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Abstract
Wediscuss one-dimensional(1D) spin compassmodel or 1DKitaevmodel in the presence of local
bond defects. Three types of local disorders concerning both bond-nature and bond-strength that
occur on kitaevmaterials have been investigated. Using exact diagonalization, two-point spin-spin
structural correlations and four-pointOut-of-Time-Order Correlators(OTOC) have been computed
for the defective spin chains. The proposed quantities give signatures of these defects in terms of their
responses to location and strength of defects. A key observation is that the information scrambling in
theOTOC space gets trapped at the defect site giving rise to the phenomena of localization of
information scrambling thusmaking these correlators a suitable diagnostic tool to detect and
characterize these defects.

1. Introduction

SpinCompassModels(SCM) [1] are spinmodels with nearest neighbour spin-spin interactions along directions
that are dependent on bond directions. Awell-known SCM is theKitaev’sHoneycomb spinmodel which
exhibits a quantum spin liquid (QSL)phase [2] supporting abelian and non-abelian anyonic excitations. This
model has an exotic phase diagramwith rich topological properties that offer the promise of fault-tolerant
quantum computation. Along thematerials side, with the recent blow-up of both theoretical and experimental
studies of the iridium-oxidematerials [3], theα− RuCl3 [4] has garnered enormous attention. Particularly,
neutron scattering [5, 6] and thermal conductivity [7, 8] experiments have provided evidence that the Kitaev-
type interactions dominate the physics ofα− RuCl3 thusmaking them suitable candidatematerials for realizing
theKitaevmodel. One of themain barriers infilling the gap between the theoretical predictions and real
materials is the presence of defects and disorders.

Defects in realmaterials change the physical properties of the system that usually do not have a counterpart
in their clean limit. Particularly, disorders like vacancies, impurities and lattice distortions that are inevitable in
thesematerials contribute to instabilities [9], divergences in their density of states [10] and localization
effects [11, 12]. On the other hand, such defects can also open up a plethora of newphases with unpaired
majoranamodes [13, 14] that arise as twist defects as proposed by Bombin [15]. These defects being the
epicenter of thesemodes showbraiding statistics that are tolerant to local perturbations. Recently, this
phenomena has been generalized to arbitrary tri-valent planar lattices withKitaev-type interactions [16].
Pertaining to these reasons, the study of defects on pristinemodels becomes an essential venture as a part of
theoretical analysis of the aforementionedmaterials. Towards this direction, as afirst step, we study in this article
various kinds of defects on the one-dimensional(1D) analog of 2DKitaevmodel i.e. 1D compassmodel and
uncover characteristics of the systemusing structural and dynamical quantities. The signatures observed in these
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quantities, as we shall show in the following sections serve as diagnostic tools to detect, observe and characterize
the considered defects in real systems.

The paper is organized as follows: In section 2, we introduce themodel, type of disorders and describe the
involvedmetrics and numericalmethods. In section 3, we present the results of disorder effects on both
structural and dynamical properties of the ground state by computing different correlationmeasures that are
introduced in the previous section. Section 4 is the conclusion.

2.Models

2.1. Kitaevmodels
Kitaevmodel in 2D is a bond-dependent interacting spin graph as shown infigure 1(a) given by the
Hamiltonian,

( )

å å

å

s s

s s s s

= +

´ +
- -

-

H J J

J 1

x
x bonds

i
x

j
x

y
y bonds

i
y

j
y

z
z bonds

i
z

j
z

2D

The above systembelongs to the larger umbrella of SCMswherein (σx,σy,σz) denote the usual pauli
matrices [17]. Such systems can also be realized on arbitrary trivalent graphs like square-octagon lattice [18–21]
within cyclooctatraene based polymeric platforms [22]. Recent studies have shown that the 2DKitaev lattice can
be approximated by coupled 1DSCMchains [23–25] as shown infigure 1 and show interesting similarities [26]
in terms of its phase diagram andmany other physical properties. This calls us to give extra attention to the one-
dimensional(1D)ZY SCM [27, 28] based on our convention. The 1Dmodel is a bond-alternating spin-1/2 chain
with bond-dependent ZZ andYY interactions as shown in 1(b). TheHamiltonian is given by,
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where Jy, Jz are the alternating bond strengths of y-bonds and z-bonds respectively.N typically denotes the
number of unit cells.

2.2. Clean limit
For the clean limit, the Kiteavmodel in 1Dundergoes a continuous quantumphase transition(QPT) from a
phasewith dominating zz correlations on odd bonds for Jz/Jy< 1 to a phase with dominating yy correlations on
even bonds for Jz/Jy> 1 as shown in 1(c)with transition point at Jz= Jy.We consider the following defects
inspired by twist and on-site disorders that occur in 2DQSLmodel and show that in its 1D limit, the structural
correlations and dynamicOTOCs can give signatures of these defects. For the sake of convenience, we have
considered the ZYmodel and the results obtained in this article are general and remain same for XY andXZ
models as well.

2.3.Defects
The pristine limit of the kitaev 1Dmodel has alternating nature ofσz− σz(blue)&σy− σy(green) bondswith
alternating bond strengths Jz-Jz& Jy-Jy respectively as shown in 1(b). Any break in such alternating structure
with regards to bond nature or bond strength is considered to be defective. The kind of defects that we examine
in this paper are local defects that occur on a particular site concerning its local bonds. These defects are different
from the usual disorders that are either taken to occur at every site or at every nearest neighbour interaction (i.e.

Figure 1. (a) 2DKitaevmodel on a honeycombmodel (b) decoupled 1DKitaev chains (c) correlations for the clean limit of 1DKitaev
model for L = 12 spins under periodic boundary conditions(PBC).
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bond) that are commonly studied in spin-chains. Bond flip and bond strength defects appear both in 1D and 2D
KitaevHamiltonians ubiquitously where the alternating structure is broken at the defect site. Firstly, we consider
defect of type 1wherein the bond nature at the vicinity of the defect site isflipped and repeated say for instance,
the repeatingσy− σy bond at defect site 3 in figure 2(a) and the alternating nature is preserved before and after
the defect. The second type concerns the bond strengths wherein the bonds at the defect have aweaker bond
strength compared to the bonds elsewhere as infigure 2(b). The third type concerns the bond strength. At the
vicinity of the defect site, the bond strengths are repeatedwhile the bond natures are preserved as shown in blue
and green i.e. the repeating Jy-Jy bond strengths at defect site 3 infigure 2(c). Note that in thismanuscript, we do
not consider the effects of defect density; rather, we focus on cases of locally single defects and explore physical
quantities that can capture their signs. An additionalmotivation of studying these defects on a 1Dmodel is the
appearance of these defects as effective 1D line defects [29] on 2DQSL.While our analysis primarily focuses on
two-point and four-point correlators for defect detection and observation, it is important to note that the
introduction of these defects alsomodifies the energy spectrumof the spin chain, as discussed in appendix A.

3.Metrics andmethods

3.1. Spin-spin correlations
Wecompute s si

z
j
z and s si

y
j
y defined as in equation (3), correlations for spin chain upto L= 12 spins based on

Exact diagonalization by employing periodic boundary conditions(PBC). Further, we compare these correlation
plots with the clean limit (figure 1(c)) and look for signatures for these defects in terms of their structural
correlationmeasures.
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whereψg denotes the ground state of the considered defective spin chain types. The index i with the sum runs
over all the sites thus capturing any break in the bond nature or strength across the length of the defective spin
chains.

3.2.Out-of-time-order correlator(OTOC)
Out-of-Time-Order Correlator(OTOC)first introduced by Larkin andOvchinnikov in the context of
superconductivity [30] has been exploited as a tool to provide interesting insights into physical systems.Most
considerably, OTOCbeing a dynamic quantity quantifies how local information belonging to local degrees of
freedomand operators spreads across global degrees of freedomof a quantummany-body systemwhich is
typically inaccessible to local probes. This classifiesOTOC as an quantity that gives information about the
scrambling dynamics of the considered physicalmodel. Further, OTOChas found applications in thefield of
quantum chaos ranging from condensedmatter [7, 31, 32] to high-energy physics. The key idea is the
connection between the growth exponent ofOTOC called the butterfly velocity of information and Lyapunov
exponent indicating the onset of chaos [33–35].Moreover, Recent proposals have shown thatOTOC serves as a
useful quantity to detect phase transitions such asMany-Body Localization(MBL) [36, 37]and dynamical phase
transitions [32, 38, 39]. TheOTOC is a 4-point correlationmeasure defined as

Figure 2. (a)Type 1: Bond nature-flip defect at an odd defect site 3with yy coupling (b)Type 2: Bond-strength defect at defect site 3
with Jdef being the bond strength of disordered bonds and J the bond strength of other bonds. (c)Type 3: Bond strength-flip defect at
defect site 3with Jy and Jz being the bond strengths as shown. (blue:σz − σz bond, green:σy − σy bond).
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, where (W,V ) are local operators for sites (i,j) computed at time (t, 0)

respectively. Further, TheOTOC signal with respect to this 4-point correlation function can be defined as
F(r= |i− j|, t)= 〈Wi(t)Vj(0)Wi(t)Vj(0)〉whose space-time propagation as shown infigure 3 can give insight into
information scrambling dynamics of the system thusmaking it a suitable probe for information propagation.
OTOCs by itself is a complex quantity with the real part related to the squared commutator

( ) [ ( ) ( )] [ ( ) ( )] ∣[ ( ) ( )]∣ ( [ ( )])= á ñ = á ñ = -+C t W t V W t V W t V F t, 0 , 0 , 0 2 1 Rei j i j i j i j i j,
2

, . Recently, It has been
shown that the imaginary part ofOTOCalso possesses interesting properties of the physical system [40] that in
turn is given by both commutators aswell as anti-commutator of the local operatorsW& V respectively. The
real and imaginary of theOTOC is associated to the commutator and anti-commutator as follows,

∣[ ( ) ( )]∣ ( [ ( )]) ( )á ñ = -W t V F r t, 0 2 1 Re , 4i j WV
2

[ ( ) ( )] { ( ) ( )} ( )á ñ+W t V W t V, 0 , 0 5i j i j

( [ ( )]) ( )= - F r t2 1 Im , 6WV

Since both the real and imaginary parts ofOTOC in equations (4)–(6) contain the common commutator,
evaluation of the commutator becomes necessary. The dynamics ofOTOC is controlled by theHeisenberg
evolution ofWi(t) and analytical expressions for the same could be in principle derived using Baker-Campbell-
Haunsdroff(BCH) expansion [41]. For ourmodel, we choose the operator XX (s sx

i
x
j ) as theOTOCoperator

based on our observations that other YY andZZOTOCs do not capture the information about the defects.
Towards this end, we dedicate a separate section of appendix (see Appendix: C(i)) to elucidate why the YY and
ZZOTOCs do not qualify for detecting the aforementioned defects. Furthermore, if i is taken as a site residing
not at the boundary, there is scattering from the open ends of the chain as illustrated inAppendix: C(ii).
Therefore, we fix i= 1 and vary j= 1, 2, 3......L in order to see how local information spreads fromone end of the
chain to its other end in the presence of aforementioned defects alone. TheOTOCprobe takes the form,
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1 1 defined as in equation (8).We compute theOTOC signal bymeans of Exact
Diagonalization(ED) for spin chains upto L= 12 spins under open boundary conditions (OBC).
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whereψg denotes the ground state of the considered defective spin chain types and j is varied as j= 1, 2, 3......L.

4. Results

4.1. Correlation signal
In case of type 1, we plot ZZ andYY correlation functions defined by equation (3) corresponding to two different
qualitative situation. i.e. when the defect is at an odd site vs when the defect is at an even site. The ordering of ZZ
versus YY is symmetric as is in the clean onlywhen the number ofσz− σz bonds is equal to number ofσy− σy
bonds.Wefind thatQPTpoint at Jz= Jy is shifted in the case of even defect site to Jz= 0.5 Jywhile it remains
same for odd defect site. This is because for the former case, the total number ofσz− σz bonds andσy− σy
bonds are same and for the later case they are different.We observe that the transition point is strongly
susceptible to number of bonds and is proportional to the ratio of number ofσz− σz bonds over the number of
σy− σy bonds as shown infigure 4. This relationship highlights the competition betweenσz− σz interactions
andσy− σy interactions that determines the system’s critical behavior. The sensitivity to bond ratio underscores

Figure 3. Space-time propagation of a general OTOC F(r, t) signal.
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the an-isotropic nature of the spin compassmodel [27], distinguishing it from isotropic systems. This
proportionality suggests a scaling relationship that arises due tofinite-size affects. As system size increases, we
expect the transition point to converge to afixed value in the thermodynamic limit whichwe leave for future
analysis. However, theOTOCmarker aswe shall show in the following sections clearly gives distinct signatures
w.r.t different considered defects.

For type 2, wefix bond strengths of the bonds that are not defective to be Jz= Jy= J and vary the bond
strength of the defective bonds alonewith Jdef. The ZZ andYY correlations are plotted as a function of defect
strength fixing a defect site.We see that these correlations decay aswe ramp the defect strength until Jdef= J post
which it saturates as the entire contribution of these correlation quantities comes only from the defective bonds
as shown infigure 5.

In case of type 3, we plot ZZ andYY correlation functions corresponding to two cases as taken in type 1. For
the defect at site 3, TheQPT at Jz= Jy stays while interestingly for defect at site 6, although the ZZ andYY spin
ordering follows a trend, the sharpQPT at Jz= Jy is nomore present. The behaviours of correlations is quite
different from the case 1. For example, the ZZ correlations here are not zerowhen Jz→ 0 as only the bond
strengths are disorderedwhile the alternating bond nature exists. This contributes tofinite value of the
correlations as long as Jy≠ 0 as shown infigure 6.

4.2.OTOC signal
In this section, we plot the real and imaginary parts of theOTOC signal defined by equation (8) for 1D spin chain
of length up to L= 12 for all defect types.

For type 1, theOTOC signal does not propagate beyond the defect site as evidentiated by numerical
evidences infigures 7. Both the real and imaginary parts of the considered XX-OTOC entirely capture the
position of the defects. These observations can further bewell understood and corroborated by BCHexpansion
of ( )s tx

1 . In the BCH expansion of ( )s tx
1 (See appendix B), there are annihilator-like terms (equations (B2)- B3)

that prevent the growth of the operator’s length beyond the defect site. Hence, the commutator which appears
both in real and imaginary parts of theOTOC signal: [ ( ) ( )]s s = = + +t j d d n, 0 0 for 1, 2 ,....x

j
x

1

with d= defect position. This explains the observations infigures 7wherein the information propagation as well
as scrambling is absent beyond the defect site thus giving rise to the phenomenon of Localization of information
scrambling.

Figure 4.Type 1: (a)Correlation functions for defect at position 3 (b)Correlation functions for defect at position 6.

Figure 5.Type 2: Correlation functions for defect at position 4with Jz = Jy = 1 and Jdef variedw.r.t fixed Jz. Both ZZ(red) and
YY(green) correlations coincide with each other.
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The short time behavior ofOTOC can be obtained byBaker-Campbell-Haunsdroff(BCH) [41] expansion
andwe showhere closed form expressions for periodicOTOCs observed infigures 7(a)& (b) as listed in
equationsWhen the defect position is situated far from the first site, theOTOCexhibits reduced periodicity, as
illustrated infigure 7(f). This loss in periodicity indicates the involvement of higher-order harmonics and the
onset of scrambling,making it challenging to derive closed-form expressions using Baker-Campbell-Hausdorff

(BCH) expansions. Typically, the frequency of theOTOCvaries as~ +J Jz y
2 2 , where Jz and Jy are the coupling

strengths for theσz− σz andσy− σy interactions, respectively. The butterfly [42] or the scrambling timewhich
defines the time forwhich local degrees of freedom scrambles into global degrees scales as

w
1 . Consequently, any

alterations in bond strengths or types are reflected in the propagation patterns of theseOTOCs. This relationship
between theOTOCbehavior and the underlying spin chain parameters provides valuable insights into the
system’s quantumdynamics and the impact of defects on information propagation.

[ ( ) ( ) ( ) ( )] ( )s s s s- Re t t1 , 0 , 0 9x x x x
1 1 1 1

( ) ( )= +J J t2 sin 10z y
2 2 2

[ ( ) ( ) ( ) ( )] ( )s s s s- Re t t1 , 0 , 0 11x x x x
1 2 1 2

( ) ( )= +J J tsin 2 12z y
2 2 2

[ ( ) ( ) ( ) ( )] ( )s s s s- Re t t1 , 0 , 0 13x x x x
1 3 1 3

( ) ( )= +J J tsin 14z y
2 2 2

For type 2, theOTOC signal propagates giving signs of the defect as the bond strength of the defective bonds Jdef
is increased as infigure 8. Both the real and imaginary parts of the considered XX-OTOCcaptures the defects
(marked in red). The reason for these observations is understood by the BCHexpansion of ( )s tx

1 . In the BCH
expansion of ( )s tx

1 , the annihilator-like terms as in B4 for type 2 defects, has an amplitude orweight that
depends on the defective bond strength Jdef. This explains the observations infigures 8wherein the information
propagation as well as scrambling is localized in the illustrated fashion giving necessary signs of the defects.

Figure 6.Type 3: (a)Correlation functions for defect at position 3 (b)Correlation functions for defect at position 6.

Figure 7.Type 1: (a) space-time propogation of real part ofOTOC Fxx(r, t) for defect at position 3 (b)Real part of individual OTOCs in
time (c) space-time propogation of imaginary part ofOTOC Fxx(r, t) for defect at position 3 (d) imaginary part of individual OTOCs in
time (e) space-time propogation of imaginary part ofOTOC Fxx(r, t) for defect at position 6 (f)Real part of individual OTOCs in time
(g) space-time propogation of imaginary part ofOTOC Fxx(r, t) for defect at position 6 (h) Imaginary part of individual OTOCs in
time.

6

Phys. Scr. 99 (2024) 105123 VMuruganandam et al



For type 3, theOTOC signal does not propagate beyond the defect site as shown infigure 9. Similar to the
above cases, both the real and imaginary parts of the consideredXX-OTOC capture defect signatures. The
annihilator-like terms (equations (B5)- B6) in the BCH expansion of ( )s tx

1 has an amplitude that depends on the

ratio
J

1

y
for an odd defect site and ratio

J

1

z
for even defect site. By tuning this ratio, OTOC signal can bemade

localized thus giving suitable signs of the defects.

5. Conclusion

Wehave studied defects on pristine 1DKitaevmodel using structural and dynamical quantities.We have
presentedways to realize three types of disorders that are prevalent inKitaevmaterials. In particular, the effects
of disorder on the spin-spin correlations andOTOCswithin the ground-statemanifold of our defectivemodels
have been investigated.We have considered 3 types of disorder: bond nature-flip, bond-strength, bond strength-
flip disorders. Though these disorders are quite different, they behave similar in terms of their responses to the
OTOC signal probe i.e. they cause localization in theOTOC space thus illustrating prohibited information
scrambling across the length of the spin-chain. Regardless of this localization phenomena, the disorders show
quite unique signatures of themselves in theOTOC space. ThismakesOTOCs as suitable detection tools
susceptible to different defects in themodel. In terms of physical realization, not only canOTOCs bemeasured
in an experimental setup [43], circuit-basedmeasurements ofOTOCs on state-of the art quantum computers
have also been achieved [44–47].Moreover, in superconducting Circuit quantum electrodynamics(CQED)
setting [48], the above-discussed defectivemodels can be realized using superconducting circuits [45, 49]
wherein the defective qubit alongwith its local bonds can be used as a control qubit that controls the entire
scrambling dynamics of the circuit.

Thoughwe have considered only time-independent and static disorders, theOTOC signal proposed in this
article, given its spatio-temporal dependence can be used to detect time-dependent perturbations too upon the
cleanmodel. A special consideration isfloquet or periodic time-dependent perturbations wherein the relevant
quantity to consider is the FloquetOTOC [39, 50, 51]. Such systems have shown to exhibit interesting phases
such as time crystals andMBL [52–55]. These reasons serve asmotivating factors for a future study of these
phases in 1Dkitaevmodel. Additionally, as a natural extension, study ofOTOCpropagation in 2DKitaevmodel
can give insights into defects and fundamental excitations. Apart from exploring higher dimensions, another
promising future direction is to extend our analysis to larger system sizes using advanced numerical techniques
such as tensor networkmethods [56, 57]. In thismanuscript, the stability of the results has been checked for spin

Figure 8.Type 2, for Jz = Jy = 1, (a) space-time propagation of real part of OTOC Fxx(r, t) for defect at position 3 for Jdef = 0.5
(defective bond strength) (b) space-time propagation of imaginary part ofOTOC Fxx(r, t) for defect at position 3 for Jdef = 0.5
(defective bond strength) (c) space-time propagation of real part ofOTOC Fxx(r, t) for defect at position 3 for Jdef = 2 (OTOC sign at
the defect sitemarked in red) (d) space-time propagation of imaginary part ofOTOC Fxx(r, t) for defect at position 3 for Jdef = 2
(OTOC sign at the defect sitemarked in red).

Figure 9.Type 3, (a) space-time propagation of real part of OTOC Fxx(r, t) for defect at position 3with Jy = 10, Jz = .1 (b) space-time
propagation of imaginary part ofOTOC Fxx(r, t) for defect at position 3with Jy = 10, Jz = .1 (c) space-time propagation of real part of
OTOC Fxx(r, t) for defect at position 6with Jy = .1, Jz = 1 (d) space-time propagation of imaginary part ofOTOC Fxx(r, t) for defect at
position 6with Jy = .1, Jz = 1 (site 3 corresponds to odd site so Jy > Jz and site 6 corresponds to even site i.e. Jz > Jy as elucidated
above).
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chains of length ranging from8 to 14 spins using ED(see appendixD). Advanced techniqueswill allow us to
investigate the behavior of bulk spins and their contribution to information scrambling in the presence of
defects, and insights into bulk-boundary correspondence [58]. Such investigationswill provide valuable insights
into the interplay between local defects and global properties of the system, including topological order and
long-range entanglement [59, 60].
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AppendixA. Eigenenergy spectrum

In this section, we present the eigen-energy spectrum for both the cleanmodel and various defective cases. The
eigen-energy spectrum for the cleanmodel is depicted infigure 10(a). This serves as the baseline for comparison
with defective cases, where the system’s inherent symmetries result in certain degeneracies within the energy
bands.

For defect-type 1, the introduction of an additional ZZ interaction at defect site 3 leads to the splitting of
energy bands, as illustrated infigure 10(b). This band splitting signifies the lifting of degeneracies present in the
originalmodel, a direct consequence of the symmetry breaking induced by the defect. In the case of
defect-type 2, which involves a bond strength defect, the defective bond causes not only a splitting of the energy
bands but also amodification of the overall energy scale of the system. The extent of these changes is dependent
on the strength of the defective bond. Similarly, defect-type 3, characterized by a bond strength flip defect,
results in the splitting of energy bands and an alteration of the systems energy scale. These effects are influenced
by the bond strengths Jy& Jz as depicted infigure 10(d). In summary, the introduction of defects into the system
leads to both the breaking of degeneracies and changes in the scale of eigenenergies. These alterations are
dependent on the nature and strength of the defects introduced.

Figure 10. (a)Eigenenergy spectrum for L = 8 spins of the cleanmodel as defined in equation (2) for Jz = Jy = 1 (b)Eigenenergy
spectrum for L = 8 spins for defect type 1 at position 3with Jz = Jy = 1 (c)Eigenenergy spectrum for L = 8 spins for defect type 2with
for Jz = Jy = 1 and Jdef = 2 at position 3 (d)Eigenenergy spectrum for L = 8 spins for defect type 2with for Jz = 1, Jy = 2 at position 3
(Note: All analysis is donewith periodic chains-PBC).
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Appendix B. Time evolution of ( )s tx
1

The time evolution of ( )s tx
1 is given byHeisenberg time evolutionwhich can be further expandedwith the help

of Baker-Campbell-Haunsdroff(BCH) [41] formula as,

⎡
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where [ ( )]sH t, x
n1 is the nested commutator obtained after computing [ [ [ ( )]s¼H H H t, , .n times .... , x

1 .

B.1. Type 1

• case 1:When defect occurs at an odd site, the defective bond is a y-y bond, thus resulting in the hamiltonian,

(

  

s s s s s s s s
s s s s s s s s

= + + + +
+ + + + +

- -

- + + + + +

H J .............

...........

z z y y z z
d
z

d
z

d
y

d
y

d
y

d
y

d
z

d
z

d
y

d
y

1 2 2 3 3 4 2 1

1 1

defective bond

1 2 2 3

where d=defect position. ( )s tx
1 under the evolution of the aboveHamiltonian has the form,

( ) ( ) ( ) ( )
( )!

( )
  

s s s s s s s s= + +
-

-
- - -

-t it J i
it

d
i J0 2 ........

1
2 ..... B2x x y z

d
d d d y x

d
x

d
y

1 1 1 2

1
1 1 1

1 1 1

Annihilator

• case 2:When defect occurs at an even site, the defective bond is a z-z bond, thus resulting in theHamiltonian,

(

  

s s s s s s s s
s s s s s s s s

= + + + +

+ + + + +
- -

- + + + + +

H J .............

...........

z z y y z z
d
y

d
y

d
z

d
z

d
z

d
z

d
y

d
y

d
z

d
z

1 2 2 3 3 4 2 1

1 1

defective bond

1 2 2 3

where d=defect position. ( )s tx
1 under the evolution of the aboveHamiltonian has the form,

( ) ( ) ( ) ( )
( )!

( )
  

s s s s s s s s= + +
-

-
- - -

-t it J i
it

d
i J0 2 ........

1
2 ..... B3x x y z

d
d d d y x

d
x

d
z

1 1 1 2

1
1 1 1

1 1 1

Annihilator

The operator of the annihilator terms in the BCH expansion gets terminatedwith ( )s sd
z

d
y for odd d(even d)

correspondingly that prohibits their growth. This in turn, results in the commutator:
[ ( ) ( )]s s = +t j d, 0 0 for 1x

j
x

1 with d= defect position.

B.2. Type 2
Whendefect occurs at a site d, it results in theHamiltonian,

( )
( ) (  

s s s s s s s s
s s s s s s s s

= + + + +
+ + + + +

- -

- + + + + +

H J

J J

.............

...........

z z y y z z
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z

d
z

d
z

d
z

d
y

d
y

1 2 2 3 3 4 2 1

def 1 1

defect

1 2 2 3

where d=defect position. ( )s tx
1 under the evolution of the aboveHamiltonian has the form,

( ) ( ) ( ) ( )
( )!

( )
  

s s s s s s s s= + +
-

+
-

- -
-t it J i

it

d
i

J

J
0 2 ........

1
2 ..... ........ B4x x y z

d
d d

d
y x

d
x

d
x

1 1 1 2

1
1 1

def
1 1 1

Annihilator

As the bond strength Jdef is gradually ramped up, theweight of the operator s s s s-.....y x
d
x

d
x

1 1 1 dies downdue to
which the subsequent nested commutators in the BCH expansion is heavily attenuated giving rise toOTOC
localization as illustrated in themain text of this article.
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B.3. Type 3

• case 1:When defect occurs at an odd site, it results in the hamiltonian,

  

s s s s s s s s

s s s s s s s s

= + + + +

+ + + + +
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H J J
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z d
y

d
y

y d
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1 2 2 3

where d=defect position. ( )s tx
1 under the evolution of the aboveHamiltonian has the form,
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• case 2:When defect occurs at an even site, it results in the hamiltonian,

  

s s s s s s s s

s s s s s s s s
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where d=defect position. ( )s tx
1 under the evolution of the aboveHamiltonian has the form,

( ) ( ) ( ) ( )
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AppendixC. Analysis of otherOTOCprobes

In this appendix, we present a detailed analysis of the behavior of YY/ZZ and otherOTOCprobes in the
presence of defects, and discuss their limitations in distinguishing between different defect configurations.

(i)YY&ZZOTOCS:TheYYOTOCprobe, ( ) ( ) ( ) ( )s s s sá ñt t0 0y
j
y y

j
y

1 1 fails to distinguish between defects at
odd and even sites. For example, at defect position d= 2 for type 1, the evolution is given by:

( ) ( ) ( ) ( )
!

( ) ( )
!

( ) ( )s s s s s s s= = + - + - + - +t d it iJ
it

J
it

iJ, 2 0 2
2

4
3

8 ....... C1y y x z y x z
1 1 1 2

2
2

1

3
3

1 2

While at position d= 3,

( ) ( ) ( ) ( )
!

( ) ( )s s s s s s s s= = + - + +t d it iJ
it

J, 3 0 2
2

4 C2y y x z y x x y
1 1 1 2

2
2

1 1 2 3

( )
!

( ) ( )s s s s s s s s s+ - + + +
it

iJ
3

8 2 ....... C3x z y x y z x y y
3

3
1 2 1 2 3 1 1 2 3

This leads us to [ ( ) ( )] [ ( ) ( )]s s s s= = = =t d t d, 2 , 0 , 3 , 0 0y
j
y y

j
y

1 1 for j= 3, 4,K.L indicating no distinction
between odd and even defect sites.

On the other hand, the ZZOTOC ( ) ( ) ( ) ( )s s s sá ñt t0 0z
j
z z

j
z

1 1 shows no evolution at all. For instance:

( ) ( ) ( ) ( ) ( )s s s s= = = =t d t d, 2 0 and , 3 0 C4z z z z
1 1 1 1

As a result, defects are not captured by the chosen ZZ andYYOTOCs, rendering themunsuitable for detecting
the defects considered in this study.

(ii)XX-OTOCwith i≠ 0,L: If theOTOCprobe is defined as ( ) ( ) ( ) ( )s s s sá ñt t0 0i
x

j
x

i
x

j
x for i≠ 1, L i.e. that is,

when the initial site i is not at the boundarywe observe a qualitative difference. Specifically, theOTOC scatters
from the end of the chainwhere the defect is absent. On the other hand, when examining the side of the chain
where the defect is present, theOTOCpropagation exhibits localization behavior as illustrated infigure 11.

AppendixD. Longer chains

To verify stability across system sizes, we analyzedOTOCpropagation in spin chains from8 to 14 spins using
numerical exact diagonalization as illustrated infigure 12.Our findings show that defect-induced localization of
information scrambling is consistent across all system sizes, confirming the effectiveness ofOTOCs for defect
detection. This supports our results and sets the stage for future studies on larger systems.
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