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ABSTRACT: We present a quantum algorithm based on the
generalized quantum master equation (GQME) approach to
simulate open quantum system dynamics on noisy intermediate-
scale quantum (NISQ) computers. This approach overcomes the
limitations of the Lindblad equation, which assumes weak system−
bath coupling and Markovity, by providing a rigorous derivation of
the equations of motion for any subset of elements of the reduced
density matrix. The memory kernel resulting from the effect of the
remaining degrees of freedom is used as input to calculate the
corresponding non-unitary propagator. We demonstrate how the
Sz.-Nagy dilation theorem can be employed to transform the non-
unitary propagator into a unitary one in a higher-dimensional
Hilbert space, which can then be implemented on quantum circuits
of NISQ computers. We validate our quantum algorithm as applied to the spin-boson benchmark model by analyzing the impact of
the quantum circuit depth on the accuracy of the results when the subset is limited to the diagonal elements of the reduced density
matrix. Our findings demonstrate that our approach yields reliable results on NISQ IBM computers.

1. INTRODUCTION
Simulations of open quantum systems have become essential for
studying the dynamics of quantum systems in the condensed
phase, allowing for the inclusion of dissipative effects from the
environment which are critical for accurate simulations. These
powerful computational tools have enabled a wide range of
studies, from chemical and physical processes to excited-state
lifetimes, spectral diffusion, and line broadening, across multiple
fields of research, including physical chemistry, molecular
physics, condensed-phase physics, nanoscience, molecular
electronics, quantum optics, nonequilibrium statistical mechan-
ics, spectroscopy and quantum information science.1−30

Examples of open quantum system dynamics include energy
and charge transfer, dephasing, vibrational relaxation, non-
adiabatic dynamics, and photochemistry (see Figure 1). By
harnessing the power of open quantum system simulations, we
can bridge the gap between theory and experiment, providing
insight into various complex phenomena in a variety of light-
induced physical and chemical processes, including photo-
induced processes such as energy and charge transfer, vibronic
relaxation, dephasing, and nonadiabatic dynamics.22,23,28,31−49

Recent advances in quantum computing have enabled the
development of numerous algorithms for electronic structure
calculations50−53 and simulations of quantum dynamics of
closed quantum systems.54−57 However, relatively few studies
have explored the simulation of open quantum system

dynamics.58−67 These studies have been mostly based on
Lindblad-type quantum master equations (QMEs), which
ensure complete positivity and conservation of probability but
rely on the Markov and Born approximations in the system−
bath weak coupling limit.9 With the aim of developing a more
general approach, here we introduce a quantum algorithm based
on the generalized quantum master equation (GQME), which
corresponds to the formally exact equation of motion (EoM) for
an open quantum system.

A major challenge facing the quantum simulation of open
quantum system dynamics is the fact that the time evolution
operators are non-unitary whereas quantum gates are unitary.
To this end, we have previously developed a quantum algorithm
for open quantum dynamics based on the Sz.-Nagy unitary
dilation theorem, which converts non-unitary operators into
unitary operators in an extended Hilbert space. This algorithm
was originally applied to simulating a Markovian two-level
model on IBM quantum computers.68 Later, the same method
was applied to simulating the non-Markovian Jaynes−
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Cummings model on IBM quantum computers.69 In a recent
work, the same Lindblad-QME-based quantum algorithm was
applied to simulate the dynamics of the Fenna−Matthews−
Olson complex, which includes five quantum states and seven
elementary physical processes.70 Thus far, this quantum
algorithm has been used to simulate the dynamics of open
quantum systems described by the operator sum representation
or Lindblad-type QMEs.

However, these approaches are not entirely general: the
Lindblad QME used in ref 70 relies on several restrictive
approximations, including Markovian dynamics, and the
ensemble of Lindbladian trajectories method in ref 69, while
capable of describing non-Markovian dynamics, involves user
selection of ad hoc system−bath parameters, therefore limiting
the range of applications. Furthermore, while the operator sum
representation of open quantum system dynamics is general, it
requires knowledge of the Kraus operators, which to the best of

our knowledge are only known in closed form for systems whose
dynamics can be described by Lindblad-type QMEs.

Extending the range of quantum simulation of open quantum
systems therefore calls for formulating the dynamics within a less
restrictive theoretical framework. The GQME formalism
introduced by Nakajima71 and Zwanzig72 represents such a
general framework since the GQME corresponds to the formally
exact EoM of the open quantum system, as opposed to the
Lindblad-type QMEs, which correspond to approximate EoMs
of the open quantum system.

A comparison of the workflows for simulating the dynamics of
a closed quantum system governed by the quantum Liouville
equation versus an open quantum system governed by the
GQME is shown in Figure 2. The derivation of the GQME
involves projecting out the bath degrees of freedom (DOF) to
obtain the EoM of the system’s reduced density matrix, or a
subset of its elements. Within this EoM, which is referred to as
the GQME, the memory kernel superoperator, ( ), accounts
for the main impact of the bath on the system’s dynamics. Thus,
the GQME replaces the Liouville equation as the formally exact
EoM of the system when we transition from a closed quantum
system to an open quantum system, with the memory kernel
playing a similar role in the open system as the Hamiltonian or
Liouvillian in the closed system.

In this work, we develop a GQME-based quantum algorithm
for simulating the dynamics of an open quantum system. To this
end, we develop a protocol for obtaining the non-unitary time
evolution superoperator, or propagator, from the memory
kernel. Then the Sz.-Nagy unitary dilation theorem is used to
convert the GQME-based non-unitary propagator into a unitary
superoperator in an extended Hilbert space. Given this dilated
and now unitary time evolution superoperator and the initial
state of the system, we can evolve the dynamics for any open
quantum system on quantum computers.

Given the fact that the GQME is the exact EoM of the open
quantum system, this quantum algorithm greatly extends the
range of possible systems that can be simulated on a quantum
computer, including complex non-Markovian photosynthetic
and photovoltaic systems,28,73 molecular electronics,48 linear
and nonlinear spectroscopy,74 systems with intersystem cross-
ing,75 and conical intersections.76 Thus, this GQME-based
quantum algorithm provides an essentially universal protocol for

Figure 1. Simulation of open quantum system dynamics is central to
many science and engineering disciplines (a few examples are
showcased in the figure).

Figure 2. A comparison of the workflows for simulating the dynamics of a closed quantum system governed by the quantum Liouville equation vs an
open quantum system governed by the GQME. 1. The EoM is established. 2. The time evolution superoperator is generated from the EoM. 3. A unitary
dilation is required in order to convert the GQME-based non-unitary time evolution superoperator into a unitary superoperator in an extended Hilbert
space. 4. The unitary matrix is translated into a quantum gate sequence.
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simulating open quantum system dynamics on quantum
computing platforms. Given a powerful enough quantum
computer, this algorithm opens the door for simulating open
quantum system dynamics of large and complex molecular
systems, which are currently beyond the reach of classical
computers.

2. METHODS
2.1. GQME-Based Propagators. In this section, we outline

our approach for calculating the GQME-based non-unitary
propagator for the reduced density matrix of the open quantum
system (see eq 9). The analogous procedure for calculating the
non-unitary propagator for a subset of the reduced density
matrix elements is outlined in section 3.2.

Previously developed quantum algorithms for open system
dynamics involved mapping Lindblad operators to Kraus
operators before using the Sz.-Nagy dilation theorem to reach
a unitary quantum algorithm.68−70 While useful for many
systems, these methods are either Markovian68,70 or involve user
selection of ad hoc system−bath parameters,69 therefore limiting
the range of applications. In this paper, we introduce a method
based on the GQME, a formally exact EoM for the dynamics of
an open quantum system. Instead of casting the non-unitary
propagator in terms of Kraus operators and dilating them, this
method uses the GQME to obtain the system’s time evolution
superoperator, or propagator, t( ), and performs the dilation on
it to obtain a unitary quantum algorithm. This subsection
describes the first step in the workflow outlined in Figure 2,
namely, obtaining the time evolution superoperator of an open
quantum system starting from its formally exact EoM in GQME
form.

For the sake of concreteness, we will focus on molecular
systems with an overall Hamiltonian of the following commonly
encountered form:

= | | + | |
= =

H H j j V j k
j

N

j
j k

k j

N

jk
1 , 1

e e

(1)

and an overall system initial state of the following commonly
assumed single-product form:

=(0) (0) (0)n (2)

With this assumption, the evolution is guaranteed to be
described by a completely positive (CP) map.60,77 It should be
noted that the GQME approach is not limited to this form of
Hamiltonian and initial state and that the choice to focus on
them is solely motivated by clarity of presentation and the wide
range of applications based on a Hamiltonian and initial state of
this form. The system and bath in this case correspond to the
electronic and nuclear DOF, respectively. In eqs 1 and 2,

= +H VP R/2 ( )j j
2 is the nuclear Hamiltonian when the

system is in the diabatic electronic state |j⟩, with the index j
running over the Ne electronic states; = R RR ( , ..., )N1 n

and

= P PP ( , ..., )N1 n
are the mass-weighted position and momen-

tum operators of the Nn ≫ 1 nuclear DOF, respectively;
{ | }V j kjk are the coupling terms between electronic states
(which can be either nuclear operators or constants); and (0)n
and (0) are the reduced density operators that describe the
initial states of the nuclear (bath) and electronic (system) DOF,

respectively. Throughout this paper, boldfaced variables (e.g., A)
indicate vector quantities; a hat over a variable (e.g., B) indicates
an operator quantity; and calligraphic font (e.g., ) indicates a
superoperator.

Using projection operator techniques, one can then derive the
following formally exact EoM, or GQME, for the reduced
electronic density operator, t( ):27−30

=
t

t t td
d

( )
i

( ) d ( ) ( )
t

n
0

0 (3)

The open quantum system dynamics of the reduced electronic
density matrix described by this GQME is generated by the two
terms on the R.H.S. of eq 3. The first term is given in terms of the
projected overall system Liouvillian { }Tr (0)n

0
n n

(where · = [ ·]H( ) , is the overall system Liouvillian and
Trn{·} is the partial trace over the nuclear (bath) Hilbert space),
which is represented by an ×N Ne

2
e

2 time-independent matrix.
The second term is given in terms of the memory kernel ( ),
which is represented by an ×N Ne

2
e

2 time-dependent matrix.
The GQME formalism provides a general framework for

deriving the exact EoM for any quantity of interest. The
derivation begins with the Nakajima−Zwanzig equation,71,72

which describes the dynamics of a projected state t( ), where
is a projection superoperator and t( ) is the density operator

of the overall system:

=
t

t t

t

d
d

( )
i

( )

1
d e ( )

i
e (0)

t

t

2 0

i /

i /
(4)

Here is the overall system−bath Liouvillian and = 1
is the complementary projection superoperator to .
Importantly, the only requirements are that is Hermitian
and satisfies =2 . Otherwise, there is complete flexibility
in the choice of and , with each choice leading to a different
GQME for a different quantity of interest.30

Following ref 27, we focus an overall system−bath
Hamiltonian of the form of eq 1 and the following choice of
projection operator which gives rise to the GQME for the system
reduced density matrix, t( ):

= { }A A( ) (0) Trn n (5)

With this choice of , we have =( (0)) 0n . Plugging eq 5 into
eq 4 and tracing over the nuclear (bath) Hilbert space leads to
the GQME in eq 3. The memory kernel in eq 3 is given by

= { }( )
1

Tr e (0)2 n
i /

n (6)

and can be obtained by solving the following Volterra
equation:27

= +( ) i ( )
1

( ) i d ( ) ( )n
0

0
(7)

Here ( ) and ( ) are the so-called projection-free inputs
(PFIs), which are given by
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= { }

= { }

( )
1

Tr e (0)

( )
i

Tr e (0)

n
i /

n

2 n
i /

n (8)

The memory kernels for the spin-boson model used in this paper
were adopted from ref 78, where they were obtained from
quantum-mechanically exact PFIs calculated via the tensor-train
thermo-field dynamics (TT-TFD) method.

The quantum open system’s non-unitary time evolution
superoperator, or propagator, t( ), is defined by

=t t( ) ( ) (0) (9)

Substituting eq 9 into eq 3 and noting that the GQME should be
satisfied for an arbitrary choice of (0), it is straightforward to
show that t( ) satisfies the same GQME as t( ):

=
t

t t td
d

( )
i

( ) d ( ) ( )
t

n
0

0 (10)

Thus, given the projected Liouvillian and memory kernel ( n
0

and ( ), respectively), t( ) can be obtained by solving eq 10
numerically, which in this work was accomplished via a Runge−
Kutta fourth-order (RK4) algorithm.28 This superoperator, t( )
, serves a role similar to that of the Kraus operators in the
operator sum representation and can also be dilated to a unitary
form which can be implemented on a quantum computer.
Importantly, while the Kraus operators are only known in closed
form for the Markovian Lindblad equation, the nonunitatry
propagator t( ) can always be obtained from the formally exact
GQME (see eq 10).

2.2. A GQME-Based Quantum Algorithm for Simulat-
ing Open Quantum System Dynamics. In this subsection,
we describe the next step in the workflow outlined in Figure 2,
namely, using the Sz.-Nagy unitary dilation procedure79 to
convert the non-unitary quantum open system propagator t( )
(see eqs 9 and 10) into a unitary propagator in an extended
Hilbert space. It should be noted that the Sz.-Nagy unitary
dilation procedure is one out of several methods that can convert
non-unitary operators into unitary operators (e.g., block-
encoding represents an alternative method80,81).

The Sz.-Nagy unitary dilation procedure starts out by
calculating the operator norm of t( ) to determine whether it
is a contraction. For t( ) to be a contraction, the operator norm
of t( ) needs to be less than or equal to 1, i.e.,

=t( ) sup 1v
v
t

O
( ) . In the case where the original

t( ) is not a contraction, we introduce a normalization factor
=n t( )c O in order to define a contraction form of t( ),

namely, =t t n( ) ( )/ c.
In the next step, we apply a 1-dilation procedure to t( ) to

obtain a unitary propagator t( ) in an extended Hilbert space
of double the dimension of the original system’s Hilbert space:

=
†

†

t
t t

t t
( )

( ) ( )

( ) ( )

i

k

jjjjjjjj
y

{

zzzzzzzz (11)

I n t h i s e q u a t i o n , = †t I t t( ) ( ) ( ) a n d

= †
† I t t( ) ( ) , where t( ) is the so-called defect

superoperator of t( ). The 1-dilation procedure generates a

unitary superoperator t( ) that operates in the extended
Hilbert space and replicates the effect of the contraction form of
the original time evolution superoperator, t( ), when the input
and output vectors are both projected onto the original smaller
Hilbert space.

In the original system’s Hilbert space, the system reduced
density operator t( ) is represented by an Ne × Ne matrix:

µ

t

t t

t t

( )

( ) ... ( )

( ) ( )

N

N N N

11 1

1

e

e e e

i

k

jjjjjjjjjjjjj

y

{

zzzzzzzzzzzzz
(12)

Alternatively, the same system reduced density operator can also
be represented by an Ne

2-dimensional vector in Liouville space:

t t t t t( ) ( ( ), ..., ( ), ... ..., ( ), ..., ( ))N N N N11 1 1
T

e e e e

(13)

Since the GQME formalism is given in terms of superoperators,
it is convenient to work in Liouville space, which we will do from
this point on. We also define the norm of the vector representing

t( ) in Liouvi l le space as the Frobenius norm:

= | |t( ) ij ijF
2 and divide t( ) by t( ) F to normalize

t( ).68

Given the dilated unitary operator t( ) and the initial
quantum input state (0), operation with the non-unitary t( )
on (0) has now been converted into a unitary transformation as
follows:

t t( ) (0) ( )( (0) , 0, ..., 0)
unitary dilation T T

(14)

The zeroes in the input vector on the R.H.S. are added to match
the dimension of the input vector with that of t( ). The
unitary process can then be simulated on a quantum circuit with
unitary quantum gates. The electronic populations,
{ | | | = }t j t j j N( ) ( ) 1, ...,jj e , can be retrieved by taking
the square root of the probability of measuring each basis state,

= | |P t t( ) ( )j jj
2, and multiplying by the nc factor.

Finally, we perform a complexity analysis of the quantum
algorithm. Given that t( ) in its most general form is
represented by a matrix of Ne

4 nonzero elements, the defect
superoperators t( ) and † t( ) as well as † t( ) as shown in
eq 11 all have Ne

4 nonzero elements. Generally speaking, the
number of two-level unitaries necessary to decompose a unitary
gate is comparable to the number of nonzero elements in the
lower-triangular part of the gate.82,83 Therefore, the gate
complexity to simulate this specific t( ) is O N( )e

4 . If the
two-level unitaries are further decomposed into 1-qubit and 2-
qubit elementary gates commonly used to design conventional
quantum circuits, they need to be transformed to the Gray code
sequences and some multicontrol gate sequences, adding
another factor of complexity logarithmic in Ne

2, and the total
complexity becomes O N N( log )e

4 2
e

2 .82 This means that the
maximum total complexity of a GQME-based simulation of the
dynamics of an open quantum system is comparable to that of
classical methods.68 However, as demonstrated in previous
simulations of certain dynamical models, our quantum
algorithm can take advantage of the case when t( ) is a sparse
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matrix, and thus, the gate complexity scaling for t( ) can be

reduced to O N(log )2
e

2 instead of O N( )e
4 .68,70

3. RESULTS

3.1. A Demonstrative Application to the Spin-Boson

Model. In this subsection, we test the applicability of the

quantum algorithm outlined in the previous sections on the

spin-boson benchmark model. This model and its derivatives

have a wide range of applicability to chemical and physical

systems, including electron, proton, energy, and charge transfer

processes; polaron formation and dynamics in condensed-phase

environments; vibrational relaxation; impurity relaxation in

solids; spin−lattice relaxation; and qubit decoherence.22,23,84,85

It should also be noted that quantum-mechanically exact

memory kernels for this model are available.78,86,87

The spin-boson Hamiltonian has the form of eq 1 withNe = 2

and { }H V,j jk given by

= + +

= + + +

= =

=

=

H H
P

R c R

H H
P

R c R

V V V V

2
1
2

2
1
2

k

N
k

k k k k

k

N
k

k k k k

0 D
1

2
2 2

1 A
1

2
2 2

01 DA 10 AD

n

n

(15)

Here the two electronic states are designated as the donor and
acceptor (|D⟩ and |A⟩, respectively), 2ϵ is the shift in equilibrium
energy between the D and A states, and Γ is a positive constant
describing the electronic coupling between the D and A states.
Since Γ is a constant, this system is assumed to satisfy the
Condon approximation.

The results shown below were obtained for the case where the
nuclear modes’ frequencies and coupling coefficients {ωk, ck} are
sampled from an Ohmic spectral density with exponential cutoff:

=
=

J
c

( )
2

( )
2

e
k

N
k

k
k

N

1

2
/

n n
c

(16)

Here ξ is the Kondo parameter and ωc is the cutoff frequency.
The reader is referred to Appendix C of ref 27 for a description of
the procedure used to obtain a discrete set of Nn nuclear mode

Table 1. Spin-Boson Model and Simulation Parameters

model parameters numerical parameters

model no. ϵ Γ β ξ ωc ωmax Nn Δt
1 1.0Γ 1.0 5.0Γ−1 0.1 1.0Γ 5Γ 60 1.50083 × 10−3Γ−1

2 1.0Γ 1.0 5.0Γ−1 0.1 2.0Γ 10Γ 60 1.50083 × 10−3Γ−1

3 1.0Γ 1.0 5.0Γ−1 0.4 2.0Γ 10Γ 60 1.50083 × 10−3Γ−1

4 0.0Γ 1.0 5.0Γ−1 0.2 2.5Γ 12Γ 60 4.50249 × 10−3Γ−1

Figure 3. Spin-boson model simulated by the GQME-based quantum algorithm as implemented on the IBM QASM quantum simulator, showing the
electronic population difference between the donor state and acceptor state, σz(t) = σDD(t) − σAA(t), as a function of time for (a) model 1, (b) model 2,
(c) model 3, and (d) model 4 as given in Table 1, with units scaled to the electronic coupling, Γ. Each panel shows the comparison between the GQME-
based exact results (black curves) and the QASM-based results (yellow dots). The time step for both the exact and simulated results is Δt = 1.50083 ×
10−3Γ−1 for models 1−3 and Δt = 4.50249 × 10−3Γ−1 for model 4. Each model is simulated for 4000 time steps. The number of projection
measurements applied by the QASM simulator to obtain a single time step is 2000 shots.
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frequencies {ωk} and coupling coefficients {ck} from the spectral
density in eq 16.

The initial state is assumed to be of the form of eq 2, with the
initial electronic (system) reduced density operator given by

= | |(0) D D (17)

and the initial nuclear (bath) reduced density operator given by

=
{ }

+

+
(0)

e

Tr e

H H

H Hn

( )/2

n
( )/2

D A

D A (18)

Calculations were carried out for four different sets of
parameter values (see Table 1). Models 1 and 2 correspond to
systems with an energy bias between the donor and acceptor
states (ϵ ≠ 0) and differ in their cutoff frequencies, with model 2
having a higher cutoff frequency. Model 3 corresponds to a
biased system with the same parameters as model 2 except for a
larger Kondo parameter. Model 4 corresponds to a symmetric
system with zero energy bias between the donor and acceptor
states (ϵ = 0). The results reported in this paper were obtained
with a time step of Δt = 1.50083 × 10−3Γ−1 for models 1−3 and
a time step of Δt = 4.50249 × 10−3Γ−1 for model 4.

Starting with the quantum-mechanically exact memory
kernels (adopted from ref 78), the time evolution superoperator
for the electronic reduced density matrix ( ) was generated for
the four models given in Table 1 by solving the corresponding
GQME (eq 10).

The GQME-based quantum algorithm for simulating the
electronic dynamics within the spin-boson model was
implemented on the IBM quantum platforms via the Qiskit
package.88 The quantum implementation involved the trans-

lation of t( ) into t( ) at each time step, followed by the
construction of a quantum circuit based on t( ) and the use of
the quantum circuit to simulate the time evolution of the
reduced electronic density matrix. To build the circuit, we
dilated the 4 × 4 t( ) into a unitary 8 × 8 t( ) by using a 1-
dilation procedure (see eq 11]. The unitary t( ) was then
transpiled into a 3-qubit quantum circuit composed of three
elementary quantum gates: RZ, X , andCX. Examples of t( )
and details of the elementary quantum gates and circuits are
given in the Supporting Information (SI). The initial electronic
state is set to (1, 0, 0, 0, 0, 0, 0, 0)T, where the last four zeroes are
the extra dimensions from the dilation procedure. The QASM
simulator and the real quantum devices initialize the input state
(1, 0, 0, 0, 0, 0, 0, 0)T and apply the unitary operation t( ) to
the input state followed by projection measurements to retrieve
the probability distribution of all eight basis states. Each circuit
runs 2000 shots, and the resulting probabilities P000(t) of
measuring the state |000⟩ and P011(t) of measuring |011⟩
correspond to the diagonal elements of the modified density
matrix, | |t( )00

2 and | |t( )11
2. The populations of the donor state,

σ00(t), and acceptor state, σ11(t), are retrieved as follows:

= × = ×t P t n t P t n( ) ( ) and ( ) ( )00 000 c 11 011 c

(19)

In what follows, we report results in terms of the difference
between the donor and acceptor populations, σz(t) = σ00(t) −
σ11(t).

Figure 4. Spin-boson model simulated by the GQME quantum algorithm as implemented on the IBM quantum computers ibmq belem, ibmq quito,
and ibmq lima, showing the electronic population difference between the donor state and acceptor state, σz(t) = σDD(t) − σAA(t), as a function of time
for (a) model 1, (b) model 2, (c) model 3, and (d) model 4 as given in Table 1, with units scaled to the electronic coupling, Γ. Each panel shows the
comparison between the GQME-based exact results (black curves) and quantum-computer-based results (red dots with error bars). The time step for
the real machine simulation is Δt = 0.150083Γ−1 for models 1, 2, and 3 and Δt = 0.450249Γ−1 for model 4. The experiments of both models take 40
evenly spaced time steps out of the 4000 time steps used in the QASM simulator runs, and the error bars represent the standard derivations of the 10
separate runs on ibmq belem, ibmq quito, and ibmq lima for models 1 to 4. The number of projection measurements applied by all the devices to
obtain a single time step is 2000 shots.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00316
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

F

https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c00316/suppl_file/ct3c00316_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00316?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00316?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00316?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00316?fig=fig4&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00316?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


The comparison between the exact results obtained by solving
the GQME on a classical computer and results obtained by
performing the quantum algorithm on the QASM simulator is
shown in Figure 3. The QASM simulator results are in excellent
agreement with the exact results for all four models under
consideration. The small-amplitude oscillations of the QASM-
based results around the exact results can be traced back to the
inherent uncertainty associated with projection measurements.
These results validate the GQME-based quantum algorithm and
demonstrate its ability to reproduce results obtained via the
GQME-based classical algorithm.

To test the performance of the quantum algorithm on real
quantum devices, we also performed the simulations on the
quantum computers provided by IBM Quantum (IBM Q). The
simulations were performed for models 1 to 4 on ibmq quito,
ibmq belem, and ibmq lima. All devices are equipped with five
qubits that have the same qubit connectivity and use IBM’s
Falcon r4T processor with the same architecture. In each
simulation of a given model, three qubits were used, and 10
repeated experiments were performed. In a single experiment,
40 time steps are chosen at an equal spacing out of the 4000 time
steps used in the QASM simulations, i.e., the time step in each
experiment is 100 times greater than the time step used in the
QASM simulations as listed in Table 1. The average CX gate
error and readout error are (1.191 × 10−2, 5.194 × 10−2) for
ibmq quito, (1.160 × 10−2, 2.590 × 10−2) for ibmq belem, and
(1.032 × 10−2, 2.834 × 10−2) for ibmq lima as of the time of the
experiments. The quantum circuits are the same in both the
QASM simulations and the real machine simulations. The
transpiled quantum gate counts for each of the t( )

superoperators are 153 RZ gates, X98 gates, and 41 CX
gates. The transpiling process is done internally by the Qiskit
package, and examples of the quantum circuits can be found in
the SI.

The comparison between the GQME-generated exact results
and real machine simulations is given in Figure 4. In the figure,
the red dots are the averages of the 10 experiments, and the error
bars represent the standard derivations of the 10 experiments.
While the results obtained on the IBM Q quantum computers
reproduce some of the trends exhibited by the exact results, the
agreement is qualitative at best. The lack of quantitative
agreement can be traced back to the rather extensive circuit
depth, which makes the calculation susceptible to noise. In the
next section, we propose a way to lower the circuit depth and
enhance the accuracy of the calculation on the IBM Q quantum
computers by using reduced-dimensionality GQMEs.

3.2. Reduced-Dimensionality GQME-Based Propaga-
tors. Since the quantum algorithm on the QASM simulator was
able to accurately reproduce the exact results, as shown in Figure
3, we attribute the lack of quantitative agreement between the
exact results and the results obtained via the IBM Q quantum
computers, as seen in Figure 4, to noise within the real quantum
devices. If so, reducing the circuit depth would improve the
accuracy. In this subsection, we validate this hypothesis by
reducing the dimensionality of the non-unitary propagator t( ),
thereby lowering the circuit depth to levels that allow for an
accurate calculation on the NISQ quantum computers.

To this end, we take inspiration from reduced-dimensionality
GQMEs, which correspond to EoMs for subsets of the open
quantum system’s reduced density matrix elements rather than

Figure 5. Comparison between the exact results for the spin-boson model and results obtained by performing the quantum algorithm based on eq 21
on the IBM Q quantum machines. The electronic population difference between the donor state and acceptor state, σz(t) = σDD(t) − σAA(t), is plotted
as a function of time for (a) model 1, (b) model 2, (c) model 3, and (d) model 4 as given in Table 1, with units scaled to the electronic coupling, Γ. Each
panel shows the comparison between the exact results (black curves) and the population-only GQME-based quantum-computer-simulated results
(red dots with error bars). The time step for the real machine simulation is Δt = 0.150083Γ−1 for models 1, 2, and 3 and Δt = 0.450249Γ−1 for model 4.
The experiments of both models take 40 evenly spaced time steps out of the 4000 time steps used in the QASM simulator runs, and the error bars
represent the standard derivations of the 10 separate runs on ibmq lima, ibmq belem, ibm oslo, and ibm nairobi for models 1−4, respectively. The
number of projection measurements applied by all the devices to simulate a single time step is 2000 shots.
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the full reduced density matrix.30,78 For example, for the spin-
boson model described in section 3.1, the memory kernel in the
GQME for the full reduced density matrix, t( ), is a 4 × 4 matrix,
while the memory kernel in the GQME for only the two
populations (the diagonal elements of the reduced density
matrix, σ00(t) and σ11(t)) is a 2 × 2 matrix.30,78 Below we
demonstrate how one can take advantage of this reduced
dimensionality to lower the circuit depth and thereby improve
the accuracy of the simulation on quantum machines.

For the spin-boson model under consideration in this paper,
the electronic populations can be propagated using only the four
corner elements of t( ), i.e.,

=
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t t

t t
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It should be noted that this equality only holds when the initial
electionic state is of the form = | |= j j(0) (0)j

N
jj1

e , which is
consistent with the initial state under consideration in this paper
(see eq 17). It should also be noted that eq 20 is still exact, in the
sense that the time evolution of σ11(t) and σ00(t) as described by
the equation is exactly the same time evolution as described by
eq 9. Thus, the only price one pays for the reduced
dimensionality is the loss of the ability to simulate the dynamics
of the off-diagonal matrix elements σ10(t) and σ01(t). However,
given that the primary goal is often to simulate the dynamics of
electronic energy/charge transfer, the populations of the
corresponding electronic states is all that one needs. Finally, it
is worth noting that our specific way of choosing the subset of
the density operator does not indicate that there is no coupling
between the elements. In fact, such coupling can be captured
exactly by the memory kernel and the effective Liouvillian of any
open quantum system with the GQME.

The 2 × 2 propagator in eq 20, which we will refer to as
t( )pop , can be dilated following a procedure similar to that used

to dilate the 4 × 4 propagator for the full density matrix, t( ).
More specifically, t( )pop can be divided by a normalization
factor =n t( )c

pop pop
O to obtain its contraction form

=t t n( ) ( )/pop pop
c
pop. Applying a 1-dilation procedure to

t( )pop , similar to that in eq 11, then leads to the following
unitary propagator:
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Notably, for the spin-boson model, while t( ) is an 8 × 8
time-dependent matrix, t( )pop is a 4 × 4 time-dependent
matrix.

A comparison between the exact results and results obtained
by performing the quantum algorithm based on eq 21 on IBM Q
quantum machines is shown in Figure 5. The results shown were
obtained for models 1−4 on ibmq belem, ibmq lima, ibm oslo,
and ibm nairobi, respectively. Here, ibm oslo and ibm nairobi
are each equipped with seven qubits of the same qubit
connectivity, and both use IBM’s Falcon r5.11H processor.
The average CX gate error and readout error are (1.038 × 10−2,
2.280 × 10−2) for ibm nairobi and (8.537 × 10−3, 2.310 × 10−2)
for ibm oslo as of the time of the experiments. The new
simulations use the same time steps and experiment shots and
follow the same procedures as used to obtain the results in

Figure 4. The quantum circuits are retranspiled to implement
the reduced-dimensionality GQME-based quantum algorithm
where only two qubits are used. The transpiled quantum gate
counts for each of the t( )pop superoperators are 17 RZ gates,

X12 gates, and 2 CX gates. The transpiling processes are done
internally by the Qiskit package.

The results in Figure 5 confirm that the lack of quantitative
agreement seen in Figure 4 can be attributed to noise on the real
quantum devices. More specifically, significantly more accurate
results are obtained when the populations-only reduced-
dimensionality GQME-based propagators are used, which can
be traced back to their ability to give rise to shallower quantum
circuits. Thus, reduced dimensionality makes it possible to
accurately simulate the open quantum system dynamics on
NISQ quantum computers.

4. CONCLUDING REMARKS
The GQME-based quantum algorithm proposed herein
substantially expands the range of open quantum systems that
can be simulated on a quantum computer. In this paper, we have
demonstrated the applicability and versatility of the algorithm by
using it to simulate the dynamics of electronic populations
within the benchmark spin-boson model on the IBM QASM
quantum simulator and IBM quantum computers.

The results obtained via the noise-free QASM simulator were
found to be highly accurate, with the only errors inherently
associated with the quantum projection measurements and
giving rise to very slight deviations from the exact results.
However, while the implementation of the algorithm on the
NISQ IBM Q quantum computers was found to reproduce some
of the trends exhibited by the exact results, the agreement was
qualitative at best. This lack of quantitative agreement was
traced back to the rather extensive circuit depth, which made the
calculation susceptible to noise. This issue was confirmed and
fixed by implementing a populations-only reduced-dimension-
ality version of the quantum algorithm, which significantly
shortened the circuit depth and as a result gave rise to
quantitatively accurate results.

We acknowledge the fact that demonstrating quantum
advantage is currently challenging for the proposed quantum
algorithm used to simulate open quantum dynamics. However,
quantum dynamics simulations often become computationally
intractable on a classical computer even when the propagator is
known (or numerically determined). This is simply because the
time-evolving state becomes highly entangled and therefore
requires an exponentially large N memory space, where N is the
number of possible states in Hilbert space (and an exponentially
large computational effort). In contrast, a quantum computer
can efficiently represent the time-evolving state with only
log2(N) qubits. In addition, further improvement to our
quantum simulations can be achieved by reducing the circuit
depth via optimizing the quantum circuit design. This can be
achieved by optimizing the decomposition of unitary operations
into elementary gate sequences.89−92 One particularly interest-
ing idea is to reduce the circuit depth by adding qubits.93 To this
end, it should be noted that we have only used three qubits out of
the five currently available on the IBM quantum computers.
Another way to improve accuracy is by active error correction
using dynamical decoupling (DD) protocols, which employ
pulses to suppress the system’s coupling with the environ-
ment.94−98 Recent implementations of DD on IBM machines
was found to improve the fidelity of the overall perform-

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00316
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

H

pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00316?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


ance.99−101 Yet another direction is to implement the circuit on
high-dimensional qudit machines. Quantum computers based
on three-dimensional circuit quantum electrodynamics (3D
cQED) microwave cavities are particularly promising in this
respect, as they feature unique quantum error correction
schemes102−104 and longer coherence times105,106 than standard
superconducting quantum computers. Bosonic quantum
computing algorithms have also been recently shown to
significantly reduce the number of quantum gates required for
the calculation of the Franck−Condon factors107 and dynamics
of rhodopsin near conical intersections.108 Lossless 3D cQED
systems have not yet been employed to simulate open quantum
system dynamics. An adaptation of the algorithm presented here
to bosonic quantum computing could therefore provide another
way to efficiently simulate open quantum system dynamics and
demonstrate how qudit-based quantum architectures can reduce
the computational cost and enhance the accuracy of quantum
simulations.
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(77) Rivas, Á.; Huelga, S. F. Open Quantum Systems: An Introduction;
Springer: Berlin, 2012.

(78) Lyu, N.; Mulvihill, E.; Soley, M. B.; Geva, E.; Batista, V. S.
Tensor-Train Thermo-Field Memory Kernels for Generalized
Quantum Master Equations. J. Chem. Theory Comput. 2023, 19,
1111−1129.

(79) Levy, E.; Shalit, O. M. Dilation theory in finite dimensions: the
possible, the impossible and the unknown. Rocky Mountain J. Math.
2014, 44, 203−221.

(80) Gilyén, A.; Su, Y.; Low, G. H.; Wiebe, N. Quantum singular value
transformation and beyond: exponential improvements for quantum
matrix arithmetics. In Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing; Association for Computing
Machinery: New York, 2019; pp 193−204.

(81) Camps, D.; Lin, L.; Van Beeumen, R.; Yang, C. Explicit Quantum
Circuits for Block Encodings of Certain Sparse Matrice. arXiv
(Quantum Physics), February 3, 2023, 2203.10236, ver. 3. https://
arxiv.org/abs/2203.10236 (accessed 2023-03-19).

(82) Nielsen, M. A.; Chuang, I. L. Quantum Computation and
Quantum Information: 10th Anniversary Edition; Cambridge University
Press: Cambridge, U.K., 2011.

(83) Reck, M.; Zeilinger, A.; Bernstein, H. J.; Bertani, P. Experimental
realization of any discrete unitary operator. Phys. Rev. Lett. 1994, 73,
58−61.

(84) Leggett, A. J.; Chakravarty, S.; Dorsey, A. T.; Fisher, M. P. A.;
Garg, A.; Zwerger, W. Dynamics of the dissipative two-state system.
Rev. Mod. Phys. 1987, 59, 1−85.

(85) Weiss, U. Quantum Dissipative Systems, 4th ed.; World Scientific:
Singapore, 2012.

(86) Shi, Q.; Geva, E. A new approach to calculating the memory
kernel of the generalized quantum master equation for an arbitrary
system−bath coupling. J. Chem. Phys. 2003, 119, 12063−12076.

(87) Chatterjee, S.; Makri, N. Real-Time Path Integral Methods,
Quantum Master Equations, and Classical vs Quantum Memory. J.
Phys. Chem. B 2019, 123, 10470−10482.

(88) Aleksandrowicz, G.; Alexander, T.; Barkoutsos, P.; Bello, L.; Ben-
Haim, Y.; Bucher, D.; Cabrera-Hernández, F. J.; Carballo-Franquis, J.;
Chen, A.; Chen, C.-F.; Chow, J. M.; Córcoles-Gonzales, A. D.; Cross, A.
J.; Cross, A.; Cruz-Benito, J.; Culver, C.; González, S. D. L. P.; Torre, E.
D. L.; Ding, D.; Dumitrescu, E.; Duran, I.; Eendebak, P.; Everitt, M.;
Sertage, I. F.; Frisch, A.; Fuhrer, A.; Gambetta, J.; Gago, B. G.; Gomez-
Mosquera, J.; Greenberg, D.; Hamamura, I.; Havlicek, V.; Hellmers, J.;
Herok, Ł.; Horii, H.; Hu, S.; Imamichi, T.; Itoko, T.; Javadi-Abhari, A.;
Kanazawa, N.; Karazeev, A.; Krsulich, K.; Liu, P.; Luh, Y.; Maeng, Y.;
Marques, M.; Martín-Fernández, F. J.; McClure, D. T.; McKay, D.;
Meesala, S.; Mezzacapo, A.; Moll, N.; Rodríguez, D. M.; Nannicini, G.;
Nation, P.; Ollitrault, P.; O’Riordan, L. J.; Paik, H.; Pérez, J.; Phan, A.;
Pistoia, M.; Prutyanov, V.; Reuter, M.; Rice, J.; Davila, A. R.; Rudy, R.
H. P.; Ryu, M.; Sathaye, N.; Schnabel, C.; Schoute, E.; Setia, K.; Shi, Y.;
Silva, A.; Siraichi, Y.; Sivarajah, S.; Smolin, J. A.; Soeken, M.; Takahashi,
H.; Tavernelli, I.; Taylor, C.; Taylour, P.; Trabing, K.; Treinish, M.;
Turner, W.; Vogt-Lee, D.; Vuillot, C.; Wildstrom, J. A.; Wilson, J.;
Winston, E.; Wood, C.; Wood, S.; Wörner, S.; Akhalwaya, I. Y.; Zoufal,
C. Qiskit: An Open-source Framework for Quantum Computing, 2019;
DOI: 10.5281/zenodo.2562111.

(89) Vartiainen, J. J.; Möttönen, M.; Salomaa, M. M. Efficient
decomposition of quantum gates. Phys. Rev. Lett. 2004, 92, 177902.

(90) Gyongyosi, L. Quantum state optimization and computational
pathway evaluation for gate-model quantum computers. Sci. Rep. 2020,
10, 4543.

(91) Lacroix, N.; Hellings, C.; Andersen, C. K.; Di Paolo, A.; Remm,
A.; Lazar, S.; Krinner, S.; Norris, G. J.; Gabureac, M.; Heinsoo, J.; Blais,
A.; Eichler, C.; Wallraff, A. Improving the performance of deep
quantum optimization algorithms with continuous gate sets. PRX
Quantum 2020, 1, 020304.

(92) Iten, R.; Moyard, R.; Metger, T.; Sutter, D.; Woerner, S. Exact
and practical pattern matching for quantum circuit optimization. ACM
Trans. Quantum Comput 2022, 3, 1−41.

(93) Abdessaied, N.; Wille, R.; Soeken, M.; Drechsler, R. Reducing the
depth of quantum circuits using additional circuit lines. In International
Conference on Reversible Computation; Springer: Berlin, 2013; pp 221−
233.

(94) Viola, L.; Lloyd, S. Dynamical suppression of decoherence in
two-state quantum systems. Phys. Rev. A 1998, 58, 2733.

(95) Uhrig, G. S. Keeping a quantum bit alive by optimized π-pulse
sequences. Phys. Rev. Lett. 2007, 98, 100504.

(96) Khodjasteh, K.; Lidar, D. A. Fault-tolerant quantum dynamical
decoupling. Phys. Rev. Lett. 2005, 95, 180501.

(97) Khodjasteh, K.; Lidar, D. A. Performance of deterministic
dynamical decoupling schemes: Concatenated and periodic pulse
sequences. Phys. Rev. A 2007, 75, 062310.

(98) West, J. R.; Fong, B. H.; Lidar, D. A. Near-optimal dynamical
decoupling of a qubit. Phys. Rev. Lett. 2010, 104, 130501.

(99) Pokharel, B.; Anand, N.; Fortman, B.; Lidar, D. A.
Demonstration of fidelity improvement using dynamical decoupling
with superconducting qubits. Phys. Rev. Lett. 2018, 121, 220502.

(100) Das, P.; Tannu, S.; Dangwal, S.; Qureshi, M. Adapt: Mitigating
idling errors in qubits via adaptive dynamical decoupling. In MICRO-
54:54th Annual IEEE/ACM International Symposium on Micro-
architecture; Association for Computing Machinery: New York, 2021;
pp 950−962.

(101) Jurcevic, P.; Javadi-Abhari, A.; Bishop, L. S.; Lauer, I.; Bogorin,
D. F.; Brink, M.; Capelluto, L.; Günlük, O.; Itoko, T.; Kanazawa, N.;
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