the spin-boson model, obtained from the SBM-
mapped t( )pop matrices with simulated SNAIL circuit implemen-
tation (red and blue dots), benchmarked with the dynamics obtained
directly from the original t( )pop matrices (red and blue lines).
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= ±±S S iSx y (21)

[ ] =+S S S, 2 z (22)

and

[ ] =
=

S S i S,i j
k

ijk k
1

3

(23)

where εijk is the levi-citta symbol and i, j, k ∈ {x, y, z}. If we
replace the magnitude of the spin, s, by the number (k − 1)/2
in eq 20, we obtain

=+
†

S k N a(( 1) ) (24)

Comparing eq 24 and eq 4, we see that Ŝ+
† is identical to

operator Γ̂k. The other operator that we use in the SBM
mapping is a,̂ which is in turn the operator Ŝ− introduced by eq
20. Therefore, our SBM mapping implements the raising and
lowering operators of the Dyson-Maleev transformation. The
major difference between the SBM mapping and DM
transformation lies in the fact that the DM mapping replaces
the operators Ŝ+ and Ŝ−, according to eqs 20, and therefore
generates a Hamiltonian in terms of a ̂ and a†̂ that is not
Hermitian. On the other hand, the SBM mapping preserves the
Hermitian property by using the P̂nm operators to map the
matrix elements of the Hamiltonian so the full matrix
representation is automatically preserved.

Similar to the Dyson-Maleev transformation,42−45 the
Holstein-Primakoff transformation60 maps the spin operators
for a spin-s particle to bosonic operators, as follows:

=

=

=

+
†S a s N

S s N a

S N s

2 ,

2 ,

z (25)

Comparing eq 4 to eqs 25, we see that here Ŝ+
† = Ŝ− but differs

from the operator Γ̂k by a factor of s N2 . Unfortunately,
the square root of the number operator is challenging to
implement without relying upon a perturbative expansion,
which is accurate only when s is sufficiently large. In contrast,
the SBM mapping is generally applicable.

■ B. BLOCK-DIAGONALITY
In this section, we prove that the right-hand side (rhs) of eq 2
is block-diagonal, ensuring that the physical space of states |j⟩
with j < k remains decoupled from the unphysical space of
states |j⟩ with j ≥ k. Specifically, we show that the rhs of eq 2
has the block-diagonal form:

To achieve this, we show that P̂nm, introduced by eq 3, has the
block-diagonal form,

where only the nm-th element is equal to 1. Substituting eq 27
with eq 2 yields the matrix form in eq 26.

First, we show that ⟨n|Γ̂k
k‑1|j⟩ = 0, for all j, n < k, unless j = k

− 1 and n = 0. Considering that

| = |

= |

| = |

j k I N a j

k j j j

j k j k j j j j

(( 1) )

( ) 1 ,

, ( )( ( 1)) ( 1) 2

k

k
2

(28)

we obtain

| =

× |µ

j k j k j k j l

j j j l j l

( )( ( 1))...( ( ( 2)))

( 1) ( ( 2)) ( 1)

k
l 1

(29)

So, ⟨n|Γ̂k
k−1|j⟩ = 0, unless j − (k − 1) = n, a condition that

can only be fulfilled for j, n < k when j = k − 1 and n = 0, for
which

| = ! |k k1 ( 1) 0k
k 1 3/2 (30)

Now we prove eq 27 by showing that ⟨j|P̂nm |l⟩ = δjnδlm. We
start by showing that ⟨n|P̂nm |m⟩ = 1, as follows:

| | = |
!

!
!

|

= |
!

! !
!

!
!

|

=
!
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!

| ! |

=
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( 1)

0 ( 1) 0

1
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n

k
k k m

k
k

k
k

2
1 1

2
1

3/2
1

3/2
3/2

(31)

Next, we show that all other elements in the upper-left k × k
block ⟨j|P̂nm |l⟩ = 0, when j = 0, 1, . . ., n − 1, n + 1, . . ., k − 1
and l = 0, 1. . ., m − 1, m + 1, . . ., k − 1.

We consider three cases: (a) j < n, (b) l < m, and (c) l > m,
as follows:

(a). When j < n, ⟨j|(a†)n = 0. Therefore,
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| | = |
!

!
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| =† †j P l j
k

m
n

a a l1
( 1)

( ) ( ) 0nm
n

k
k k m

2
1 1

(32)

(b). When l < m, ⟨j|P̂nm |l⟩ = 0, since Γ̂k
k−1(a†)k−1−m|l⟩ ∝ Γ̂k

k−1|
l + k − 1 − m⟩, and then according to eq 29, Γ̂k

k‑1|l + k − 1 −
m⟩ = 0, since l − m < 0.

(c). When l > m, we obtain (a†)k −1−m|l⟩ ∝ |k − 1 − m + l⟩.
So, according to eq 29, Γ̂k

k−1(a†)k−1−m|l⟩ = 0 since k − 1 < k − 1
− m + l < 2k − 1, and

| = ···
··· | =

j k j k j k j k

j j j k j k

( )( ( 1)) ( ( ( 2)))

( 1) ( ( 2)) ( 1) 0
k
k 1

when j = k, k + 1, . . ., 2k − 2 since (k − j)(k − (j − 1))···(k −
(j − (k − 2))) = 0.

To establish block-diagonality, we next show that P̂nm vanish
when: (d) j ≤ k − 1 and l > k − 1, and also when (e) l ≤ k − 1
and j > k − 1, as follows:

(d). j ≤ k − 1 and l > k − 1. This case is further divided into
two scenarios: (i) l < k + m, or (ii) l ≥ k + m, as follows:

(i) l < k + m. Similarly to case (c), here Γ̂k
k−1(a†)k−1−m|l⟩

= 0 since k − 1 − m + l < 2k − 1. Therefore, ⟨j|P̂nm|l⟩ =
0.
(ii) l ≥ k + m. In this case, according to eq 32, and eq 30,

| | = |
!

!
!

|

| | +

|

† †j P l j
k

m
n

a a l

j n l k m

j n l m

1
( 1)

( ) ( )

1

nm
n

k
k k m

k
k

2
1 1

1

(33)

Considering that l ≥ k + m, and k − 1 ≥ j, we obtain l − m ≥ k
≥ j + 1 > j − n, so

| | | =j P l j n l m 0nm (34)

(e). l ≤ k − 1 and j > k − 1. The argument is analogous to
that for case (d).

Considering cases (a)−(e), we obtain the matrix represen-
tation for P̂nm given eq 27. Since n and m can be any integer
from 0 to k − 1, we prove eq 26.

■ C. IMPLEMENTING R̂Z AND R̂X WITH A SNAIL
This section shows that any one-qubit rotation on the surface
of the Bloch sphere can be implemented by using a SNAIL
device, introduced in eq 10, thus enabling a universal set of 1-
qubit gates.

The rotation around the z axis by λ has the following matrix
representation:

=
i
k
jjjjj

y
{
zzzzzR ( )

1 0

0 e
z i (35)

which can be implemented as R̂z(λ) = e−iĤzt by propagating for
time t = 1 a quantum circuit with the effective Hamiltonian,

=
i
k
jjjj

y
{
zzzzH ( )

0 0
0z

(36)

Implementing eq 36 with eq 10 requires λ < 0, which
correspond to negative rotation angles along the z axis. Noting
that any positive rotation angle λ′ with 0 < λ′ < 2π is

equivalent to the negative rotation angle λ = −2π + λ′, we
show that any rotation around the z axis can be implemented
according to eq 10.

The rotation around the x axis by θ has the following matrix
representation:

=
i
k
jjjjjj

y
{
zzzzzzR

i

i
( )

cos( /2) sin( /2)

sin( /2) cos( /2)
x

(37)

which correspond to the effective Hamiltonian:

=
i
k
jjjjj

y
{
zzzzzH ( )

0 /2

/2 0x
(38)

Mapping eq 38 into eq 10 requires ω = 0�i.e., elimination of
the linear component by tuning the magnetic flux such that the
linear inductance is canceled out.

■ D. CONTROLLED-Z GATES WITH QUARTIC
ELEMENTS

This section follows and expands ref 72 to show that the cross-
Kerr Hamiltonian,

= † †
H b b b bcross rker 1 1 2 2 (39)

implemented with a nearly quartic element, corresponds to a
controlled-Z gate in the basis of Fock states |0⟩ and |1⟩. We
show that e−iπb̂1d

†b̂1 b̂2d
† b̂2 keeps the basis states |0⟩|0⟩, |0⟩|1⟩, and |

1⟩|0⟩ unchanged, while introducing a phase shift of −1 to state
|1⟩|1⟩.

We apply e−iĤcross‑Kerrt to the outer product states |0⟩|0⟩, |0⟩|1⟩,
|1⟩|0⟩, and |1⟩|1⟩ with t = π/χ, so that e−iĤcross‑Kerrt = e−iπa ̂

d

†ab̂̂d

†b̂.
Applying e−iπb̂1d

†b̂1 b̂2d
† b̂2 to |0⟩|0⟩, we obtain

| | = | |
= | |

· ·† †

e 0 0 e 0 0 ,

0 0

i b b b b i 0 01 1 2 2

(40)

Similarly,

| | = | |
= | |

· ·† †

e 0 1 e 0 1 ,

0 1

i b b b b i 0 11 1 2 2

(41)

and

| | = | |
= | |

· ·† †

e 1 0 e 1 0 ,

1 0

i b b b b i 1 01 1 2 2

(42)

Finally,

| | = | |
= | |

· ·† †

e 1 1 e 1 1 ,

1 1

i b b b b i 1 11 1 2 2

(43)

Therefore, e−iπb̂1d
†b̂1 b̂2d

† b̂2 is the controlled-Z gate in the Fock
state basis.

■ E. PROPAGATION METHOD
We compare simulations based on the SBM mapping
Hamiltonian, introduced by eq 2, and simulations of quantum
dynamics based on the Hamiltonian in the diabatic basis set,
introduced by eq 1 for the spin-boson model system where Hjk
is defined as follows:
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The model Hamiltonian, introduced by eq 44, describes a
vibronic system with two electronic states with energy gap 2εsb,
coupled with each other by the constant coupling constant Δsb.
Each electronic state is coupled to a bath of Nn nuclear degrees
of freedom modeled as displaced harmonic oscillators. For the
kth oscillator, the frequency {ωk} and electron−phonon
coupling coefficient, {ck} of the nuclear modes is sampled
from an Ohmic spectral density with an exponential cutoff:

=
=

J
c

( )
2

( )
2

e
k

N
k

k
k

N

1

2
/

n
n c

(45)

Here, ξ is the Kondo parameter, which determines the
electron−phonon coupling strength, and ωc is the cutoff
frequency, which determines the characteristic vibrational
frequency. Therefore, a discrete set of Nn nuclear mode
frequencies, {ωk}, and coupling coefficients, {ck}, are sampled
from the spectral density, introduced by eq 45.73 Parameters
for the implemented model can be found in Table 1.

The initial density matrix ρ̂(0) is assumed to be in the
single-product form ρ̂(0) = σ̂(0)⊗ρ̂n(0), where σ̂(0) denotes
the reduced, electronic density operator written as a 2 × 2
matrix, and ρ̂n, the initial bath density operator, is assumed to
be in thermal equilibrium.

For comparison with benchmark calculations, we obtain the
numerically exact time-evolved density matrix ρ̂(t) by
propagating the initial density matrix with the numerically
exact Tensor-Train Thermo-Field Dynamics (TT-TFD)
propagator:65,74,75

=t( ) e (0)eiHt iHt (46)

Having computed ρ̂(t), we obtain the electronic density
operator σ̂(t) = Trn [ρ̂(t)] by tracing out the nuclear degrees of
freedom. With σ̂(0) initialized according to different electronic
distributions, and with their corresponding σ̂(t) propagated
with TT-TFD, we obtain the Liouville space superoperator .
For more details about the generation of the t( )pop matrix we
refer to ref 9.

Next we show how to reduce the dimensionality of the
nonunitary time evolution superoperator of the spin-boson
model to obtain the population-only superoperator as in eq 16.
We note that for the full time evolution operator,

=
=

t t( ) ( ) (0)jj
l m

N

jj lm lm
full

, 1
,

full full
e

(47)

When the initial state is diagonal (i.e., σjk(0) = 0 for k ≠ j), eq
47 can be simplified as follows:

=
=

t t( ) ( ) (0)jj
l

N

jj ll ll
full

1
,

full full
e

(48)

For the populations-only propagator,

=
=

t t( ) ( ) (0)jj
l

N

jj ll ll
pop

1
,

pop pop
e

(49)

Because σjj
full(t) must be equal to σjj

pop(t) when exact input
methods are used, we can set the right-hand sides equal to each
other, as follows:
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(50)

Therefore, =t t( ) ( )jj kk jj kk,
full

,
pop .

For the spin-boson model, t( )pop is a 2 × 2 time-
dependent matrix. To obtain the populations-only t( )pop

matrix, we can extract the four corner elements of t( )full :

In this model, the electronic populations can be propagated
using the four corner elements of t( ), as follows:

=
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jjjjjj
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