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We discuss one-dimensional(1D) spin compass model or 1D Kitaev model in the presence of local
bond defects. Three types of local disorders concerning both bond-nature and bond-strength that
occur on kitaev materials have been investigated. Using exact diagonalization, two-point spin-spin
structural correlations and four-point Out-of-Time-Order Correlators(OTOC) have been computed
for the defective spin chains. The proposed quantities give signatures of these defects in terms of their
responses to location and strength of defects. A key observation is that the information scrambling in
the OTOC space gets trapped at the defect site giving rise to the phenomena of localization of
information scrambling thus making these correlators a suitable diagnostic tool to detect and
characterize these defects.

1. Introduction

Spin Compass Models(SCM) [1] are spin models with nearest neighbour spin-spin interactions along directions
that are dependent on bond directions. A well-known SCM is the Kitaev’s Honeycomb spin model which
exhibits a quantum spin liquid (QSL)phase [2] supporting abelian and non-abelian anyonic excitations. This
model has an exotic phase diagram with rich topological properties that offer the promise of fault-tolerant
quantum computation. Along the materials side, with the recent blow-up of both theoretical and experimental
studies of the iridium-oxide materials [3], the o« — RuCl; [4] has garnered enormous attention. Particularly,
neutron scattering [5, 6] and thermal conductivity [7, 8] experiments have provided evidence that the Kitaev-
type interactions dominate the physics of @« — RuCl; thus making them suitable candidate materials for realizing
the Kitaev model. One of the main barriers in filling the gap between the theoretical predictions and real
materials is the presence of defects and disorders.

Defects in real materials change the physical properties of the system that usually do not have a counterpart
in their clean limit. Particularly, disorders like vacancies, impurities and lattice distortions that are inevitable in
these materials contribute to instabilities [9], divergences in their density of states [10] and localization
effects [11, 12]. On the other hand, such defects can also open up a plethora of new phases with unpaired
majorana modes [13, 14] that arise as twist defects as proposed by Bombin [15]. These defects being the
epicenter of these modes show braiding statistics that are tolerant to local perturbations. Recently, this
phenomena has been generalized to arbitrary tri-valent planar lattices with Kitaev-type interactions [ 16].
Pertaining to these reasons, the study of defects on pristine models becomes an essential venture as a part of
theoretical analysis of the aforementioned materials. Towards this direction, as a first step, we study in this article
various kinds of defects on the one-dimensional(1D) analog of 2D Kitaev model i.e. 1D compass model and
uncover characteristics of the system using structural and dynamical quantities. The signatures observed in these

© 2024 The Author(s). Published by IOP Publishing Ltd


https://doi.org/10.1088/1402-4896/ad7911
https://orcid.org/0000-0001-7888-2603
https://orcid.org/0000-0001-7888-2603
https://orcid.org/0000-0001-7436-5422
https://orcid.org/0000-0001-7436-5422
https://orcid.org/0000-0003-0574-5346
https://orcid.org/0000-0003-0574-5346
mailto:kais@purdue.edu
mailto:skais@ncsu.edu
https://crossmark.crossref.org/dialog/?doi=10.1088/1402-4896/ad7911&domain=pdf&date_stamp=2024-09-19
https://crossmark.crossref.org/dialog/?doi=10.1088/1402-4896/ad7911&domain=pdf&date_stamp=2024-09-19
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0

IOP Publishing Phys. Scr. 99 (2024) 105123 V Muruganandam et al

* = AV
'JX_,O///
NN

Correlations

1./3,
(a) (b) (c)

Figure 1. (a) 2D Kitaev model on a honeycomb model (b) decoupled 1D Kitaev chains (c) correlations for the clean limit of 1D Kitaev
model for L = 12 spins under periodic boundary conditions(PBC).

quantities, as we shall show in the following sections serve as diagnostic tools to detect, observe and characterize
the considered defects in real systems.

The paper is organized as follows: In section 2, we introduce the model, type of disorders and describe the
involved metrics and numerical methods. In section 3, we present the results of disorder effects on both
structural and dynamical properties of the ground state by computing different correlation measures that are
introduced in the previous section. Section 4 is the conclusion.

2. Models

2.1.Kitaev models
Kitaev model in 2D is abond-dependent interacting spin graph as shown in figure 1(a) given by the
Hamiltonian,
Hp = J« z U?U); + ]y Z
x—bonds y—bonds
xald +] Y, oios (1)
z—bonds

The above system belongs to the larger umbrella of SCMs wherein (o, 0, 0,) denote the usual pauli
matrices [17]. Such systems can also be realized on arbitrary trivalent graphs like square-octagon lattice [18-21]
within cyclooctatraene based polymeric platforms [22]. Recent studies have shown that the 2D Kitaev lattice can
be approximated by coupled 1D SCM chains [23-25] as shown in figure 1 and show interesting similarities [26]
in terms of its phase diagram and many other physical properties. This calls us to give extra attention to the one-
dimensional(1D) ZY SCM [27, 28] based on our convention. The 1D model is a bond-alternating spin-1/2 chain
with bond-dependent ZZ and YY interactions as shown in 1(b). The Hamiltonian is given by,

N/2 N/2
Hp=1Y, 05 105+ 1, 0505, @
i=1 i=1
where ], ] are the alternating bond strengths of y-bonds and z-bonds respectively. N typically denotes the
number of unit cells.

2.2. Clean limit

For the clean limit, the Kiteav model in 1D undergoes a continuous quantum phase transition(QPT) from a
phase with dominating zz correlations on odd bonds for Jz/Jy < 1 to a phase with dominating yy correlations on
even bonds for Jz/Jy > 1 as shown in 1(c) with transition point at ], = J,. We consider the following defects
inspired by twist and on-site disorders that occur in 2D QSL model and show that in its 1D limit, the structural
correlations and dynamic OTOCs can give signatures of these defects. For the sake of convenience, we have
considered the ZY model and the results obtained in this article are general and remain same for XY and XZ
models as well.

2.3. Defects

The pristine limit of the kitaev 1D model has alternating nature of o, — o (blue) & o, — o,(green) bonds with
alternating bond strengths Jz-Jz & Jy-Jy respectively as shown in 1(b). Any break in such alternating structure
with regards to bond nature or bond strength is considered to be defective. The kind of defects that we examine
in this paper are local defects that occur on a particular site concerning its local bonds. These defects are different
from the usual disorders that are either taken to occur at every site or at every nearest neighbour interaction (i.e.
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Figure 2. (a) Type 1: Bond nature-flip defect at an odd defect site 3 with yy coupling (b) Type 2: Bond-strength defect at defect site 3
with J4.rbeing the bond strength of disordered bonds and J the bond strength of other bonds. (¢) Type 3: Bond strength-flip defect at
defect site 3 with J, and ], being the bond strengths as shown. (blue: o, — o, bond, green: o, — o, bond).

bond) that are commonly studied in spin-chains. Bond flip and bond strength defects appear both in 1D and 2D
Kitaev Hamiltonians ubiquitously where the alternating structure is broken at the defect site. Firstly, we consider
defect of type 1 wherein the bond nature at the vicinity of the defect site is flipped and repeated say for instance,
the repeating o, — 0, bond at defect site 3 in figure 2(a) and the alternating nature is preserved before and after
the defect. The second type concerns the bond strengths wherein the bonds at the defect have a weaker bond
strength compared to the bonds elsewhere as in figure 2(b). The third type concerns the bond strength. At the
vicinity of the defect site, the bond strengths are repeated while the bond natures are preserved as shown in blue
and green i.e. the repeating Jy-Jy bond strengths at defect site 3 in figure 2(c). Note that in this manuscript, we do
not consider the effects of defect density; rather, we focus on cases of locally single defects and explore physical
quantities that can capture their signs. An additional motivation of studying these defects on a 1D model is the
appearance of these defects as effective 1D line defects [29] on 2D QSL. While our analysis primarily focuses on
two-point and four-point correlators for defect detection and observation, it is important to note that the
introduction of these defects also modifies the energy spectrum of the spin chain, as discussed in appendix A.

3. Metrics and methods

3.1. Spin-spin correlations

We compute 0705 and o} o} defined as in equation (3), correlations for spin chain upto L = 12 spins based on
Exact diagonalization by employing periodic boundary conditions(PBC). Further, we compare these correlation
plots with the clean limit (figure 1(c)) and look for signatures for these defects in terms of their structural
correlation measures.

(0%i-10%;) = Z <¢g|03i—lagi|¢g>
(05:0%i01) = D (Wglod; 0% 1) 3)

i
where 1), denotes the ground state of the considered defective spin chain types. The index i with the sum runs
over all the sites thus capturing any break in the bond nature or strength across the length of the defective spin
chains.

3.2. Out-of-time-order correlator(OTOC)

Out-of-Time-Order Correlator(OTOC) first introduced by Larkin and Ovchinnikov in the context of
superconductivity [30] has been exploited as a tool to provide interesting insights into physical systems. Most
considerably, OTOC being a dynamic quantity quantifies how local information belonging to local degrees of
freedom and operators spreads across global degrees of freedom of a quantum many-body system which is
typically inaccessible to local probes. This classifies OTOC as an quantity that gives information about the
scrambling dynamics of the considered physical model. Further, OTOC has found applications in the field of
quantum chaos ranging from condensed matter [7, 31, 32] to high-energy physics. The keyidea is the
connection between the growth exponent of OTOC called the butterfly velocity of information and Lyapunov
exponent indicating the onset of chaos [33—-35]. Moreover, Recent proposals have shown that OTOC serves as a
useful quantity to detect phase transitions such as Many-Body Localization(MBL) [36, 37]and dynamical phase
transitions [32, 38, 39]. The OTOC is a 4-point correlation measure defined as
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Figure 3. Space-time propagation of a general OTOC F(r, 1) signal.

FVI\;V (1) = (Wi (1) V;(0) W (¢) V;(0)) where (W, V) are local operators for sites (i,j) computed at time (t, 0)
respectively. Further, The OTOC signal with respect to this 4-point correlation function can be defined as

F(r = |i — j|, ) = (W) V{(0) Wi(t) V(0)) whose space-time propagation as shown in figure 3 can give insight into
information scrambling dynamics of the system thus making it a suitable probe for information propagation.
OTOC: by itselfis a complex quantity with the real part related to the squared commutator

Cij(®) = (W), ViOTTWi(0), V;O1) = (IIWi(®), V;(O)IP) = 2(1 — Re[F;;(#)]). Recently, It has been
shown that the imaginary part of OTOC also possesses interesting properties of the physical system [40] that in
turn is given by both commutators as well as anti-commutator of the local operators W & Vrespectively. The
real and imaginary of the OTOC is associated to the commutator and anti-commutator as follows,

(IWi(®), V;(O1P) = 2(1 — Re[Fwv (r, H)]) 4)
(IW:(®), V(O {Wi (1), V;(0)}) (€)
=2(1 = Im[Fyy (r, 1)]) (6)

Since both the real and imaginary parts of OTOC in equations (4)—(6) contain the common commutator,
evaluation of the commutator becomes necessary. The dynamics of OTOC is controlled by the Heisenberg
evolution of W(t) and analytical expressions for the same could be in principle derived using Baker-Campbell-
Haunsdroff(BCH) expansion [41]. For our model, we choose the operator XX (¢, o) as the OTOC operator
based on our observations that other YY and ZZ OTOC:s do not capture the information about the defects.
Towards this end, we dedicate a separate section of appendix (see Appendix: C(i)) to elucidate why the YY and
Z7Z OTOCs do not qualify for detecting the aforementioned defects. Furthermore, if i is taken as a site residing
not at the boundary, there is scattering from the open ends of the chain as illustrated in Appendix: C(ii).
Therefore, we fixi = 1 and varyj = 1, 2, 3......L in order to see how local information spreads from one end of the
chain to its other end in the presence of aforementioned defects alone. The OTOC probe takes the form,

(o7 (1) Uf 0)o7 (¥) U}C (0)) defined as in equation (8). We compute the OTOC signal by means of Exact
Diagonalization(ED) for spin chains upto L = 12 spins under open boundary conditions (OBC).

(0T (O 0T (1% (0)) = @)
(Welot (0% (0) o5 (1) o5 (0) i) ®)

where 1), denotes the ground state of the considered defective spin chain types and jis varied asj = 1, 2, 3......L.

4. Results

4.1. Correlation signal

In case of type 1, we plot ZZ and YY correlation functions defined by equation (3) corresponding to two different
qualitative situation. i.e. when the defect is at an odd site vs when the defect is at an even site. The ordering of ZZ
versus YY is symmetric as is in the clean only when the number of o, — o, bonds is equal to number of o, — 0,
bonds. We find that QPT point at ], = ], is shifted in the case of even defect site to J, = 0.5 J,, while it remains
same for odd defect site. This is because for the former case, the total number of o, — 0,bondsand o, — o,
bonds are same and for the later case they are different. We observe that the transition point is strongly
susceptible to number of bonds and is proportional to the ratio of number of o, — o, bonds over the number of
0, — 0,bonds as shown in figure 4. This relationship highlights the competition between o, — o, interactions
and o, — 0, interactions that determines the system’s critical behavior. The sensitivity to bond ratio underscores
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Figure 4. Type 1: (a) Correlation functions for defect at position 3 (b) Correlation functions for defect at position 6.
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Figure 5. Type 2: Correlation functions for defect at position 4 with J; = J, = 1 and Js,svaried w.r.t fixed J.. Both ZZ(red) and
YY(green) correlations coincide with each other.

the an-isotropic nature of the spin compass model [27], distinguishing it from isotropic systems. This
proportionality suggests a scaling relationship that arises due to finite-size affects. As system size increases, we
expect the transition point to converge to a fixed value in the thermodynamic limit which we leave for future
analysis. However, the OTOC marker as we shall show in the following sections clearly gives distinct signatures
w.r.t different considered defects.

For type 2, we fix bond strengths of the bonds that are not defective to be J, = J, = Jand vary the bond
strength of the defective bonds alone with J4.r. The ZZ and YY correlations are plotted as a function of defect
strength fixing a defect site. We see that these correlations decay as we ramp the defect strength until Jg.¢ = J post
which it saturates as the entire contribution of these correlation quantities comes only from the defective bonds
as shown in figure 5.

In case of type 3, we plot ZZ and YY correlation functions corresponding to two cases as taken in type 1. For
the defect at site 3, The QPT at ], = ], stays while interestingly for defect at site 6, although the ZZ and YY spin
ordering follows a trend, the sharp QPT at J, = J, is no more present. The behaviours of correlations is quite
different from the case 1. For example, the ZZ correlations here are not zero when J, — 0 as only the bond
strengths are disordered while the alternating bond nature exists. This contributes to finite value of the
correlations aslong as J, = 0 as shown in figure 6.

4.2.0TOC signal
In this section, we plot the real and imaginary parts of the OTOC signal defined by equation (8) for 1D spin chain
oflength up to L = 12 for all defect types.

For type 1, the OTOC signal does not propagate beyond the defect site as evidentiated by numerical
evidences in figures 7. Both the real and imaginary parts of the considered XX-OTOC entirely capture the
position of the defects. These observations can further be well understood and corroborated by BCH expansion
of o7 (). In the BCH expansion of o7 () (See appendix B), there are annihilator-like terms (equations (B2)- B3)
that prevent the growth of the operator’s length beyond the defect site. Hence, the commutator which appears
both in real and imaginary parts of the OTOC signal: [07 (¢), a}c O] =0forj = d + 1,d + 2,..n
with d = defect position. This explains the observations in figures 7 wherein the information propagation as well
as scrambling is absent beyond the defect site thus giving rise to the phenomenon of Localization of information
scrambling.
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Figure 6. Type 3: (a) Correlation functions for defect at position 3 (b) Correlation functions for defect at position 6.
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Figure 7. Type 1: (a) space-time propogation of real part of OTOC F,(r, t) for defect at position 3 (b) Real part of individual OTOCs in
time (c) space-time propogation of imaginary part of OTOC F,.(r, f) for defect at position 3 (d) imaginary part of individual OTOCs in
time (e) space-time propogation of imaginary part of OTOC F,.(r, t) for defect at position 6 (f) Real part of individual OTOCs in time
(g) space-time propogation of imaginary part of OTOC F,.(r, t) for defect at position 6 (h) Imaginary part of individual OTOCs in
time.

The short time behavior of OTOC can be obtained by Baker-Campbell-Haunsdroff(BCH) [41] expansion
and we show here closed form expressions for periodic OTOCs observed in figures 7(a) & (b) as listed in
equations When the defect position is situated far from the first site, the OTOC exhibits reduced periodicity, as
illustrated in figure 7(f). This loss in periodicity indicates the involvement of higher-order harmonics and the
onset of scrambling, making it challenging to derive closed-form expressions using Baker-Campbell-Hausdorff
(BCH) expansions. Typically, the frequency of the OTOC varies as ~ [ 4 J*, where J,and J are the coupling
strengths for the o, — 0, and o, — o, interactions, respectively. The butterfly [42] or the scrambling time which
defines the time for which local degrees of freedom scrambles into global degrees scales as % Consequently, any
alterations in bond strengths or types are reflected in the propagation patterns of these OTOC:s. This relationship
between the OTOC behavior and the underlying spin chain parameters provides valuable insights into the
system’s quantum dynamics and the impact of defects on information propagation.

1 — Re[o{ (1), 07 (0) a7 (1), 07 (0)] )
= 2sin’([2 + 2 1) (10)
1 — Re[o7 (1), 03(0)07 (1), 03(0)] (11)
::gnazjﬁrl7ft) (12)
1 — Re[o{ (), 05(0)a7 (1), 05(0)] (13)

=sin®(JJ2 + J} t) (14)

For type 2, the OTOC signal propagates giving signs of the defect as the bond strength of the defective bonds J4.r
isincreased as in figure 8. Both the real and imaginary parts of the considered XX-OTOC captures the defects
(marked in red). The reason for these observations is understood by the BCH expansion of o7 (¢). In the BCH
expansion of o7 (¢), the annihilator-like terms as in B4 for type 2 defects, has an amplitude or weight that
depends on the defective bond strength J4.r. This explains the observations in figures 8 wherein the information
propagation as well as scrambling is localized in the illustrated fashion giving necessary signs of the defects.
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(b)

Figure 8. Type 2, for J, = ], = 1, (a) space-time propagation of real part of OTOC F,.(r, t) for defect at position 3 for J4ef = 0.5
(defective bond strength) (b) space-time propagation of imaginary part of OTOC F,,(, t) for defect at position 3 for J4.f = 0.5
(defective bond strength) (c) space-time propagation of real part of OTOC F,(r, t) for defect at position 3 for J4.f = 2 (OTOC sign at
the defect site marked in red) (d) space-time propagation of imaginary part of OTOC F,(r, t) for defect at position 3 for Jger = 2
(OTOC sign at the defect site marked in red).

Figure 9. Type 3, (a) space-time propagation of real part of OTOC F,.(r, ) for defect at position 3 with ], = 10, Jz = .1 (b) space-time
propagation of imaginary part of OTOC Fi(r, t) for defect at position 3 with J, = 10, Jz = .1 (c) space-time propagation of real part of
OTOC Fy(r, t) for defect at position 6 with ], = .1, Jz = 1 (d) space-time propagation of imaginary part of OTOC F..(r, t) for defect at
position 6 with ], = .1, Jz = 1 (site 3 corresponds to odd site so ], > J, and site 6 corresponds to even sitei.e. J, > J, as elucidated
above).

For type 3, the OTOC signal does not propagate beyond the defect site as shown in figure 9. Similar to the
above cases, both the real and imaginary parts of the considered XX-OTOC capture defect signatures. The
annihilator-like terms (equations (B5)- B6) in the BCH expansion of o§ (¢) has an amplitude that depends on the
ratio ]l for an odd defect site and ratio ]l for even defect site. By tuning this ratio, OTOC signal can be made

localizyed thus giving suitable signs of thze defects.

5. Conclusion

We have studied defects on pristine 1D Kitaev model using structural and dynamical quantities. We have
presented ways to realize three types of disorders that are prevalent in Kitaev materials. In particular, the effects
of disorder on the spin-spin correlations and OTOCs within the ground-state manifold of our defective models
have been investigated. We have considered 3 types of disorder: bond nature-flip, bond-strength, bond strength-
flip disorders. Though these disorders are quite different, they behave similar in terms of their responses to the
OTOC signal probe i.e. they cause localization in the OTOC space thus illustrating prohibited information
scrambling across the length of the spin-chain. Regardless of this localization phenomena, the disorders show
quite unique signatures of themselves in the OTOC space. This makes OTOC:s as suitable detection tools
susceptible to different defects in the model. In terms of physical realization, not only can OTOCs be measured
in an experimental setup [43], circuit-based measurements of OTOCs on state-of the art quantum computers
have also been achieved [44—47]. Moreover, in superconducting Circuit quantum electrodynamics(CQED)
setting [48], the above-discussed defective models can be realized using superconducting circuits [45, 49]
wherein the defective qubit along with its local bonds can be used as a control qubit that controls the entire
scrambling dynamics of the circuit.

Though we have considered only time-independent and static disorders, the OTOC signal proposed in this
article, given its spatio-temporal dependence can be used to detect time-dependent perturbations too upon the
clean model. A special consideration is floquet or periodic time-dependent perturbations wherein the relevant
quantity to consider is the Floquet OTOC [39, 50, 51]. Such systems have shown to exhibit interesting phases
such as time crystals and MBL [52-55]. These reasons serve as motivating factors for a future study of these
phases in 1D kitaev model. Additionally, as a natural extension, study of OTOC propagation in 2D Kitaev model
can give insights into defects and fundamental excitations. Apart from exploring higher dimensions, another
promising future direction is to extend our analysis to larger system sizes using advanced numerical techniques
such as tensor network methods [56, 57]. In this manuscript, the stability of the results has been checked for spin

7



IOP Publishing Phys. Scr. 99 (2024) 105123 V Muruganandam et al

5@ 5[() 6/© r@
4
5
2
2 @ 0 @ 0 © 0
w & & &
2
5
-4
5 5 6 -10
0 100 200 300 ¢ 100 200 300 0 100 200 300 0 100 200 300
Eigenstate Index Eigenstate Index Eigenstate Index Eigenstate Index
Figure 10. (a) Eigenen.ergy spectrum for L = 8 sPi.ns of the clean model as de.ﬁned in equation (2) for J, = J, =1 (b) Eigenenergy .
spectrum for L = 8 spins for defect type 1 at position 3 with J, = J, = 1 (c) Eigenenergy spectrum for L = 8 spins for defect type 2 with
for J, = J, = 1and J ;s = 2 at position 3 (d) Eigenenergy spectrum for L = 8 spins for defect type 2 with for J, = 1, ], = 2 at position 3
(Note: All analysis is done with periodic chains-PBC).

chains of length ranging from 8 to 14 spins using ED(see appendix D). Advanced techniques will allow us to
investigate the behavior of bulk spins and their contribution to information scrambling in the presence of
defects, and insights into bulk-boundary correspondence [58]. Such investigations will provide valuable insights
into the interplay between local defects and global properties of the system, including topological order and
long-range entanglement [59, 60].
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Appendix A. Eigenenergy spectrum

In this section, we present the eigen-energy spectrum for both the clean model and various defective cases. The
eigen-energy spectrum for the clean model is depicted in figure 10(a). This serves as the baseline for comparison
with defective cases, where the system’s inherent symmetries result in certain degeneracies within the energy
bands.

For defect-type 1, the introduction of an additional ZZ interaction at defect site 3 leads to the splitting of
energy bands, as illustrated in figure 10(b). This band splitting signifies the lifting of degeneracies present in the
original model, a direct consequence of the symmetry breaking induced by the defect. In the case of
defect-type 2, which involves a bond strength defect, the defective bond causes not only a splitting of the energy
bands but also a modification of the overall energy scale of the system. The extent of these changes is dependent
on the strength of the defective bond. Similarly, defect-type 3, characterized by abond strength flip defect,
results in the splitting of energy bands and an alteration of the systems energy scale. These effects are influenced
by the bond strengths J, & J, as depicted in figure 10(d). In summary, the introduction of defects into the system
leads to both the breaking of degeneracies and changes in the scale of eigenenergies. These alterations are
dependent on the nature and strength of the defects introduced.
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Appendix B. Time evolution of o} (¢)

The time evolution of o7 (¢) is given by Heisenberg time evolution which can be further expanded with the help
of Baker-Campbell-Haunsdroff(BCH) [41] formula as,
oy (t) = eMltoy (0)e it

(it)?

2!

=07(0) + it[H, o] + [H, [H, o7]] + ....... [H, Jf‘] (B1)

where [H, o7 (t)], is the nested commutator obtained after computing [H, [H,....n times....[H, o7 (¢)].
B.1.Typel

+ case 1: When defect occurs at an odd site, the defective bond is a y-y bond, thus resulting in the hamiltonian,

H=]J(cio5+ a5} + 0505 + e + 054,05,
y Y 5 z oz Y
+ 05 103+ 05051+ 040104400+ g 505,35 T v
a-td  aratd

defective bond

where d=defect position. o} (t) under the evolution of the above Hamiltonian has the form,

X x : : z (it)d71 d—1;d—1yd—1
o1 (t) = 07(0) + it(J2io] 73)........ =201y g

- D OF e Og_10Y (B2)

Annihilator

+ case 2: When defect occurs at an even site, the defective bond is a z-z bond, thus resulting in the Hamiltonian,

defective bond

where d=defect position. o7 (¢) under the evolution of the above Hamiltonian has the form,

s )41 .
o (t) = o7 (0) + it(J2i0] 75)enn... +%2d‘lzd‘l]d‘la{0f ..... oy 05 (B3)

Annihilator

The operator of the annihilator terms in the BCH expansion gets terminated with o7 (7)) for odd d(even d)
correspondingly that prohibits their growth. This in turn, results in the commutator:
[o7(?), cr}‘ (0)] = 0forj > d + 1withd = defect position.

B.2. Type2
When defect occurs at a site d, it results in the Hamiltonian,

H=J(oid}+ dbal + o505 + covvenne. + 05.,05_)

+ Jaet (0)_ 10 4 0505,:1) + J(05410050 + 040005+ e,

defect

where d=defect position. o7 (¢) under the evolution of the above Hamiltonian has the form,

AR T
de‘lzd‘ll—alyaf ..... o IR Yo T S (B4)

(d—1)! Jaef

Annihilator

of () = o7(0) + it(J2i0] 03)........ +

As the bond strength J.¢is gradually ramped up, the weight of the operator of o7 ..... 0j_, 05 dies down due to
which the subsequent nested commutators in the BCH expansion is heavily attenuated giving rise to OTOC
localization as illustrated in the main text of this article.
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B.3.Type3

« case 1: When defect occurs at an odd site, it results in the hamiltonian,
H = J,0{05 + J,0505 + 0505 4 cevvvrnee. + 05,05,

Y Y z 12 y y z z
+ ])’ 0419, + ]y0d0d+1 + ]Zad+10d+2 + ]y0d+20_d+3 F o

defect

where d=defect position. o7 (¢) under the evolution of the above Hamiltonian has the form,

Nd1 a
deflid”walyoi‘ ----- 0i10y (B3)
d—-1n! Jy

Annihilator

o (t) = o7 (0) + it (J,2i0] 73) ceuv.... +

« case 2: When defect occurs at an even site, it results in the hamiltonian,
H = J,0{05 + J,000% + 0505 4 cevevveuce. + 0,0,

z z y Y
+Log0q+ L0y + 1000000+ L0005t s

defect

where d=defect position. o7 (¢) under the evolution of the above Hamiltonian has the form,

-1 d
ot (t) = o7 (0) + it (J,2i0] 05) ceuren. + (Zti 1)'2‘1 1jd— 1(sz) 0l 0f w0105 (B6)

Annihilator

Appendix C. Analysis of other OTOC probes

In this appendix, we present a detailed analysis of the behavior of YY/ZZ and other OTOC probes in the
presence of defects, and discuss their limitations in distinguishing between different defect configurations.

(1) YY & ZZ OTOCS: The YY OTOC probe, (a7 (¢) a]y» ©0)al (1) a]y» (0)) fails to distinguish between defects at
odd and even sites. For example, at defect position d = 2 for type 1, the evolution is given by:

al(t,d =2) = d/(0) + it(—2iJo{o3) + ﬂ( 4J%q)) + (It) ( 8iJ°0705) + . (CD
While at positiond = 3,
al(t, d =3) = d](0) + it(—2iJo705) + (it ) 4]2(0r1 + ofo3a}) (C2)
(’t) 3 y
31 ——8iJ°(—=20{ 05 + ol 050} + oiofdhd%) + ....... (C3)

Thisleads usto [o] (¢, d = 2), ay 0)] = [0 (&, d = 3), ay (0)] = Oforj=3,4,....Lindicating no distinction
between odd and even defect s1tes
On the other hand, the ZZ OTOC (o7 (¢) a5(0)oi(t)o] (0)) shows no evolution at all. For instance:

oi(t,d=2) = o0f(0)and o{(t, d = 3) = 0{(0) (C4)

As aresult, defects are not captured by the chosen ZZ and YY OTOC:s, rendering them unsuitable for detecting
the defects considered in this study.

(ii) XX-OTOC with i = 0, L: If the OTOC probe is defined as (o7 (t) 05 (0) o7 (t) 07 (0)) for i = 1, Li.e. that s,
when the initial site 7 is not at the boundarywe observe a qualitative difference. Specifically, the OTOC scatters
from the end of the chain where the defect is absent. On the other hand, when examining the side of the chain
where the defect is present, the OTOC propagation exhibits localization behavior as illustrated in figure 11.

Appendix D. Longer chains

To verify stability across system sizes, we analyzed OTOC propagation in spin chains from 8 to 14 spins using
numerical exact diagonalization as illustrated in figure 12. Our findings show that defect-induced localization of
information scrambling is consistent across all system sizes, confirming the effectiveness of OTOC:s for defect
detection. This supports our results and sets the stage for future studies on larger systems.
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Figure 11.0TOC (1 — Re[{(07(t)07(0) 0} (t)07(0))]) propagation: (a) In the presence of defect 1 at position 9. (b) In the presence of
defect 2 at position 9. (¢) In the presence of defect 3 at position 9.

] 2 8 4 86 6 7 8 9 101 12

Figure 12. OTOC (1 — Re[ (o} (1) (0)of (t) o} (0))]) propagation: (a)-(d) In the presence of defect 1 at position 3 for spin chains of
lengths L = 8,10, 12, 14 respectively. (e)-(h) In the presence of defect 2 at position 3 for spin chains of lengths L = 8,10, 12, 14
respectively. (i)-(1) In the presence of defect 3 at position 3 for spin chains of lengths L = 8, 10, 12, 14 respectively.
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