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Random projection using random quantum circuits
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The random sampling task performed by Google’s Sycamore processor gave us a glimpse of the “quantum
supremacy era.” This has definitely shed some light on the power of random quantum circuits in this abstract task
of sampling outputs from the (pseudo)random circuits. In this paper, we explore a practical near-term use of local
random quantum circuits in dimensional reduction of large low-rank data sets. We make use of the well-studied
dimensionality reduction technique called the random projection method. This method has been extensively used
in various applications such as image processing, logistic regression, entropy computation of low-rank matrices,
etc. We prove that the matrix representations of local random quantum circuits with sufficiently shorter depths
[∼O(n)] serve as good candidates for random projection. We demonstrate numerically that their projection
abilities are not far off from the computationally expensive classical principal components analysis on MNIST
and CIFAR-100 image datasets. We also benchmark the performance of quantum random projection against
the commonly used classical random projection in the tasks of dimensionality reduction of image data sets and
computing von Neumann entropies of large low-rank density matrices. And finally, using variational quantum
singular value decomposition, we demonstrate a near-term implementation of extracting the singular vectors
with dominant singular values after quantum random projecting a large low-rank matrix to lower dimensions.
All such numerical experiments unequivocally demonstrate the ability of local random circuits to randomize a
large Hilbert space at sufficiently shorter depths with robust retention of properties of large data sets in reduced
dimensions.
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I. INTRODUCTION

Many problems in machine learning and data science in-
volve the dimensional reduction of large data sets with low
ranks [1] (e.g., image processing). Dimensional reduction as
a preprocessing step reduces computational complexity in
the later stages of processing. Principal component analysis
(PCA) [2], reliant on singular value decomposition (SVD),
is one such method to reduce the dimension of data sets by
retaining only the singular vectors with dominant singular val-
ues. There are quantum circuit implementations for PCA (and
SVD) [3–6] and for related applications [7], some of which
are near-term (noisy intermediate-scale quantum technologies
era [8]) algorithms [6].

Techniques like PCA (and SVD) involve a complexity of
O(N3), where N is the size (or the dimension) of data vectors.
An alternative to such computationally expensive dimensional
reduction methods is the random projection method [9–11].
In the random projection method, we multiply the data sets
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with certain random matrices and project them to a lower-
dimensional subspace. Recent years have witnessed fruitful
usage of an especially thoughtful variant of such random
projections which are known to preserve the distance between
any two vectors in the data set (say �x1 and �x2) in the projected

subspace up to an error that scales as O(
√

log(N )
k ), where N

is the original dimension and k is the reduced dimension of
each data vector. This choice is motivated by the Johnson-
Lindenstrauss (JL) lemma [12] introduced at the end of the
last century. Since this paper will exclusively use such trans-
formations to validate all the key results, we hereafter refer
to such candidates as good random projectors. Such projec-
tion techniques are beneficial to myriad applications because
the preservation of distances between data vectors ensures
that their distinctiveness is uncompromised, thereby rendering
them usable for discriminative tasks such as classification
schemes like logistic regression [13].

Classically, this is advantageous compared to other meth-
ods like PCA because the random matrix used for projection
is independent of the data set considered. The time com-
plexity involved in the random projection arises from a
matrix multiplication complexity O(N2.37) [14] followed by
the usual SVD complexity of O(N2poly log(N )), making
the resulting scheme cheaper than PCA (or SVD). It must
be emphasized that a further reduction in the time com-
plexity to O(Npoly log(N)) can be afforded using the fast
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Johnson-Lindenstrauss transforms [15]. Several candidates
have been studied in classical random projection, including
Haar random matrices, Gaussian random matrices, etc. But
the memory complexity of storing such matrices can be po-
tentially huge (proportional to N2 times the precision of each
matrix entry). This has engendered the introduction of several
competing candidates with better memory complexity (con-
taining sparse matrices with random integer entries) and mul-
tiplication complexity. The latter category is mainly consid-
ered in practical applications today [10] and will also be used
to compare the results of the quantum variants in this paper.

Classically random projections performed by using pro-
jectors sampled from Haar random unitaries suffer from the
innate problem of storage due to their exceptionally high
memory usage. Even in the quantum setting, implement-
ing Haar random unitaries requires exponential resources, as
shown in some counting arguments [16]. As a result, it is
natural to consider unitary t-designs which only match the
Haar measure up to t th moments. Quantum implementation
of such t-designs, as has been studied in this paper, is efficient
owing to the fact that local random quantum circuits approach
approximate unitary t-designs [17–19] in sufficiently shorter
[O(log(N )t10.5] depths [20,21] (Here, we have assumed that
the number of qubits n required to encode a data vector or
a wave vector of size N is ∼ log(N )). It was shown recently
that even shorter depths suffice [22]. The primary workhorse
of this paper will be based on such quantum circuits which
as we eventually show not only perform better in accuracy
than standard more commonly used classical variants but also
require a lesser number of single-qubit random rotation gates
O(poly(log(N ))) for implementation.

The flow of the paper is as follows. In Sec. II, we begin with
an introduction to the JL lemma and how it makes the random
projection method effective. This is followed by a brief intro-
duction to the Haar measure and approximate Haar unitaries
generated from local random quantum circuits. Then, we ex-
plicitly prove that the local random quantum circuits which
are exact unitary 2-designs can satisfy the JL lemma with the
same high probability as Haar random matrices, thereby mak-
ing them good random projectors. We then extend the results
to approximate unitary 2-designs and discuss the bounds on
depths to achieve a certain error threshold in the JL lemma
and derive a slightly different probability of the satisfaction of
the latter. We would note that the quantum memory required
to store a 2-design or approximate 2-design is O(poly(log N ))
where N is the size of the data vector. It is worth noting that
it was previously shown in Ref. [23] that approximate unitary
t-designs with t = O(k) can be used to satisfy the JL lemma,
thus corroborating our assertions that even they are good
candidates for random projection. The exponentially low limit
obtained in Ref. [23] is better than the limit derived in this
paper only for system sizes N � O(104). For N ∼ O(103),
limits derived in this paper for unitary 2-designs are tighter.

For numerical quantification of the key assertions, we first
use the MNIST (Modified National Institute of Standards and
Technology) and CIFAR( Canadian Institute for Advanced
Research)-100 image datasets [24,25] and show that the quan-
tum random projection preserves distances postprojection not
far off from the computationally expensive algorithms like
PCA (along the lines similar to Ref. [11]) and is similar to the

classical random projection. This task does not require one to
know the singular values or the singular vectors explicitly. We
compare the performance of quantum random projection with
the commonly used classical random projection technique.
Instead of benchmarking it against the Haar random matrices
generated classically, we make use of classical random pro-
jectors whose storage and multiplications are efficient. To this
end, we use a subsampled randomized Hadamard transform
(SRHT) [15] for different sizes of data sets (1024 and 2048,
corresponding to 10 and 11 qubits, respectively). As a second
instance, we look at a task that requires us to calculate the
singular values of large low-rank data matrices and the singu-
lar vectors associated with them. In this regard, we perform
the computation of entropies of low-rank density matrices
by randomly projecting them to reduced subspace (along the
lines of Refs. [26,27]) to get the dominant singular values
postprojection. We also demonstrate that one can construct
the simplest quantum random projector by performing quan-
tum random projection and extracting the dominant singular
values using the variational quantum singular value decom-
position (VQSVD) [6]. Here, random projection to a lower
dimension allows us to optimize using a lower-dimensional
variational Ansatz at one end. The combined effect of the
variational nature of the algorithm and the fact that unitary
t-designs are short depth establishes good testing grounds
for the implementation of this demonstration in near-term
devices [8]. These demonstrations highlight the ability of local
random circuits to efficiently randomize a large Hilbert space
(and hence require exponentially fewer parameters to create
a random projector) and serve as good random projectors for
dimensionality reduction.

II. THEORETICAL BACKGROUND

A. Random projection

The random projection method is a computationally ef-
ficient technique for dimensionality reduction and is useful
in many problems in data science, signal processing, ma-
chine learning, etc. (see, for example, Refs. [10,11]). The
reason behind the effectiveness of the method stems from the
Johnson-Lindenstrauss lemma [12].

Lemma 1. For any 0 < ε < 1 and N ∈ Z+, let us also con-
sider k ∈ Z+ such that

k ∼ O

(
log(N )

ε2

)
. (1)

Then, for any set of vectors S = {�xi}N
i=1 with �xi ∈ Rd , ∃ f :

Rd → Rk such that ∀ �xi, �x j ∈ S,

(1 − ε)| �x1 − �x2|2 � | f ( �x1) − f ( �x2)|2 � (1 + ε)| �x1 − �x2|2,
(2)

where ||2 refers to the l2 norm.
Proof. See lemma in Ref. [12]. �

Definition 1: Random projections vs good random projections

Multiplication with Gaussian or Haar random matrices
along with a scaling factor followed by projection to a
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reduced subspace is one function that obeys Eq. (2) [28,29].
Essentially, it follows from the fact that the expected value
of Euclidean distance post–random projection is equal to the
Euclidean distance in the original subspace. And the distances
post–random projection are not distorted beyond an ε factor
with high probability because the variance of the distances
post–random projection is sufficiently low.

From now on, we consider random projections that satisfy
the JL lemma in Eq. (2) to be good random projections. In
this regard, the JL lemma says that any set of N points in a
high-dimensional Euclidean space (say, RN ) can be embedded
into a lower number of dimensions [say, k = O(ε−2 log N )] by
a random projection, preserving all the pairwise distances to
within a multiplicative factor of 1 ± ε. This is also equiva-
lent to preserving all the pairwise inner products (or angles).
Formally,

(1 − ε)| �x1 − �x2|2 � |� · �x1 − � · �x2|2 � (1 + ε)| �x1 − �x2|2,
(3)

where ||2 refers to the l2 norm and �xi ∈ RN ∀ i and � denote
the random projection matrix of size k × N (or N × k in which
case the random matrix multiplies the data vectors from the
right) which obeys Eq. (3) and will be called good random
projectors from now onwards.

Several other candidates which satisfy the JL lemma have
been considered for random projection in various applica-
tions. These random matrices include the SRHT and input
sparsity transform (IST) [10,15,30,31]. These random projec-
tors are database friendly because, unlike Gaussian or Haar
random matrices whose storage memory cost is proportional
to the number of matrix entries and precision, these could be
retrieved by matrices that are sparse and have whole number
entries.

For benchmarking the quantum random projection in our
analysis later, we will be using the SRHT [32] to compare the
performances of random projection using random quantum
circuits. We picked the SRHT because we want to compare
different random matrices that could be efficiently stored and
multiplied. In a classical setting, that would be the SRHT, and
in a quantum setting, it would be the 2-designs that act as
quantum random projectors. We construct a SRHT random
projector as in Algorithm 1.

Algorithm 1 Construct a classical random projector (CRP)
�N×k

CRP which satisfies JL lemma [see Eq. (3)].

INPUT: integers N = 2n, k with k ∼ log(N/ε2)
1. Assign a diagonal matrix D ∈ RN×N whose elements are
independent random signs 1, −1.
2. Assign a matrix H ∈ RN×N to be the normalized
Walsh-Hadamard matrix.
3. Assign a matrix S ∈ RN×k by randomly sampling k columns
from the N × N identity matrix.
4. The subsampled randomized Hadamard transform matrix

(which is our CRP) is obtained as �CRP =
√

N
k D · H · S.

B. Approximate unitary t-designs

In the next section, we will show that the random matri-
ces sampled uniformly from the Haar measure satisfy the JL
lemma. Though the exact replication of Haar random unitaries
is not possible as a quantum circuit because of the fact that
they require exponential resources [16], we will show that to
satisfy the JL lemma, exact or approximate t-designs [19],
which match the Haar measure only until second moment,
would suffice. We will introduce the definitions related to the
approximate t-designs in this section and provide theorems on
approximate t-designs (or 2-designs) satisfying the JL lemma.

1. Definition 1: Moment operator

The t th moment of a superoperator defined with respect to
a probability distribution U (N ) defined on the unitary group
U(N ) is defined as

�
(t )
U (N )(·) =

∫
U∼U (N )

U ⊗t (·)(U †)⊗t dν(U ), (4)

where dν(U ) is the volume element of the probability distri-
bution U (N ).

2. Definition 2: Exact unitary t-design

Let us define �
(t )
U (N )(·) [31,33,34] as

�
(t )
U (N )(·) :=

∫
U∼U

U ⊗t (·)(U †)⊗t dν(U )

−
∫

U ′∼μH

U ′⊗t (·)(U ′†)⊗t dν(U ′), (5)

where μH refers to the uniform distribution over the Haar
measure. Unitaries like U sampled from a distribution U (N )
are said to form a t-design if and only if �(t )(X ) = 0 ∀ X =
f (U ) ∈ U(N ). This essentially means that the U (N ) mimics
the Haar measure up to the t th moment.

3. Definition 3: α approximate unitary t-designs

The unitary group U(N ) is said to form an α approximate
unitary t-design if and only if∣∣∣∣�(t )

U (N )

∣∣∣∣

 � α/Nt , (6)

where || · ||
 refers to the diamond norm (see, for example,
Ref. [22]). Though the α approximate unitary design defi-
nition here involves the diamond norm, formulations using
other norms exist [35], and the theorems in the following sec-
tion generalize for those formulations as well. Local random
quantum circuits with depths O(log(N )(log(N ) + log(1/α)))
become α approximate 2-designs [22].

III. RANDOM QUANTUM CIRCUITS
AS RANDOM PROJECTORS

In this section, we show that local random quantum cir-
cuits which are approximate unitary 2-designs (or exact
unitary 2-designs) are suitable candidates for the random
projection (and will be called quantum projectors from now
on). We show that quantum projectors satisfy the Johnson-
Lindenstrauss lemma so that their random projection is an l2
subspace embedding with a very high probability of having a
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very low error. And if one were to compute specific quantities
like entropy, one should quantify whether such random ma-
trices produce projected singular values that are closer to the
true singular values with higher probability. In a later section,
we will discuss how the projection can be done on real quan-
tum computers and how the reduced dimensional vectors and
their singular values can be read out from near-term quantum
computers. In the following theorems, let us denote the Haar
measure distribution as μH and the distribution corresponding
to α approximate t = 2 design as μ2,α . Proofs of the theorems
can be found in Appendix A.

Theorem 1. Let U ∈ U(N ) be sampled uniformly from the
Haar measure (μH ) and let �x1, �x2 ∈ RN . Then the matrix
�k×N obtained by considering any k rows of U followed by

multiplication with
√

N
k satisfies

(1 − ε)| �x1 − �x2|2 � |� · ( �x1 − �x2)|2 � (1 + ε)| �x1 − �x2|2 (7)

with probability greater than (1 − N−k
4kNε2 ) with ε ∈ R�0 being

the error threshold.
Proof. See Appendix A. �
Theorem 2. Let U ∈ U(N ) be sampled uniformly from the

α approximate unitary 2-design (μ2,α) and let �x1, �x2 ∈ RN .
Then the matrix �k×N obtained by considering any k rows of

U followed by multiplication with
√

N
k satisfies

(1 − ε)| �x1 − �x2|2 � |� · ( �x1 − �x2)|2 � (1 + ε)| �x1 − �x2|2 (8)

with a probability greater than 1 − ( N−k
4kNε2 + α

4ε2k ) with
ε ∈ R�0 being the error threshold.

Proof. See Appendix A. �
It is worth mentioning that upper bounds on the dis-

tortion have been obtained before with exponential scal-
ing [23], namely, 24 exp(−2−4εk) for Haar measure and
210 exp(−2−10ε2k) for approximate t-designs. These limits
are better than the limits obtained here only for (N, k) > 104.
For the cases that are to be explored in the paper, our limits
are tighter than the exponential limits.

For the plots in the experiments section of the paper, we
use the Ansatz used in Ref. [36] which is assumed to be an
exact 2-design Ansatz beyond a certain depth (Fig. 1). The
main text contains the depths at which the Ansatz matches
the exact 2-design limit (∼150). There are many candidate
local random circuit architectures which are α approximate
2-designs [22]. Instead of studying the projection abilities
of different local random circuits architecture, Appendix E
contains some experiments where we look at a less expensive
Ansatz and hence is in an approximate unitary 2-design regime
by choosing a lower depth (∼50) (analogous to Ref. [34]) of
the same circuit in Fig. 1.

IV. EXPERIMENTS ON QUANTUM
RANDOM PROJECTORS

In this section, we consider two different experiments to
benchmark the performance of quantum random projection
discussed in the previous section against the SRHT projection
which will be labeled as classical random projection in the
plots. This should be looked at as a comparison of random
projectors that can be stored and applied efficiently in terms
of memory and time complexity in classical vs quantum

FIG. 1. The local random quantum circuit used in preparing a
quantum random projector is the Ansatz that was used in Ref. [36]
and is known to converge to an exact 2-design limit of the variance
of the local cost function beyond a certain depth. The circuit contains
a layer of Ry(π/4) rotations (often used to make all the directions
symmetric in a variational training procedure; we do not necessarily
need to have this component). This is followed by alternating random
single-qubit rotations and ladders of CPHASE operations repeated
D times. For n = 10, 11 (the dimensions studied in this paper), the
circuit reaches the exact 2-design limit (variance limit) at D � 150.

settings. Since quantum random projectors approximate the
Haar measure, their projection abilities are expected to be
better than the SRHT projectors because the latter is less
random compared to the Haar measure. However, in certain
applications, it is known that they both converge to similar
performance when the size of the data set tends to infinity
[29]. We see in Appendix D that their performances start
becoming closer when we increase the size of the data
matrices, and vectors from 1024 to 2048 (corresponding to
10 and 11 qubits, respectively).

We initially consider the task that does not require us to
know the singular values and is concerned with only dimen-
sionality reduction. In this regard, we reduce the dimensions
of the MNIST [24] and CIFAR-100 [25] image data sets and
benchmark the performance of quantum random projection
against classical random projection. We also compare it with
the computationally expensive PCA, which is supposed to
give the exact projection to the dominant singular vectors of
the data sets and cannot be outperformed beyond a certain
rank.

In the second task, we calculate the von Neumann entropy
of low-rank density matrices (along the lines of Ref. [26])
which requires us to know the singular values after ran-
dom projection in addition to the dimensionality reduction.
We compare the performance of quantum random projection
(QRP) vs classical random projection (CRP) for this task over
different ranks (r) of the density matrices.

In this section, we pick the local random quantum circuit
from Fig. 1 and we assume that we can make arbitrary projec-
tion operators with any number of basis vectors, i.e., if the Pk

operator projects to the first k basis state (|p1〉, |p2〉, . . . , |pk〉)
in any basis. Then,

Pk =
k∑

i=1

|pi〉〈pi|, (9)
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FIG. 2. The schematic of performing the quantum random pro-
jection. The data vector has to be encoded into the circuit through one
of the existing encoding schemes (see main text). This is followed
by the local random quantum circuit and partial measurements (the
number of qubits measured depends on how low the final reduced
dimensions are) or an arbitrary projection operator. For partial mea-
surements, the algorithm proceeds only if the measurement results in
qubits in only 0 (or only 1). This is equivalent to reducing the data
set’s size by 1/2, 1/4, 1/8, and so on, depending on how many qubits
are measured.

where we do not have any restriction on what basis we pick
and what values k can take. In a later section, we discuss the
simplest projection operator one can construct by measuring
one or more qubits and restricting to particular outputs (0 or 1)
in those qubits, as shown in Fig. 2. It is worth noting that this
scheme has a structure similar to the quantum autoencoders
[37] but the circuit here is data agnostic.

A. Dimensionality reduction of image data sets

In this section, we benchmark the performance of QRP
against CRP in the task of dimension reduction of subsets of
two different image data sets, MNIST and CIFAR-100. We
also plot the performance of the computationally expensive
PCA which is supposed to capture all the nonzero singu-
lar valued singular vectors. When the reduced dimension is
greater than the rank of the system, PCA could never be
outperformed.

MNIST contains 28×28 grayscale images. The matrix rep-
resentations of the images were boosted to 32×32 so that they
can be reshaped into 1024×1 normalized vectors by adding
zeros. (Note that this is not a common quantum encoding
scheme. We use QRP on the normalized data vectors for a
direct comparison with CRP.) We have to do this prepro-
cessing step because the projectors that we consider (both
CRP and QRP) are of the form 2n × k and hence take only
2n-dimensional vectors as the input.

CIFAR-100, in addition to being composed of 28×28 im-
ages, also contains colored images and had to be converted
to 32×32 grayscale so that they can be fed as input to our
projectors. But unlike MNIST, which contains handwritten
integers from 0 to 9, the CIFAR-100 data set contains im-
ages belonging to 100 different classes including airplanes,
automobiles, birds, cats, trucks, etc. As a result, CIFAR-100
is expected to have more features in its data sets and hence

Projection errors on MNIST image dataset 

FIG. 3. The mean percentage errors in the distance between
10 000 different random pairs of data vectors in the MNIST and
CIFAR-100 data sets. The envelopes represent their 95% confidence
intervals. We see that PCA outperforms the random projection meth-
ods beyond a certain rank. Among the random projection methods,
though there is not much difference between the classical random
projection (CRP) and quantum random projection (QRP), we observe
that the latter performs slightly better.

greater rank compared to MNIST if we consider subsets from
each of these data sets.

To perform the comparison between CRP and QRP, we
took 1000 images from each of these data sets. And in each
of these subsets, we reshaped the images into 1024×1 nor-
malized vectors and performed random projection to lower
dimensions (x axis of Fig. 3). Then, we randomly sampled
two data vectors and compared the error percentage in their l2
norm (Euclidean distance) between them in the original space
and the reduced dimensional space obtained after random pro-
jection. This procedure is repeated 10 000 times and the mean
error percentages and their 95% confidence intervals for dif-
ferent reduced dimensions are reported in the plots in Fig. 3.

The random projections are performed by multiplying the
vectors with random matrices (see Algorithms 1 and 2)

Algorithm 2 Constructing quantum random projector (QRP)
�N×k

QRP which satisfies the JL lemma (Theorems 1 and 2).

INPUT: integers N = 2n, k with k ∼ log(N/ε2)
1. Choose α ∼ O(ε2k).
2. Construct a local random quantum circuit with depth
∼O(n(n + ln(1/α))) which is an α approximate 2-design or pick
an exact unitary 2-design Ansatz.
3. Append a projection operator Pk acting after the local random
quantum circuit to form �k×N .

�̃x = �CRP · �x, (10)

|x̃〉 = Pk · UQRP · |x〉, (11)

where �CRP is the SRHT projector and UQRP, Pk are the
sampled from the matrix representation of the local random
quantum circuit and projectors used. And PCA projection is
obtained by first computing singular value decomposition on
the data set and projecting them to the subspace of dominant
singular vectors:

�̃x = �PCA · �x. (12)
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Figure 3 shows that the PCA outperforms the random
projection methods beyond a certain rank. This is because,
beyond the rank of the data set considered, PCA projects
exactly to the subspace with nonzero singular values. Despite
that, we see that random projection methods which are not
computationally extensive (because they do not compute the
subspace with nonzero singular values) perform to the same
extent and even better than PCA at lower reduced dimensions.
This dominance in performance at lower reduced dimensions
is visible in larger-dimensional data sets (see Appendix D).
We also see that PCA takes more reduced dimensional vectors
to catch up with the random projection algorithms in the
case of CIFAR-100 because it has comparatively more rank
(loosely because it has more features) than the MNIST data
set. These data vectors dimensionally reduced via quantum
random projection could be used in quantum machine learning
applications such as training an image recognition or classifi-
cation model (see, for example, Ref. [38]).

Within the random projection methods, quantum random
projection performs slightly better than the classical random
projection mainly because Haar random matrices are more
random and have tighter JL lemma bounds than the classical
random projector. The performance of quantum random pro-
jectors which are away from the exact 2-design limit has been
analyzed in Appendix E by looking at shorter depths (∼50) of
Fig. 1 and hence a lesser expressive Ansatz.

The discussion in this section assumed the existence of an
exact amplitude encoding scheme for the data vectors. This
would require impractical depths of O(2n) unless the data
vectors are genuinely quantum, e.g., ground states of a fam-
ily of local Hamiltonians. However, for general data vectors
like image data vectors, we do not necessarily need exact
encoding. Preserving the distinctness of image data vectors
(�x, �y) to a good enough accuracy enables us to use them for
many image processing applications, such as recognition and
classification. In this regard, there has been substantial work
on approximate amplitude encoding. These schemes encom-
pass approximately encoding data vectors whose amplitudes
are all positive [39], real [40], and even complex data vectors
[41] using shallow parametrized quantum circuits.

With the plots in Fig. 3, we showed that for exactly encoded
data vectors (�x, �y) and quantum random projected vectors
(�̃x, �̃y)

||�x − �y| − |�̃x − �̃y|| � δ (13)

on average for pairs of images in the data set used. Here
δ is a very small fraction of |�x − �y|. A good approximate
amplitude encoding scheme is bound to preserve this distance
with minimal error, since it preserves the distinctness of the
samples as well as (calling �xapp, �yapp approximate encoded
vectors)

||�x − �y| − |�xapp − �yapp|| � � (14)

on average. Here � is a small fraction of |�x − �y|.
With Eqs. (13) and (14), it is clear that, even with the

approximate amplitude encoding, quantum random projec-
tion would preserve the distinctness of samples (up to a
perturbation of δ + �) and be useful for image processing
applications. The exact value of � depends on the efficiency
of the approximate encoding used.

The other alternative to circumvent the impractical depths
of the exact data encoding issue is by adopting different en-
coding schemes. One can start by reducing the resolution of
the images (equivalent to reducing the pixels), which results
in reduced classical image data vector dimension (to, say,
m < 2n), and using any other existing data encoding schemes
that use qubits greater than m but with polynomial depths (for
example, Refs. [42,43]).

If �(·) is the encoding function that takes the original data
vector and encodes it as a data vector of dimension 2d , then,
to check how well the distinctness is preserved, experiments
need to be run on the d qubits with a quantum random pro-
jector corresponding to d qubits. Mathematically, we need to
check how low the following values are (on average) for two
data vectors �x, �y from the original data set:

||�(�x) − �(�y)| − |�(�x)r − �(�y)r ||, (15)

where �(�x)r,�(�y)r are reduced randomly projected encoded
vectors.

In this work, we confined ourselves to experiments in-
volving an exact encoding scheme despite impractical depths
because the preservation of distance for the exact encod-
ing scheme implies the same for the approximate encoding
schemes as described earlier. Checking the preservation of
distance for other encoding schemes would require knowing
the exact form of encoding in Eq. (15).

Just like its classical counterpart, we can also reconstruct
the images back to the original size after the random projec-
tion. For classical methods (for a data vector �x and its reduced
data vector �̃x),

�xrecons = �T
PCA · �̃x, (16)

�xrecons = �T
CRP · �̃x. (17)

For the quantum case, we need to put in the extra qubits or
the subspace to which we projected to get back to the original
size and then apply the inverse of the unitary circuit used for
projection. For example, if we had projected to the subspace
where one of the qubits is in the |0〉 state, we boost the size
back to the original size by having a new qubit at |0〉 and add
the inverse unitary circuit (U †

QRP) on this new system. For a
general projector, |x̃〉 → |x̃〉 ⊗ | p̃〉 where tensor product with
the | p̃〉 ensures that we get back the original size of the data
(image). And the reconstruction is done as follows (for the
data set |x〉):

|x〉recons = U †
QRP · |x̃〉. (18)

This is similar to the reconstruction done in Ref. [37].
These reconstructions work on the premise that the product
�†� ∼ I of the original data dimension. It is trivial to see
that this holds for the PCA projector. It turns out that this
also holds for the random projectors. This is because, in a
larger dimensional space, finding almost orthogonal vectors
becomes more common; this was studied in Ref. [44] and was
used in the discussion of Ref. [11]. Figure 4 shows how one
would reconstruct an image from the MNIST data set after
dimensionally reducing a subset of the MNIST images.

With the reconstructed quantum data vectors, there are
processing applications which have computational advantage
over classical processing. For example, the complexity of the
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FIG. 4. The schematic of steps involved in the dimensionality reduction and image reconstruction of image data sets using (a) PCA,
(b) CRP, and (c) QRP. The figure shows the reconstructed images for various reduced dimensions. Though projectors with dimensions 700 and
400 are not straightforward to construct, a reduced dimension of 512 represents projection by measuring one of the qubits (so the size drops
from 1024 to 512) and processing further only if it is 0 or 1. The figure illustrates the reconstruction of one of the data vectors from the MNIST
data subset with which we are experimenting; a quantitative description of how the reconstruction performs compared to classical methods is
discussed in Appendix B along with a description of the construction of projection operators.

quantum edge detection algorithm [45] is polynomial and
does not require exponential resources if we have an image
encoded either exactly or approximately. The measurement
outputs of the edge detection algorithm contain information
about the edges. To get the outputs of this experiment, one
can also adopt the classical shadows [46,47] approach to get
the probabilities of all the bit strings with less number of
measurements than full-state tomography.

B. Entropy estimation of low-rank density matrices

In this section, we compare the performance of the quan-
tum random projectors against the classical random projector,
SRHT, on a task that requires one to obtain the approximate
singular values of the dominant singular vectors of a data
matrix after the dimensionality reduction. Unlike the previous
task, this task concerns reducing the dimensions of a large data
matrix instead of individual data vectors by random projec-
tion. After the dimensionality reduction, we check how well
the system captures the properties of the data set by computing
the error percentage in a particular property of the data matrix
which requires the knowledge of all its singular values.

Specifically, we will consider randomly generated
semipositive-definite density matrices with random singular
vectors but their singular values follow a certain profile. We
then compute their entropy after quantum random projection
and check their accuracy (along the lines of Ref. [26]). The
exact singular values profile of these density matrices depends
on the nature of the system. In this experiment, we consider
singular values which are linearly decaying and exponentially
decaying until the rank of the system and zero afterward.
These profiles could be motivated through the existence of
physical systems with such profiles. A thermal ensemble of
a simple harmonic oscillator mode of frequency ν with N
internal degrees of freedom has an exponentially decaying
profile. Here, singular values of ρ will be proportional to

1, e−hν , e−2hν , e−3hν , and so on. And, it is known that a
maximal second-order Rényi entropy ensemble of a system
with a simple harmonic oscillator mode of frequency ν and
N internal degrees of freedom follows a linearly decaying
singular value profile for its density matrix [48]. The main
text contains the plots related to the linearly decaying singular
profile and Figure in Appendix C contains the plots related to
the exponential decay profile.

Here is the procedure to perform random projection given
a semipositive-definite matrix M of dimension N × N :

(i) Project the original density matrix of size N × N to a
lower dimension N × k using �CRP and �QRP.

(ii) Perform SVD (classical) or quantum SVD (QSVD) on
the lower-dimensional matrix to get the singular vectors with
singular values p̃1, p̃2, p̃3, . . . , p̃k which are approximations
to p1, p2, . . . , pk .

(iii) Then we obtain an approximation to entropy (S) using
S̃ = ∑

p̃i ln 1
p̃i

.
The accuracy in the approximated entropy is bounded in

Theorem 3.
Theorem 3. For a random matrix � satisfying the Johnson-

Lindenstrauss (JL) lemma with a distortion ε
√

δ, where
ε � 1/6 and δ � 1/2, the difference in the von Neumann
entropy of a density matrix ρ computed using the random
projection with � (denoted as S̃(ρ)) and the true entropy
(S(ρ)) can be bounded as follows:

|S̃(ρ) − S(ρ)| �
√

3εS(ρ) +
√

9

2
ε (19)

with probability at least (1 − δ).
Proof. See Appendix A. �
Figure 5 shows the error percentage in the computed

entropy after random projection for density matrices of
size 1024×1024 with linearly decaying singular values un-
til a certain rank (r = 10, 50, 100, 40 in the plot) and zero
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Classical Random Projection

Quantum Random Projection
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Quantum Random Projection
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Classical Random Projection

Quantum Random Projection
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Classical Random Projection

Quantum Random Projection

FIG. 5. The plots in this figure show the accuracies of quantum
random projection and classical random projection in the entropy
computation of randomly generated density matrices of size N =
1024 and ranks r = 10, 50, 100, 400 with a linearly decaying sin-
gular value profile. The envelopes represent their 90% confidence
intervals by running the experiments over 100 randomly generated
density matrices. The accuracies improve with decrease in the ranks
as expected.

afterward. The x axis represents the different reduced dimen-
sions (k). The accuracies are better for low ranks as expected
and get worse for larger ranks. We observe that the quantum
random projector and the classical random projector perform
to similar extents (if not a better quantum performance than
classical performance for density matrices with very low rank)
in this task. This matches the trends reported in Ref. [26]
of similar performance for various other classical random
projection matrices like Gaussian, SRHT, and IST. We also
show the accuracies with which the quantum and classical
random projectors capture the singular values of the system
for the rank r = 10 when the system’s size has been reduced
by half in Fig. 6. Here, we see that the quantum random pro-
jectors perform better than their classical counterpart mainly
because Haar random matrices that the random circuits try
to approximate are more random than any classical random
projectors that could be stored with similar or comparable
complexity. The Appendix contains a discussion regarding
how the accuracy improves when we increase the size of the
original data sets from 1024×1024 to 2048×2048.

We discuss the same plots for density matrices with expo-
nentially decaying singular value profile until a certain rank
in Appendix C. We observe there that increasing the rank
does not change the singular value profile as much and hence
the accuracy with which the random projection algorithms
work remains pretty much constant. The Appendix E contains
the error plots for the accuracy in individual singular values

FIG. 6. The plot shows the accuracy with which the quantum
random projector and the classical random projector pick the singular
values of the density matrix for r = 10 when reducing the system
size by half. The envelope represents 95% confidence intervals by
running the experiments over 10 000 randomly generated density
matrices.

for the case r = 10 obtained using lesser expressive random
circuits (depth ∼50).

V. HOW TO PROJECT IN A REAL QUANTUM COMPUTER

For the quantum random projection to work, in addition to
sampling a unitary from the exact (or approximate 2-designs),
we also need to have a circuit component for projector
operators. In one of the previous sections, we considered
arbitrary projection operators which might not be able to be
efficiently implemented in a quantum computer with poly-
nomial resources. However, we can look at the simplest
projection operations that one can use for the quantum random
projection. In Fig. 2, we looked at the simplest projection op-
eration, which is measuring some of the qubits and proceeding
only if the qubits are in a certain state (|0〉 or |1〉). This is
equivalent to projecting it to the subspace where those qubits
take that specific value. For example, when you have a circuit
of ten qubits, measuring one of the qubits and proceeding only
when that qubit is in |0〉 means a reduction in the data vector
(or ket) dimension from 1024 to 512.

However, the projection through measurement discussed
above is different compared to the classical projection because
a quantum measurement (wave-function collapse) automati-

cally takes care of the normalization factor and the extra
√

N
k

is not needed. Since the Hilbert space we consider here is
large and the ket entries are randomized, the normalization
that happens because of the wave function is the same as the
prefactor we would get in a classical random projection.

To demonstrate the quantum random projection with a sim-
ple projection operation, we will consider projection operators
of the form 1

2 (1 + σ i
z ) which is a projection operator to the

space where the ith qubit is at the |0〉 state. To demonstrate
this, we perform such a quantum random projection for a
large data matrix with a linearly decaying singular value
profile of size 1024×1024 and rank r = 5 by reducing the
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FIG. 7. The figure shows the schematic of the variational quan-
tum SVD post–quantum random projection to lower dimensions. The
data matrix M needs to be loaded using a set of unitary gates with
techniques like importance sampling (see related discussion in the
Appendix of Ref. [6]). Similar to the setup in Fig. 2, we perform
projection by measuring a few qubits at the top. This is followed
by a training procedure to obtain the dominant singular vectors and
their singular values. The singular vectors on the right end belong to
the lower-dimensional space and hence require a lower-dimensional
Ansatz.

data vectors to sizes 512, 256, and 128 by projecting out
one, two, and three qubits, respectively. Then, we retrieve
the dominant singular vectors by performing a VQSVD [6].
But since the data matrix has been dimensionally reduced, the
Ansatz we use for finding the right singular vectors is also of
reduced size (Fig. 7). The details regarding the implementa-
tion of VQSVD, and the Ansatz type used, can be found in
Appendix F.

Figure 8 shows the accuracy with which we were able to
retrieve the singular values after quantum random projection
for individual singular vectors. This demonstrates how one
can perform quantum random projection in near-term devices
as the VQSVD algorithm used to retrieve the dominant vectors
is a near-term algorithm. The accuracy with which the singular
values have been retrieved depends on the expressivity of
the Ansatz and whether or not it falls into a barren plateau

FIG. 8. The figure shows the errors in the singular values ob-
tained by reconstructing the dominant singular vectors post–quantum
random projecting a randomly generated data matrix of rank r = 5
using variational quantum SVD for various reduced dimensions k =
512, 256, 128.

during the training procedure. We have not discussed the most
accurate retrieval of the singular vectors, as that is beyond
the scope of this paper. There are many strategies to avoid
falling into the barren plateau and improve the convergence
rate [49–51]. We used the identity block strategy [51] to avoid
barren plateaus (more details on that are in Appendix F).

VI. CONCLUSION

In this work, we explored a practically useful application
of local random quantum circuits in the task of dimensional
reduction of large low-rank data sets. The main essence of
the applicability of the local random circuits in this task is
their ability to anticoncentrate rapidly at linear or sublinear
depths [52,53]. This makes them a good random projector
to lower dimensions, meaning they preserve the distinctness
of different dominant data vectors in a large data set after
dimensional reduction.

The theorems discussed in the paper show that just like
the Haar random matrices which are good random projectors,
their approximate quantum implementations, the exact and
approximate t-designs are also good random projectors. The
rapid anticoncentration of Hilbert space at linear depths means
that the number of random parameters (the random rotation
parameters) required to create and reproduce a random projec-
tor is logarithmic in the size of the data sets. Such efficiency in
the storage complexity of classically generated Haar random
matrices or in any classical random projector is not possible.
We then benchmarked its performance against the commonly
used classical random projector, SRHT. The quantum random
projectors performed slightly better than this classical can-
didate because they are trying to approximate Haar random
matrices which are more random than the classical candidate.
We then demonstrated these comparisons for various tasks
such as image compression, reconstruction, retrieving the sin-
gular values of the dominant singular vectors post–dimension
reduction, etc.

Though the initial discussion assumed arbitrary projec-
tion operators to arbitrary subspaces, we showed the simplest
projection operators and projection subspaces exist. We
demonstrated this simplest quantum random projection and
retrieved the dominant singular vectors post–quantum random
projection via VQSVD [6]. This shows the applicability of
such quantum random projections and their retrievals in near-
term devices.

Dimensionality reduction facilitated by random projections
as discussed in this work can also precede kernel-based vari-
ants of PCA wherein eigenvalue decomposition of the Gram
matrix associated with the higher-dimensional embedding (of-
ten called kernel) is sought [54], especially if said Gram
matrix is low rank. Beyond the precincts of classical data,
such a technique can act as an effective precursor to improve
the efficiency of simulation even on quantum data as has
been studied in recent work [55]. The essential crux of the
idea is heavily rooted in PCA but applied to quantum data
wherein repeated Schmidt decomposition of the states and
vectorized form of arbitrary operators are performed followed
by subsequent removal of singular vectors associated with
nondominant singular values akin to PCA. The techniques
explored in this work involving good random projections can
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be used in conjunction prior to the application of such a
protocol to contract the effective space of the states and/or
operators involved. Owing to the demonstrated near-term
applicability, similar reduction can also be afforded as a pre-
processing step in a host of quantum algorithms manipulating
quantum data [56] on noisy hardware. Such protocols are
of active interest to the scientific community due to their
profound physicochemical applications ranging from exotic
condensed-matter physical systems like Rydberg excitonic
arrays [57], modeling higher-dimensional spin-graphical ar-
chitectures in quantum gravity [58], and in learning theory
of neural networks [59], constructing unknown Hamiltonians
through time-series analysis [60,61], tomographic estima-
tion of quantum states [62,63], in the electronic structure of
molecules and periodic materials [64], quantum preparation
of low energy states of desired symmetry [64,65], or even
order-disorder transitions in conventional Ising spin glass
using quantum annealers [66] and quantum variants of the
Sherrington-Kirkpatrick model [67], to name a few.

We did an extensive comparison using a deep (∼150) exact
2-design Ansatz and deferred the discussion about circuits
away from the exact 2-design limit to Appendix E. This is
because there exist various random circuit architectures which
anticoncentrate just like the exact 2-design Ansatz and hence
could be good candidates for random projection. This could
be a good starting point for future study. Also, it is worth
studying and constructing quantum random projectors suited
for specific applications and data sets (for example, the data
sets in health care [68,69]). It has to be noted that the results
derived in the main text assumed noiseless quantum gates and
measurements. Similar theorems need to be understood for
real quantum computers where different noise sources are un-
avoidable. This leads to a possible future study to understand
the extent to which the theorems in the main text are valid
on real quantum computers by performing statistical analysis
on the bitstrings from the output of real quantum computers
(see Refs. [70,71]).

The classical and the quantum random projection matrix
(and the rotation parameters used to generate the circuit) used
for the comparisons, the data matrix used to generate Fig. 8,
along with the code for generating the plots in this paper will
be made available upon reasonable request. The simulation
for the retrieval of dominant singular vectors through VQSVD
was done in the Paddle quantum framework [72].
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APPENDIX A: PROOFS OF THEOREMS
IN THE MAIN TEXT

Theorem 4 (Theorem 1 in the main text). Let U ∈ U(N ) be
sampled uniformly from the Haar measure (μH ) and let �x1, �x2

∈ RN . Then the matrix �k×N obtained by considering any k

rows of U followed by multiplication with
√

N
k satisfies

(1 − ε)| �x1 − �x2|2 � |� · ( �x1 − �x2)|2 � (1 + ε)| �x1 − �x2|2
(A1)

with probability greater than (1 − N−k
4kNε2 ) with ε ∈ R�0 being

the error threshold.
Proof. Let Pk be the projector operator to any k basis states

of the Hilbert space. Without loss of generality, let us consider
�x1 − �x2 = �v to be of unit norm. The components of such
�x1 − �x2 will be v1, v2, v3, . . . , vN such that �i|vi|2 = 1. Then,

|� · �v|22 = N

k

k∑
i=1

|yi|2, (A2)

where y1, y2, . . . , yk are k components of the vector U · ( �x1 −
�x2) depending on the Pk’s projection subspace. Then,

EU∼μH [|yi|2] = EU∼μH [|y j |2] (A3)

∀i, j because we know that the Haar measure satisfies the
translational invariance∫

U∼μH

f (U )dμ(U ) =
∫

U∼μH

f (VU )dμ(U ) (A4)

when V is an element belonging to the U (N ) group. By choos-
ing V to be the matrix that switches ith and jth components
of an N-dimensional complex vector, we get the required
relation, Eq. (A3). Now using the fact that �v is unit norm, we
get

EU∼μH

[|� · �v|22
] = 1. (A5)

Now, to show that sampling U from the Haar measure pro-
duces a low distortion (ε) with a very high probability,
we should look at the variance of the projected norm. We
should essentially show that PU∼μH ((1 − 2ε)| � |� · �v|22 �
(1 + 2ε)) with a very high probability. Consider variance
VarμH

VarμH = EU∼μH

[(
k∑

i=1

|yi|2
)2]

− E2
U∼μH

(
k∑

i=1

|yi|2
)

(A6)

= EU∼μH

[
k∑

i=1

|yi|4
]

+ EU∼μH

[
k∑

i �= j

|yi|2|y j |2
]

− k2

N2
.

(A7)

We know that the Haar measure and quantum circuits
which are 2-designs (with O(log(N ) depth) anticoncentrate
[52,53]. Specifically for Haar measure at large N , we have

N∑
i

EU∼μH [|yi|4] = 2

N
. (A8)

Using (
∑N

i=1(|yi|2))2 = 1, we get

EU∼μH

⎡
⎣ N∑

i �= j

(|yi|2|y j |2)

⎤
⎦ = N − 2

N
. (A9)

Then, similar to our previous arguments, we can show that

EU∼μH [(|yi|4)] = EU∼μH [(|y j |4)] (A10)
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∀ i, j and

EU∼μH [(|yi|2|y j |2)] = EU∼μH [(|yk|2|yl |2)] (A11)

∀(i, j) and k, l . Equations (A10) and (A11) can be proved by
using V in Eq. (A4) to be an i ↔ j basis switch and (i, j) ↔
(k, l ) basis switch. Equations (A10) and (A11) allow us to
write Eq. (A7) as

VarU∼μH = 2k

N2
+ N − 2

N

k2 − k

N2 − N
− k2

N2
= (N − k)k

N2(N − 1)
.

(A12)

The variance for the |� · �v|22 would be N−k
k(N−1) which scales

as O( N−k
Nk ) for large N, k. Using the derived variance and the

deviation from the mean to be 2ε gives (using Chebyshev’s
inequality)

PU∼μH [||� · �v|2 − 1| � ε] �
(

1 − N − k

4kNε2

)
. (A13)

�
Theorem 5 (Theorem 2 in main text). Let U ∈ U(N ) be

sampled uniformly from the α approximate unitary 2-design
(μ2,α) and let �x1, �x2 ∈ RN . Then the matrix �k×N obtained by
considering any k rows of U followed by multiplication with√

N
k satisfies

(1 − ε)| �x1 − �x2|2 � |� · ( �x1 − �x2)|2 � (1 + ε)| �x1 − �x2|2
(A14)

with a probability greater than 1 − ( N−k
4kNε2 + α

4ε2k ) with
ε ∈ R�0 being the error threshold.

Proof. Define a function

M(U ) =
(

|v〉〈v| − 1

N

)⊗2

. (A15)

Let Varμ2,α
be defined as follows:

Varμ2,α
= EU∼μ2,α

[(
k∑

i=1

|yi|2
)2]

−E2
U∼μ2,α

(
k∑

i=1

|yi|2
)

(A16)

= EU∼μ2,α

[
k∑

i=1

|yi|4
]
+EU∼μ2,α

[
k∑

i �= j

|yi|2|y j |2
]

− k2

N2
.

(A17)

In terms of M(U ) we can write Eqs. (A7) and (A17) as

Tr
(
EU∼μ2,α

[
P⊗2

k U ⊗2(M(U ))U ⊗2P⊗2
k

]) = Varμ2,α
, (A18)

Tr
(
EU∼μH

[
P⊗2

k U ⊗2(M(U ))U ⊗2P⊗2
k

]) = VarμH . (A19)

Then,

|Varμ2,α
− VarμH | = ∣∣Tr

(
EU∼μ2,α

[
P⊗2

k U ⊗2(M(U ))U ⊗2P⊗2
k

]
− EU∼μH

[
P⊗2

k U ⊗2(M(U ))U ⊗2P⊗2
k

])∣∣
(A20)

�
∣∣P⊗2

k

∣∣
2|EU∼μ2,α

[U ⊗2(M(U ))U ⊗2]

− EU∼μH [U ⊗2(M(U ))U ⊗2]|
� k

α

N2
, (A21)

where we used the monomial definition of approximate uni-
tary 2-designs and its equivalence (see Ref. [35]) to the
diamond norm definition used in the main text. Using The-
orem 4, we get

Varμ2,α
� (N − k)k

N2(N − 1)
− k

α

N2
. (A22)

The variance for the |� · �v|22 would be greater than N−k
k(N−1) − α

k

which scales as O( N−k
Nk ) − α

k for large N, k. Using the derived
variance and the deviation from the mean to be 2ε gives (using
Chebyshev’s inequality)

PU∼μH [||� · �v|2 − 1|� ε]� 1 −
(

N − k

4kNε2
+ α

4ε2k

)
. (A23)

�
Theorem 6 (Theorem 3 in main text). For a random matrix

� satisfying the Johnson-Lindenstrauss (JL) lemma with a
distortion ε

√
δ, where ε � 1/6 and δ � 1/2, the difference

in the von Neumann entropy of a density matrix ρ computed
using the random projection with � (denoted as S̃(ρ)) and the
true entropy (S(ρ)) can be bounded as follows:

|S̃(ρ) − S(ρ)| �
√

3εS(ρ) +
√

9

2
ε (A24)

with probability at least (1 − δ).
To prove the theorem we will need to use Theorems 10 and

13 of Ref. [26]. According to Theorem 13, let DAD be a sym-
metric positive-definite matrix such that D is a diagonal matrix
and Aii = 1 for all i. Also, let DED be a perturbation matrix
such that |E |2 � λmin(A). Now, let λi be the ith eigenvalue of
DAD and let λ′

i be the eigenvalue of D(A + E)D. Then, ∀i,

|λi − λ′
i| �

|E |2
λmin(A)

. (A25)

Now, consider a distribution D on matrices � ∈ Rk×N (or
RN×k) satisfying

E�∼D
∣∣∣∣�x

∣∣2

2 − 1
∣∣2 � ε2δ. (A26)

Then, according to Theorem 13 of Ref. [73], for any orthonor-
mal matrix O with N rows,

Pr�∼D[|OT �T �O − I|2 � 3ε] � δ. (A27)

Having these two results, we can derive the bounds on
the accuracy of entropy computed post–random projection.
In this regard, let us look at a general semipositive-definite
density matrix ρ which could be written as ρ = W �pW T ,
where W has orthonormal columns and �p is a diagonal
matrix containing the singular values of ρ. We note that
the eigenvalues of ρρT = W �2

pW
T are equal to the eigen-

values of the diagonal matrix �2
p. Similarly, the eigenvalues

of W �pW T ��T W �pW T are equal to the eigenvalues of
�pW T ��T W �p. Now, using Eq. (A25), we can compare the
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eigenvalues of the matrices

�pIk�p and �pW
T ��T W �p.

Using E = W T ��T W − Ik in Eq. (A27), we get that

|E |2 � 3ε � 1 (A28)

with a probability greater than 1 − δ.
The eigenvalues of �pIk�p are equal to p2

i for i = 1, . . . , k
and the eigenvalues of the �pW T ��T W �p are equal to p̃i

2,
where p̃i are the singular values of �pW T �. These are exactly
equal to the singular values of W �pW T � = ρ�. This along
with Eqs. (A28) and (A25) leads us to conclude∣∣p2

i − p̃i
2
∣∣ � 3εp2

i . (A29)

This result guarantees that the singular values of ρ (from the
main text) are captured with a perturbative factor of 3ε. Using
this, we can find bounds to the error in the entropy computed
after the random projection. We start with the upper bound:

�k
i=1 p̃i ln

(
1

p̃i

)
� �k

i=1(1 + 3ε)1/2 pi ln

(
1

(1 − 3ε)1/2 pi

)

� (1 + 3ε)1/2S(ρ) +
√

1 + 3ε

2
ln

(
1

1 − 3ε

)

� (1 + 3ε)1/2S(ρ) +
√

1 + 3ε

2
ln(1 + 6ε)

� (1 +
√

3ε)S(ρ) +
√

9

2
ε.

In the second-to-last inequality, we used 1/(1 − 3ε) � (1 +
6ε) for any ε � 1/6, and in the last inequality we used ln(1 +
6ε) � 6ε for 0 � ε � 1/6. Similarly, we can find the lower
bound to be

�k
i=1 p̃i ln

(
1

p̃i

)
� (1 −

√
3ε)S(ρ) − 3

2
ε.

Combining both bounds we get the bound for the error in
entropy obtained after random projection S̃ with respect to
true entropy S:

|S̃(ρ) − S(ρ)| �
√

3εS(ρ) +
√

9

2
ε. (A30)

APPENDIX B: IMAGE RECONSTRUCTION
POST-QUANTUM RANDOM PROJECTION

Figure 4 was a demonstration of the reconstruction of one
image vector of the data set. Since the dimensionality reduc-
tion is for the data set as a whole, here we attach the plot
of average |�x − �xrecons| for all the image vectors �x (the subset
of MNIST containing 1000 images) and their reconstructed
vectors �xrecons in Fig. 9 for various reduced dimensions along
with their 95% confidence intervals. The average norm of
the difference between any two unit norm vectors in 1024
dimensional space is

√
2 ∼ 1.414. This sets a standard to

compare the average norms plotted in Fig. 9.

FIG. 9. The average norms of difference between image data
vectors and the image vectors reconstructed from PCA, classical
random projection, and quantum random projection schemes for
varying reduced dimensions.

As mentioned in the experiments section, we assume that
we can make arbitrary projection operators with any number
of basis vectors, i.e., if the Pk operator projects to the first k
basis state (|p1〉, |p2〉, . . . , |pk〉) in any basis. Then,

Pk =
k∑

i=1

|pi〉〈pi|, (B1)

where we do not have any restriction on what basis we pick
and what values k can take. Quantum projectors are easy to
construct when k takes values 128, 256, and 512 (correspond-
ing to measuring one, two, and three qubits, respectively).
Though it is impractical to construct such quantum projection
operators for k = 400 and 700, we used those values only
to compare the performance of quantum random projection
against classical random projection which does not have any
restrictions on the values k can take.

For the specific numbers mentioned in the figure, we used
the first 400 and 700 components of the wave vector after the
random quantum circuit (U ) and added extra basis states with
zero amplitudes to make them 1024 dimensional. Then, the
wave vectors are reconstructed by the action of the inverse of
U , i.e., U †. We understand that this process is more insightful
when the projection operators are just one-, two-, or three-
qubit measurements to specific states (|0〉 or |1〉). There, if
the quantum random projection is made such that one of the
qubits is projected to, say, |0〉 state, then reconstruction is done
by appending the U † circuit to the reduced quantum state plus
measured qubit in |0〉. (This is equivalent to adding zeros to
the basis elements where the measured qubit is in state |1〉
just like how we boosted dimensions from k = 400 or 700 to
1024.)
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APPENDIX C: PERFORMANCE OF QUANTUM RANDOM PROJECTION ON EXPONENTIAL DECAY PROFILE

Figure 10 contains analogous plots discussed in the main text for the density matrices with exponential decay profile.

(a)

(b)

FIG. 10. Analogous plots discussed in the main text for the density matrices with exponential decay profile. (a) The accuracy with which
the quantum random projector and the classical random projector pick the singular values of the density matrix for r = 10 when reducing the
system size by half. The envelope represents 95% confidence intervals by running the experiments over 10 000 randomly generated density
matrices. The percent error observed for the exponential decay profile is similar to the values we obtained for the linear decay profile. (b) The
accuracies of quantum random projection and classical random projection in the entropy computation of randomly generated density matrices
of size N = 1024 and ranks r = 10, 50, 100, and 400 with exponentially decaying profile. The envelopes represent their 90% confidence
intervals by running the experiments over 100 randomly generated density matrices. The accuracies remain constant because the singular
values do not vary much while varying the ranks owing to the rapid drop in successive singular values in an exponential decay profile.
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APPENDIX D: PERFORMANCE OF QUANTUM RANDOM PROJECTION ON LARGER DATASETS

Figure 11 contains analogous plots discussed in the main text for system size = 2048 (n = 11).

(a)

(b)

(c)

FIG. 11. Analogous plots discussed in the main text for system size = 2048 (n = 11). The percent error observed for n = 11 is better than
the values obtained for the n = 10 case. This is because of improved efficiency in random projection for larger data sets as the error bounds
derived in the theorems in our main text become tighter. (a) The mean percentage errors in the distance between 10 000 different random
pairs of data vectors in the affNIST image data set which are 40×40 images and was boosted to 2048×1 data vectors for our experiment.
Here, we can clearly notice that, at lower reduced dimensions, the random projection methods perform better than even PCA. Everywhere,
the quantum random projection performs slightly better than the classical random projection. (b) The accuracy with which the quantum
random projector and the classical random projector pick the singular values of the density matrix for r = 10 when reducing the system size
by half. The envelope represents 95% confidence intervals by running the experiments over 10 000 randomly generated density matrices.
(c) The accuracies of quantum random projection and classical random projection in the entropy computation of randomly generated density
matrices of size N = 2048 and ranks r = 10, 50, 100, and 400 with linearly decaying singular value profile. The envelopes represent their 90%
confidence intervals by running the experiments over 100 randomly generated density matrices. The accuracies improve with a decrease in the
rank of the system just like the n = 10 case. However, the accuracies here are better than the n = 10 case due to the improved efficiency of
random projection for larger data sets.
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APPENDIX E: PERFORMANCE OF QUANTUM RANDOM PROJECTION CONSTRUCTED USING LESSER EXPRESSIVE
LOCAL RANDOM QUANTUM CIRCUITS

Figure 12 contains analogous plots discussed in the main text for a lesser expressive local random circuit.

(a) (b) (c)

FIG. 12. Analogous plots discussed in the main text but the quantum random projector used here has been obtained from a local random
quantum circuit far from the exact 2-design limit. This is our proxy for approximate 2-design. More specifically, we picked a depth of 50
in the quantum circuit shown in Fig. 1. Mean percentage errors in the distance between 10 000 different random pairs of data vectors in
the (a) MNIST image data set and (b) CIFAR-100 image data set which are 28×28 images and were boosted to 1024×1 data vectors for our
experiment. The performance of this quantum random projector is not as good as the exact 2-design quantum random projector. This is because
the error bounds derived in the theorems for approximate unitary 2-designs are not as tight as an exact 2-design quantum random projector.
(c) The accuracy with which the approximate unitary 2-design quantum random projector and the classical random projector pick the singular
values of the density matrix for r = 10 when reducing the system size by half. The envelope represents 95% confidence intervals by running
the experiments over 10 000 randomly generated density matrices. The drop in performance of the quantum random projector here could be
attributed to the error bounds in the JL lemma not being as tight as the exact 2-design quantum random projector.

APPENDIX F: DETAILS REGARDING THE VQSVD
PERFORMED TO RETRIEVE THE DOMINANT

SINGULAR VECTORS

The variational quantum singular value decomposition was
used to retrieve the dominant singular vectors of a randomly
generated data matrix with rank r = 5 and singular values
following a linearly decaying profile. The matrix on which one
has to perform quantum random projection and quantum SVD
needs to be loaded as a sum of unitaries or Pauli strings (unit
depth). This process has exponential complexity for an exact
representation of the matrix. But with importance sampling
(as mentioned in Ref. [6]) one only uses a subset of Pauli
strings which approximates the matrix to sufficient accuracy.
However, for our computation, just like the exact encoding
scheme, we used the exact matrix. The demonstration of
accurately retrieving the singular vectors implies the same
when the importance sampling creates the matrix with high
accuracy.

Since the system size we used for this variational algo-
rithm is large, we had to use the block initialization strategy
discussed in Ref. [51] with two identity blocks in our training
Ansatz to avoid the barren plateau issue [36]. Each block
used in our Ansatz has a hardware efficient Ansatz circuit
[74] of depth 25 followed by its inverse circuit (this part
will remain an inverse circuit only at the beginning of the
training; during training, the parameters of these two parts
update independently) to start the training procedure close to
identity and hence avoid the barren plateau. Figure 13 shows
the rate of convergence of VQSVD in reconstructing the indi-
vidual singular vectors after quantum random projection. The
accuracies with which we retrieved the singular values and the
dominant singular vectors could also be improved with other
Ansätze which avoid barren plateau.

The projection operators in the figure are just measure-
ments of certain qubits and making sure they are in a certain
state (|0〉) or operators of the form 1

2 (1 + σ i
z ) which project to

state |0〉 of qubit i.
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FIG. 13. The convergence of singular values obtained using the variational quantum singular value decomposition algorithm to their true
values post–quantum random projection (2-design quantum random projector). We observe that sometimes the converged singular value is
greater than the true value; this is because of the distortion of singular values created by the quantum random projection.
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