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I. INTRODUCTION

In quantum chemistry calculations, the correlation energy is defined as the

energy error of the Hartree–Fock wavefunction, that is, the difference between

the Hartree–Fock limit energy and the exact solution of the nonrelativistic

Schrödinger equation [1]. Different types of electron correlation are often distin-

guished in quantum chemistry such as dynamical and nondynamical [2], radial

versus angular correlation for atoms, left–right, in–out and, radial correlation for

diatomic molecules, and weak and strong correlation for solids. There also exists

other measures of electron correlation in the literature such as the statistical

correlation coefficients [3] and more recently the Shannon entropy as a measure

of the correlation strength [4–8]. Correlation of a quantum many-body state

makes the one-particle density matrix nonidempotent. Therefore the Shannon

entropy of the natural occupation numbers measures the correlation strength

on the one-particle level [7]. Electron correlations have a strong influence on

many atomic, molecular [9], and solid properties [10]. The concept of electron

correlation as defined in quantum chemistry calculations is useful but not

directly observable; that is, there is no operator in quantum mechanics that its

measurement gives the correlation energy. Moreover, there are cases where

the kinetic energy dominates the Coulomb repulsion between electrons, so the

electron correlation alone fails as a correlation measure [6].

Entanglement is a quantum mechanical property that describes a correlation

between quantum mechanical systems and has no classical analogue [11–15].

Schrödinger was the first to introduce these states and gave them the name

‘‘Verschränkung’’ to a correlation of quantum nature [16]: ‘‘For an entangled

state the best possible knowledge of the whole does not include the best possible

knowledge of its parts.’’ Latter, Bell [17] defined entanglement as ‘‘a correlation

that is stronger than any classical correlation.’’ Thus it might be useful as

an alternative measure of electron–electron correlation in quantum chemistry

calculations.

Ever since the appearance of the famous EPR Gadanken experiment [18], the

phenomenon of entanglement [19], which features the essential difference

between classical and quantum physics, has received wide theoretical and

experimental attention [17, 20–25]. Generally, if two particles are in an

entangled state then, even if the particles are physically separated by a great dis-

tance, they behave in some respects as a single entity rather than as two separate

entities. There is no doubt that the entanglement has been lying in the heart of

the foundation of quantum mechanics.

A desire to understand quantum entanglement is fueled by the development

of quantum computation, which started in the 1980s with the pioneering work of

Benioff [26], Bennett [27], Deutsch [28], Feynman [29] and Landauer [30] but

gathered momentum and research interest only after Peter Shor’s revolutionary
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discovery [31] of a quantum computer algorithm in 1994 that would efficiently

find the prime factors of composite integers. Since integer factorization is the

basis for cryptosystems used for security nowadays, Shor’s finding will have a

profound effect on cryptography. The astronomical power of quantum computa-

tions has researchers all over the world racing to be the first to create a practical

quantum computer.

Besides quantum computations, entanglement has also been at the core of

other active research such as quantum teleportation [32, 33], dense coding

[34, 35], quantum communication [36], and quantum cryptography [37]. It is

believed that the conceptual puzzles posed by entanglement have now become

a physical source of novel ideas that might result in applications.

A big challenge faced by all of the above-mentioned applications is to pre-

pare the entangled states, which is much more subtle than classically corre-

lated states. To prepare an entangled state of good quality is a preliminary

condition for any successful experiment. In fact, this is not only an experimen-

tal problem but also poses an obstacle to theories, since how to quantify entan-

glement is still unsettled; this is now becoming one of the central topics in

quantum information theory. Any function that quantifies entanglement is

called an entanglement measure. It should tell us how much entanglement

there is in a given mutipartite state. Unfortunately, there is currently no con-

sensus as to the best method to define an entanglement for all possible multi-

partite states. And the theory of entanglement is only partially developed [13,

38–40] and for the moment can only be applied in a limited number of scenar-

ios, where there is an unambiguous way to construct suitable measures. Two

important scenarios are (i) the case of a pure state of a bipartite system, that is,

a system consisting of only two components and (ii) a mixed state of two spin-
1
2

particles.

When a bipartite quantum system AB describe by HA � HB is in a pure state,

there is an essentially well-motivated and unique measure of the entanglement

between the subsystems A and B given by the von Neumann entropy S. If we

denote with rA the partial trace of r 2 HA � HB with respect to subsystem B,

rA ¼ TrBðrÞ, the entropy of entanglement of the state r is defined as the von

Neumann entropy of the reduced density operator rA, SðrÞ � �Tr½rA

log2 rA	. It is possible to prove that, for the pure state, the quantity S does

not change if we exchange A and B. So we have SðrÞ � �
Tr½rA log2 rA	 � �Tr½rB log2 rB	: For any bipartite pure state, if an entang-

lement EðrÞ is said to be a good one, it is often required to have the following

properties [14]:


 Separability: If r is separable, then EðrÞ ¼ 0.


 Normalization: The entanglement of a maximally entangled state of two

d-dimensional systems is given by E ¼ logðdÞ.
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 No Increase Under Local Operations: Applying local operations and clas-

sically communicating cannot increase the entanglement of r.


 Continuity: In the limit of vanishing distance between two density matrices,

the difference between their entanglement should tend to zero.


 Additivity: A certain number N of identical copies of the state r should con-

tain N times the entanglement of one copy.


 Subadditivity: The entanglement of the tensor product of two states should

not be larger that the sum of the entanglement of each of the states.


 Convexity: The entanglement measure should be a convex function, that is,

Eðlrþ ð1� lÞsÞ � lEðrÞ þ ð1� lÞEðsÞ for 0 <l <1:

For a pure bipartite state, it is possible to show that the von Neumann entropy

of its reduced density matrix, SðrredÞ ¼ �Trðrred log2 rredÞ, has all the above

properties. Clearly, S is not the only mathematical object that meets the require-

ment, but in fact, it is now basically accepted as the correct and unique measure

of entanglement.

The strict definitions of the four most prominent entanglement measures can

be summarized as follows [14]:


 Entanglement of distillation ED.


 Entanglement of cost EC.


 Entanglement of formation EF .


 Relative entropy of entanglement ER.

The first two measures are also called operational measures, while the second

two don’t admit a direct operational interpretation in terms of entanglement

manipulations. Suppose E is a measure defined on mixed states that satisfy

the conditions for a good measure mentioned above. Then we can prove that

for all states r 2 ðHA � HBÞ, EDðrÞ � EðrÞ � ECðrÞ, and both EDðrÞ and

ECðrÞ coincide on pure states with the von Neumann reduced entropy as demon-

strated earlier.

A. Entanglement of Formation and Concurrence

At the current time, there is no simple way to carry out the calculations with all

these entanglement measures. Their properties, such as additivity, convexity, and

continuity, and relationships are still under active investigation. Even for the

best-understood entanglement of formation of the mixed states in bipartite

systems AB, once the dimension or A or B is three or above, we don’t know

how to express it simply, although we have the general definitions given pre-

viously. However, for the case where both subsystems A and B are spin-1
2

parti-

cles, there exists a simple formula from which the entanglement of formation

can be calculated [42].
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Given a density matrix r of a pair of quantum systems A and B and all

possible pure-state decompositions of r

r ¼
X

i

pijciihcij ð1Þ

where pi are the probabilities for ensembles of states jcii, the entanglement E is

defined as the entropy of either of the subsystems A or B:

EðcÞ ¼ �TrðrA log2 rAÞ ¼ �TrðrB log2 rBÞ ð2Þ

The entanglement of formation of the mixed r is then defined as the average

entanglement of the pure states of the decomposition [42], minimized over all

decompositions of r:

EðrÞ ¼ min
X

i

pi EðciÞ ð3Þ

For a pair of qubits this equation can be written [42–44]

EðrÞ ¼ eðCðrÞÞ ð4Þ

where e is a function of the ‘‘concurrence’’ C:

eðCÞ ¼ h
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2
p

2

 !
ð5Þ

where h in the binary entropy function [20]

hðxÞ ¼ �x log2 x� ð1� xÞ log2ð1� xÞ ð5Þ

In this case the entanglement of formation is given in terms of another entangle-

ment measure, the concurrence C [42–44]. The entanglement of formation varies

monotonically with the concurrence. From the density matrix of the two-spin

mixed states, the concurrence can be calculated as follows:

CðrÞ ¼ max½0; l1 � l2 � l3 � l4	 ð6Þ

where li are the eigenvalues in decreasing order of the Hermitian matrix

R �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r
p

r
� ffiffiffi

r
pq

with r
� ¼ ðsy � syÞr�ðsy � syÞ. Here sy is the Pauli matrix of
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the spin in the y direction. The concurrence varies from C ¼ 0 for a separable

state to C ¼ 1 for a maximally entangled state. The concurrence as a measure of

entanglement will be used in Section II to discuss tuning and manipulating the

entanglement for spin systems.

B. Entanglement Measure for Fermions

As we discussed in the previous section, for distinguishable particles, the most

suitable and famous measure of entanglement is Wootters’ measure [42], the

entanglement of formation or concurrence. Recently, Schlieman and co-workers

[45, 46] examined the influence of quantum statistics on the definition of entan-

glement. They discussed a two-fermion system with the Slater decomposition

instead of Schmidt decomposition for the entanglement measure. If we take

each of the indistinguishable fermions to be in the single-particle Hilbert space

CN , with fm; f
þ
m ðm ¼ 1; . . . ;NÞ denoting the fermionic annihilation and creation

operators of single-particle states and j�i representing the vacuum state, then a

pure two-electron state can be writtenX
m;n

omnfþm fþn j�i;

where omn ¼ �onm.

Analogous to the Schmidt decomposition, it can be proved that every j�i can

be represented in an appropriately chosen basis in CN in a form of Slater decom-

position [45],

j�i ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
i¼1 jzij2

q XK

i¼1

zif
þ
a1ðiÞf

þ
a2ðiÞj�i ð7Þ

where fþ
a1ðiÞj�i; f

þ
a2ðiÞj�i, i ¼ 1; :::;K; form an orthonormal basis in CN . The num-

ber of nonvanishing coefficients zi is called the Slater rank, which is then used

for the entanglement measure. With similar technique, the case of a two-boson

system is studied by Li et al. [47] and Paškauskas and you [48].

Gittings and Fisher [49] put forward three desirable properties of any

entanglement measure: (i) invariance under local unitary transformations;

(ii) noninvariance undernonlocal unitary transformations; and (iii) correct

behavior as distinguishability of the subsystems is lost. These requirements

make the relevant distinction between one-particle unitary transformation

and one-site unitary transformations. A natural way to achieve this distinction

[49] is to use a basis based on sites rather than on particles. Through the

Gittings–Fisher investigation, it is shown that all of the above-discussed

entanglement measures fail the tests of the three criteria. Only Zanardi’s
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measure [50] survives, which is given in Fock space as the von Neumann

entropy, namely,

Ej ¼ �Trrj log2 rj; rj ¼ Trjjcihcj ð8Þ

where Trj denotes the trace over all but the jth site and c is the antisymmetric

wavefunction of the studied system. Hence Ej actually describes the entangle-

ment of the jth site with the remaining sites. A generalization of this one-site

entanglement is to define an entanglement between one L-site block with the

rest of the system [51],

EL ¼ �TrðrL log2 rLÞ ð9Þ

C. Entanglement and Ranks of Density Matrices

In this section we review the known theorems that relate entanglement to the

ranks of density matrices [52]. The rank of a matrix r, denoted as rankðrÞ, is

the maximal number of linearly independent row vectors (also column vectors)

in the matrix r. Based on the ranks of reduced density matrices, one can derive

necessary conditions for the separability of multiparticle arbitrary-dimensional

mixed states, which are equivalent to sufficient conditions for entanglement

[53]. For convenience, let us introduce the following definitions [54–56]. A

pure state r of N particles A1;A2; . . . ;AN is called entangled when it cannot

be written

r ¼ rA1
� rA2

� � � � � rAN
¼
ON

i¼1

rAi
ð10Þ

where rAi
is the single-particle reduced density matrix given by rAi

� TrfAjgðrÞ
for fAjjall Aj 6¼ Aig. A mixed state r of N particles A1;A2; :::;AN , described by

M probabilities pj and M pure states rj as r ¼
PM

j¼1 p
j
rj, is called entangled

when it cannot be written

r ¼
XM
j¼1

pj

ON

i¼1

rj
Ai

ð11Þ

where pj > 0 for j ¼ 1; 2; :::;M with
PM

j¼1 pj ¼ 1.

Now we are in a position to list the separability conditions without proof.

(The reader who is interested in the formal proofs can consult the paper by

Chong, Keiter, and Stolze [53].
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Lemma 1 A state is pure if and only if the rank of its density matrix r is equal

to 1, that is, rankðrÞ ¼ 1.

Lemma 2 A pure state is entangled if and only if the rank of at least one of its

reduced density matrices is greater than 1.

Lemma 3 Given a pure state r, if its particles are separated into two parts U

and V, then rankðrUÞ ¼ 1 holds if and only if these two parts are separable, that

is, r ¼ rU � rV .

Now we can discuss the necessary conditions for separable states. For conve-

nience, we will use the following notation. For a state r of N particles

A1;A2; . . . ;AN , the reduced density matrix obtained by tracing r over particle

Ai is written rRðiÞ ¼ TrAi
ðrÞ, where RðiÞ denotes the set of the remaining

ðN � 1Þ particles other than particle Ai. In the same way, rRði;jÞ ¼
TrAj
ðrRðiÞÞ ¼ TrAj

ðTrAi
ðrÞÞ ¼ TrAi

ðTrAj
ðrÞÞ denotes the reduced density matrix

obtained by tracing r over particles Ai and Aj, rRði;j;kÞ ¼ TrAi
ðTrAj

ðTrAk
ðrÞÞÞ,

and so on. In view of these relations, r can be called the 1-level-higher density

matrix of rRðiÞ and 2-level-higher density matrix of rRði;jÞ; rRðiÞ can be called the

1-level-higher density matrix of rRði;jÞ and 2-level-higher density matrix of

rRði;j;kÞ; and so on.

Now let us define the separability condition theorem [53]. If a state r of N

particles A1;A2; :::;AN is separable, then the rank of any reduced density matrix

of r must be less than or equal to the ranks of all of its 1-level-higher density

matrices; that is,

rankðrRðiÞÞ � rankðrÞ ð12Þ

holds for any Ai 2 fA1;A2; . . . ;ANg; and

rankðrRði;jÞÞ � rankðrRðiÞÞ; rankðrRði;jÞÞ � rankðrRðjÞÞ ð13Þ

holds for any pair of all particles.

This will lead to the conditions for a mixed state to be entangled. Given a

mixed state r, if the rank of at least one of the reduced density matrices of r
is greater than the rank of one of its 1-level-higher density matrices, then the

state r is entangled.

II. ENTANGLEMENT FOR SPIN SYSTEMS

A. Entanglement for Two-Spin Systems

We consider a set of N localized spin-1
2

particles coupled through exchange inter-

action J and subject to an external magnetic field of strength B. In this section we
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will demonstrate that (i) entanglement can be controlled and tuned by varying

the anisotropy parameter in the Hamiltonian and by introducing impurities

into the systems; (ii) for certain parameters, the entanglement is zero up to a cri-

tical point lc, where a quantum phase transition occurs, and is different from

zero above lc; and (iii) entanglement shows scaling behavior in the vicinity of

the transition point.

For simplicity, let us illustrate the calculations of entanglement for two spin-1
2

particles. The general Hamiltonian, in atomic units, for such a system is given

by [57]

H ¼ � J

2
ð1þ gÞsx

1 � sx
2 �

J

2
ð1� gÞsy

1 � sy
2 � Bsz

1 � I2 � BI1 � sz
2 ð14Þ

where sa are the Pauli matrices (a ¼ x; y; z) and g is the degree of anisotropy.

For g ¼ 1 Eq. (14) reduces to the Ising model, whereas for g ¼ 0 it is the XY

model.

This model admits an exact solution; it is simply a ð4� 4Þ matrix of the form

H ¼

�2B 0 0 �Jg
0 0 �J 0

0 �J 0 0

�Jg 0 0 2B

0BB@
1CCA ð15Þ

with the following four eigenvalues,

l1 ¼ �J; l2 ¼ J; l3 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4B2 þ J2g2

p
; l4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4B2 þ J2g2

p
ð16Þ

and the corresponding eigenvectors,

jf1i ¼

0

1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

0

0BBB@
1CCCA; jf2i ¼

0

�1=
ffiffiffi
2
p

1=
ffiffiffi
2
p

0

0BBB@
1CCCA ð17Þ

jf3i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ 2B

2a

r
0

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� 2B

2a

r

0BBBBBBB@

1CCCCCCCA; jf4i ¼

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� 2B

2a

r
0

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ 2B

2a

r

0BBBBBBB@

1CCCCCCCA ð18Þ

entanglement, electron correlation, and density matrices 501



where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4B2 þ J2g2

p
. In the basis set fj ""i; j "#i; j #"i; j ##ig, the eigen-

vectors can be written

jf1i ¼
1ffiffiffi
2
p ðj #"i þ j "#iÞ ð19Þ

jf2i ¼
1ffiffiffi
2
p ðj #"i � j "#iÞ ð20Þ

jf3i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� 2B

2a

r
j ##i þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ 2B

2a

r
j ""i ð21Þ

jf4i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aþ 2B

2a

r
j ##i �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� 2B

2a

r
j ""i ð22Þ

Now we confine our interest to the calculation of entanglement between the two

spins. For simplicity, we take g ¼ 1; Eq. (14) reduces to the Ising model with the

ground-state energy l3 and the corresponding eigenvector jf3i. All the informa-

tion needed for quantifying the entanglement in this case is contained in the

reduced density matrix rði; jÞ [42–44].

For our model system in the ground state jf3i, the density matrix in the basis

set ð""; "#; #"; ##) is given by

r ¼

aþ 2B

2a
0 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4B2

4a2

r
0 0 0 0

0 0 0 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � 4B2

4a2

r
0 0

aþ 2B

2a

0BBBBBB@

1CCCCCCA ð23Þ

The eigenvalues of the Hermitian matrix R needed to calculate the concurrence

[42], C, Eq. (6), can be calculated analytically. We obtained l2 ¼ l3 ¼ l4 ¼ 0

and therefore

CðrÞ ¼ l1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2

4þ l2

s
ð24Þ

where l ¼ J=B. Entanglement is a monotonically increasing function of the con-

currence and is given by

EðCÞ ¼ hðyÞ ¼ �y log2 y � ð1� yÞ log2ð1� yÞ; y ¼ 1
2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� C2
p

ð25Þ

Substituting the value of the concurrence C, Eq. (24) gives

E ¼ � 1

2
log2

1

4
� 1

4þ l2

� �
þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ l2
p log2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ l2

p
� 2ffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ l2
p

þ 2
ð26Þ
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This result for entanglement is equivalent to the von Neumann entropy of the

reduced density matrix rA. For our model system of the form AB in the ground

state jf3i, the reduced density matrix rA ¼ TrBðrABÞ in the basis set ð"; #Þ is

given by

rA ¼
aþ 2B

2a
0

0
a� 2B

2a

0B@
1CA ð27Þ

As we mentioned before, when a biparticle quantum system AB is in a pure

state, there is essentially a unique measure of the entanglement between the sub-

systems A and B given by the von Neumann entropy S � �Tr½rA log2 rA	. This

approach gives exactly the same formula as the one given in Eq. (26). This is not

surprising since all entanglement measures should coincide on pure bipartite

states and be equal to the von Neumann entropy of the reduced density matrix

(uniqueness theorem).

This simple model can be used to examine the entanglement for two-electron

diatomic molecules. The value of J, the exchange coupling constant between the

spins of the two electrons, can be calculated as half the energy difference

between the lowest singlet and triplet states of the hydrogen molecule. Herring

and Flicker [58] have shown that J for the H2 molecule can be approximated as a

function of the interatomic distance R. In atomic units, the expression for large R

is given by

JðRÞ ¼ �0:821 R5=2e�2R þ OðR2e�2RÞ ð28Þ

Figure 1 shows the calculated concurrence CðrÞ as a function of the distance

between the two electronic spins R, using JðRÞ of Eq. (28), for different values

of the magnetic field strength B. At the limit R!1 the exchange interaction J

vanishes as a result of the two electronic spins being up and the wavefunction

being factorizable; that is, the concurrence is zero. At the other limit, when

R ¼ 0 the concurrence or the entanglement is zero for this model because

J ¼ 0. As R increases, the exchange interaction increases, leading to increasing

concurrence between the two electronic spins. However, this increase in the con-

currence reaches a maximum limit as shown in the figure. For large distance, the

exchange interaction decreases exponentially with R and thus the decrease of the

concurrence. Figure 1 also shows that the concurrence increases with decreasing

magnetic field strength. This can be attributed to effectively increasing the

exchange interaction. This behavior of the concurrence as a function of the inter-

nuclear distance R is typical for two-electron diatomic molecules. We will show

later in Section IV that by using accurate ab initio calculations we essentially

obtain qualitatively the same curve for entanglement for the H2 molecule as a

function of the internuclear distance R.
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B. Entanglement for One-Dimensional N-Spin Systems

Now let us generalize it to a one-dimensional lattice with N sites in a transverse

magnetic field and with impurities. The Hamiltonian for such a system is given

by [59]

H ¼ � 1þ g
2

XN

i¼1

Ji;iþ1sx
i s

x
iþ1 �

1� g
2

XN

i¼1

Ji;iþ1s
y
i s

y
iþ1 �

XN

i¼1

Bisz
i ð29Þ

where Ji;iþ1 is the exchange interaction between sites i and iþ 1, Bi is the

strength of the external magnetic field at site i, sa are the Pauli matrices

(a ¼ x; y; z), g is the degree of anisotropy, and N is the number of sites. We

assume cyclic boundary conditions, so that

sx
Nþ1 ¼ sx

1; sy
Nþ1 ¼ sy

1; sz
Nþ1 ¼ sz

1 ð30Þ

For g ¼ 1 the Hamiltonian reduces to the Ising model and for g ¼ 0 to the XY

model. For the pure homogeneous case, Ji;iþ1 ¼ J and Bi ¼ B, the system exhi-

bits a quantum phase transition at a dimensionless coupling constant
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Figure 1. The concurrence (C) as a function of the distance R between the two spins for

different values of the magnetic field strength B.

504 sabre kais



l ¼ J=2B ¼ 1. The magnetization hsxi is different from zero for l > 1 and it

vanishes at the transition point. The magnetization along the z direction hszi
is different from zero for any value of l. At the phase transition point, the

correlation length x diverges as x � jl� lcj�n with n ¼ 1 [60].

C. Numerical Solution of the One-Dimensional Spin-1
2

Systems

The standard procedure used to solve Eq. (29) is to transform the spin operators

into fermionic operators [61]. Let us define the raising and lowering operators

aþi , a�i ,:

aþi ¼ 1
2
ðsx

i þ isy
i Þ; a�i ¼ 1

2
ðsx

i � isy
i Þ

Then we introduce the Fermi operators ci,c
þ
i defined by

a�i ¼ exp �pi
Xi�1

j¼1

cþj cj

 !
ci; aþi ¼ cþi exp pi

Xi�1

j¼1

cþj cj

 !
.

So the Hamiltonian assumes the following quadratic form:

H ¼ �
XN

i¼1

Ji;iþ1½ðcþi ciþ1 þ gcþi cþiþ1Þ þ h:c:	 � 2
XN

i¼1

Biðcþi ci �
1

2
Þ

l ¼ J=2B

ð31Þ

We can write the parameters Ji;iþ1 ¼ Jð1þ ai;iþ1Þ, where a introduces the

impurity in the exchange interactions, and the external magnetic field takes

the form Bi ¼ Bð1þ biÞ, where b measures the impurity in the magnetic field.

When a ¼ b ¼ 0 we recover the pure XY case.

Introducing the matrices A, B, where A is symmetrical and B is antisymme-

trical, we can rewrite the Hamiltonian:

H0 ¼
XN

i; j¼1

cþi Ai;jcj þ
1

2
ðcþi Bi; jc

þ
j þ h:cÞ

� �

Introducing linear transformation, we have

Zk ¼
XN

i¼1

gkici þ hkic
þ
i ; Zþk ¼

XN

i¼1

gkic
þ
i þ hkici
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with the gki and hki real and which will give the Hamiltonian form

H ¼
XN

k

�kZþk Zk þ constant

From these conditions, we can get a set of equations for the gki and hki:

�kgki ¼
XN

j¼1

ðgkjAji � hkjBjiÞ ð32Þ

�khki ¼
XN

j¼1

ðgkjBji � hkjAjiÞ ð33Þ

By introducing the linear combinations

fki ¼ gki þ hki; cki ¼ gki � hki

we can get the coupled equation

fkðA� BÞ ¼ Kkck and ckðAþ BÞ ¼ Kkfk

Then we can get both fk and ck vectors from these two equations by the numer-

ical method [62]. The ground state of the system corresponds to the state of ‘‘no-

particles’’ and is denoted as j�0i, and

Zkj�0i ¼ 0; for all k

D. Entanglement and Spin Reduced Density Matrices

The matrix elements of the reduced density matrix needed to calculate the entan-

glement can be written in terms of the spin–spin correlation functions and the

average magnetization per spin. The spin–spin correlation functions for the

ground state are defined as [62]

Sx
lm ¼ 1

4
h�0jsx

l s
x
mj�0i

S
y
lm ¼ 1

4
h�0jsy

l s
y
mj�0i

Sz
lm ¼ 1

4
h�0jsz

ls
z
mj�0i

and the average magnetization per spin is

Mz
i ¼ 1

2
h�0jsz

i j�0i ð34Þ
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These correlation functions can be obtained using the set ck and fk from the

previous section.

The structure of the reduced density matrix follows from the symmetry

properties of the Hamiltonian. However, for this case the concurrence Cði; jÞ
depends on i; j and the location of the impurity and not only on the difference

ji� jj as for the pure case. Using the operator expansion for the density matrix

and the symmetries of the Hamiltonian leads to the general form

r ¼

r1;1 0 0 r1;4

0 r2;2 r2;3 0

0 r2;3 r3;3 0

r1;4 0 0 r4;4

0BB@
1CCA ð35Þ

with

la ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1;1r4;4

p þ jr1;4j; lb ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2;2r3;3

p þ jr2;3j ð36Þ

lc ¼ j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r1;1r4;4

p � jr1;4jj; ld ¼ j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2;2r3;3

p � jr2;3jj ð37Þ

Using the definition < A >¼ TrðrAÞ, we can express all the matrix elements in

the density matrix in terms of different spin–spin correlation functions [62]:

r1;1 ¼ 1
2

Mz
l þ 1

2
Mz

m þ Sz
lm þ 1

2
ð38Þ

r2;2 ¼ 1
2

Mz
l � 1

2
Mz

m � Sz
lm þ 1

4
ð39Þ

r3;3 ¼ 1
2

Mz
m � 1

2
Mz

l � Sz
lm þ 1

4
ð40Þ

r4;4 ¼ � 1
2

Mz
l � 1

2
Mz

m þ Sz
lm þ 1

4
ð41Þ

r2;3 ¼ Sx
lm þ S

y
lm ð42Þ

r1;4 ¼ Sx
lm � S

y
lm ð43Þ

E. Some Numerical Results

Let us show how the entanglement can be tuned by changing the anisotropy

parameter g by going from the Ising model (g ¼ 1) to the XY model (g ¼ 0).

For the XY model the entanglement is zero up to the critical point lc and is

different from zero above lc. Moreover, by introducing impurities, the

entanglement can be tuned down as the strength of the impurity a increases

[59]. First, we examine the change of the entanglement for the Ising model

ðg ¼ 1Þ for different values of the impurity strength a as the parameter l, which

induces the quantum phase transitions, varies. Figure 2 shows the change of the

nearest-neighbor concurrence Cð1; 2Þ with the impurity located at im ¼ 3 as a
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function of l for different values of a. One can see clearly in Figure 2 that the

entanglement can be tuned down by increasing the value of the parameter a. For

a ¼ 1:5, the concurrence approaches zero above the critical lc ¼ 1. The system

size was taken as N ¼ 201 based on finite size scaling analysis. Analysis of all

the results for the pure case (a ¼ 0) for different system sizes ranging from

N ¼ 41 up to N ¼ 401 collapse into a single curve. Thus all key ingredients

of the finite size scaling are present in the concurrence. This holds true for the

impurity problem as long as we consider the behavior of the value of l for which

the derivative of the concurrence attains its minimum value versus the system

size. As expected, there is no divergence of the derivative dCð1; 2Þ=dl for finite

N, but there are clear anomalies. By examining lnðlc � lmÞ versus ln N for

a ¼ 0:1, one obtains that the minimum lm scales as lm � lc þ N�0:93 and

dCð1; 2Þ=dl diverges logarithmically with increasing system size. For a system

with the impurity located at larger distance im ¼ 10 and the same a ¼ 0:1,

lm � lc þ N�0:85, showing that the scaling behavior depends on the distance

between the impurity and the pair of sites under consideration.

Figure 2 also shows the variation of nearest-neighbor concurrence as the

anisotropy parameter g decreases. For the XY model ðg ¼ 0Þ, the concurrence

for a ¼ 0 is zero up to the critical point lc ¼ 1 and different from zero

above lc ¼ 1. However, as a increases the concurrence develops steps and the

0

0.1

0.2

0.3

0 0.5 1 1.5
0

0.1

0.2

0.3

0 0.5 1 1.5 2

γ = 1 γ = 0.7

γ = 0.3 γ = 0

λ

C(1,2)

α = 0
0.5

1

1.5

Figure 2. The nearest-neighbor concurrence C(1,2) for different values of the anisotropy para-

meter g ¼ 1, 0.7, 0.3, 0 with an impurity located at im ¼ 3 as a function of the reduced coupling

constant l ¼ J=2h, where J is the exchange interaction constant and h is the strength of the external

magnetic field. The curves correspond to different values of the impurity strength a ¼ 0,0.5,1,1.5

with system size N ¼ 201.
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results strongly depend on the system size. For small system size, such as

N ¼ 101, the steps and oscillations are large but become smaller as the system

size increases as shown in Fig. 2 for N ¼ 201. But they disappear in the limit

N !1. To examine the different behavior of the concurrence for the Ising

model and the XY model, we took the system size to be infinite, N !1, where

the two models have exact solutions. However, the behavior is the same for a

finite system with N ¼ 201. For larger values of im the concurrence gets larger

and approaches its maximum value, the pure case with a ¼ 0, at large values

im >> 1. It is worth mentioning that, for the Ising model, the range of entangle-

ment [63], which is the maximum distance between spins at which the concur-

rence is different from zero, vanishes unless the two sites are at most next-

nearest neighbors. For g 6¼ 1, the range of entanglement is not universal and

tends to infinity as g tends to zero.

So far we have examined the change of entanglement as the degree of the

anisotropy g varies between zero and one and by introducing impurities at fixed

sites. Rather than locating the impurity at one site in the chain, we can also intro-

duce a Gaussian distribution of the disorder near a particular location [62]. This

can be done by modifying a, the exchange interaction, where a introduces the

impurity in a Gaussian form centered at ðN þ 1Þ=2 with strength or height �:

ai;iþ1 ¼ �e�Eði�ðNþ1Þ=2Þ2 ð44Þ

The external magnetic field can also be modified to take the form hi ¼ hð1þ biÞ,
where b has the following Gaussian distribution [62]:

bi ¼ xe�Eði�ðNþ1Þ=2Þ2 ð45Þ

where E is a parameter to be fixed. Numerical calculations show that the entan-

glement can be tuned in this case by varying the strengths of the magnetic field

and the impurity distribution in the system. The concurrence is maximum close

to lc and can be tuned to zero above the critical point.

F. Thermal Entanglement and the Effect of Temperature

Recently, the concept of thermal entanglement was introduced and studied

within one-dimensional spin systems [64–66]. The state of the system described

by the Hamiltonian H at thermal equilibrium is rðTÞ ¼ expð�H=kTÞ=Z; where

Z ¼ Tr½expð�H=kTÞ	 is the partition function and k is Boltzmann’s constant. As

rðTÞ represents a thermal state, the entanglement in the state is called the

thermal entanglement [64].

For a two-qubit isotropic Heisenberg model, there exists thermal entangle-

ment for the antiferromagnetic case and no thermal entanglement for the
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ferromagnetic case [64]; while for the XY model the thermal entanglement

appears for both the antiferromagnetic and ferromagnetic cases [67, 68]. It is

known that the isotropic Heisenberg model and the XY model are special cases

of the anisotropic Heisenberg model.

Now that the entanglement of the XY Hamiltonian with impurities has been

calculated at T ¼ 0, we can consider the case where the system is at thermal

equilibrium at temperature T . The density matrix for the XY model at thermal

equilibrium is given by the canonical ensemble r ¼ e�bH=Z, where b ¼ 1=kBT ,

and Z ¼ Tr ðe�bHÞ is the partition function. The thermal density matrix is diag-

onal when expressed in terms of the Jordan–Wigner fermionic operators. Our

interest lies in calculating the quantum correlations present in the system as a

function of the parameters b, g, l, and a.

For the pure Ising model with a ¼ 0, the constructed two-site density

matrices [66] are valid for all temperatures. By using these matrices, it is possi-

ble to study the purely two-party entanglement present at thermal equilibrium

because the concurrence measure of entanglement can be applied to arbitrary

mixed states. For this model the influence that the critical point has on the entan-

glement structure at nonzero temperatures is particularly clear. The entangle-

ment between nearest-neighbor in the Ising model at nonzero temperature is

shown in Fig. 3. The entanglement is nonzero only in a certain region in the

kBT–l plane. It is in this region that quantum effects are likely to dominate

the behavior of the system. The entanglement is largest in the vicinity of the cri-

tical point l ¼ 1, kBT ¼ 0.
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C

Figure 3. Nearest-neighbor concurrence C at nonzero temperature for the transverse Ising

model.
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Figure 3 shows that, for certain values of l, the two-site entanglement can

increase as the temperature is increased. Moreover, it shows the existence of

appreciable entanglement in the system for temperatures kBT above the

ground-state energy gap �. It has been argued that quantum systems behave

classically when the temperature exceeds all relevant frequencies. For the trans-

verse Ising model, the only relevant frequency is given by the ground-state

energy gap � � �ho. The presence of entanglement in the system for tempera-

tures above the energy gap indicates that quantum effects may persist past the

point where they are usually expected to disappear.

The zero-temperature calculations of the previous section Section, the XY

model with impurities, represent a highly idealized situation; however, it is

unclear whether they have any relevance to the system at nonzero temperature.

Since the properties of a quantum system for low temperatures are strongly

influenced by nearby quantum critical points, it is tempting to attribute the

effect of nearby critical points to persistent mixed-state entanglement in the

thermal state.

G. Entanglement for Two-Dimensional Spin Systems

Quantum spin systems in two-dimensional lattices have been the subject of

intense research, mainly motivated by their possible relevance in the study of

high-temperature superconductors [69]. On the other hand, high magnetic field

experiments on materials with a two-dimensional structure, which can be

described by the Heisenberg antiferromagnetic model in frustrated lattices,

have revealed novel phases as plateaus and jumps in the magnetization curves

[70] and might be useful for quantum computations. Among the many different

techniques that have been used to study such systems, the generalization of the

celebrated Jordan–Wigner transformation [71] to two spatial dimensions [72]

has some appealing features. It allows one to write the spin Hamiltonian com-

pletely in terms of spinless fermions in such a way that the S ¼ 1
2

single-particle

constraint is automatically satisfied due to the Pauli principle, while the mag-

netic field enters as the chemical potential for the Jordan–Wigner fermions.

This method has been applied to study the XXZ Heisenberg antiferromagnet

[73–75].

For this case one can use the Jordan–Wigner transformation since it is a gen-

eralization of the well-known transformation in one dimension that we have used

in previous sections. The Jordan–Wigner transformation is exact but the result-

ing Hamiltonian is highly nonlocal and some kind of approximation is necessary

to proceed. One can use numerical methods such as Monte Carlo and variational

approach to deal with the transformed Hamiltonian. This will allow us to explore

the ground state of two-dimensional lattice spin 1
2

systems, in a way that could be

applied to arbitrary lattice topologies. The method can also be used in the pre-

sence of an external magnetic field, at finite temperature, and can even be
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applied to disordered systems. Once this is solved and we have the density

matrix, we can follow the previous procedure to examine the entanglement as

the parameters of external magnetic field, temperature, lattice topologies, and

impurities vary.

III. ENTANGLEMENT FOR QUANTUM DOT SYSTEMS

A. Two-Electron Two-Site Hubbard Model

Many electron systems such as molecules and quantum dots show the complex

phenomena of electron correlation caused by Coulomb interactions. These phe-

nomena can be described to some extent by the Hubbard model [76]. This is a

simple model that captures the main physics of the problem and admits an exact

solution in some special cases [77]. To calculate the entanglement for electrons

described by this model, we will use Zanardi’s measure, which is given in Fock

space as the von Neumann entropy [78].

1. Exact Solution

The Hamiltonian of the two-electron two-site Hubbard model can be written [77]

H ¼ � t

2

X
i;s

c
y
isc�iis þ 2U

X
i

n̂ni"n̂ni# ð46Þ

where c
y
is and cis are the Fermi creation and annihilation operators at site i and

with spin s ¼"; # and n̂n
is¼c

y
iscis

is the spin-dependent occupancy operator at site

i. For a two-site system i ¼ 1 and 2, �ii ¼ 3� i, t=2 is the hopping term of dif-

ferent sites, and 2U is the on-site interaction (U > 0 for repulsion in our case).

The factors t=2 and 2U are chosen to make the following expressions for eigen-

values and eigenvectors as simple as possible. This Hamiltonian can be solved

exactly in the basis set j1 "; 1 #; 2 "; 2 #i; it is simply a ð4� 4Þ matrix of the

form

H ¼

2U �t=2 �t=2 0

�t=2 0 0 �t=2

�t=2 0 0 �t=2

0 �t=2 �t=2 2U

0BB@
1CCA ð47Þ

with the following four eigenvalues and eigenvectors,

l1 ¼ U �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ U2

p
; l2 ¼ 0; l3 ¼ 2U; l4 ¼ U þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ U2

p
ð48Þ
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and the corresponding eigenvectors,

jf1i ¼

1

xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2
p

xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2
p

1

0BBB@
1CCCA; jf2i ¼

0

�1

1

0

0BBB@
1CCCA; ð49Þ

jf3i ¼

�1

0

0

1

0BBB@
1CCCA; jf4i ¼

1

x�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2
p

x�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2
p

1

0BBB@
1CCCA ð50Þ

with x ¼ U=t. The eigenvalue and eigenvector for the ground state are

E ¼ U �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 þ U2

p
ð51Þ

and

jGSi ¼ j1; xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
; xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2

p
; 1i ð52Þ

2. Hartree–Fock Approximation

In quantum chemistry, the correlation energy Ecorr is defined as

Ecorr ¼ Eexact � EHF. In order to calculate the correlation energy of our system,

we show how to calculate the ground state using the Hartree–Fock approxima-

tion. The main idea is to expand the exact wavefunction in the form of a config-

uration interaction picture. The first term of this expansion corresponds to the

Hartree–Fock wavefunction. As a first step we calculate the spin-traced one-

particle density matrix [5] (1PDM) g:

gij ¼ hGSj
X
s

c
y
iscjsjGSi ð53Þ

We obtain

g ¼ 1 2ab
2a 1

� �
ð54Þ

where

a ¼ 1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x

1þ x2

r
and b ¼ 1ffiffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x

1þ x2

r
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Diagonalizing this 1PDM, we can get the binding (þ) and unbinding (�) mole-

cular natural orbitals (NOs),

j�i ¼ 1ffiffiffi
2
p ðj1i � j2iÞ ð55Þ

and the corresponding eigenvalues

n� ¼ 1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2
p ð56Þ

where j1i and j2i are the spatial orbitals of sites 1 and 2, respectively. The NOs

for different spins are defined as

j � si ¼ 1ffiffiffi
2
p ðcy1s � c

y
2sÞj0i � c

y
�sj0i ð57Þ

where j0i is the vacuum state. After we define the geminals j � �i ¼ c
y
�"c

y
�#j0i,

we can express jGSi in terms of NOs as

jGSi ¼
ffiffiffiffiffiffi
nþ
2

r
j þ þi � sgn U

ffiffiffiffiffiffi
n�
2

r
j � �i ð58Þ

In the Hartree–Fock approximation, the GS is given by jHFi ¼ j þ þi and

EHF ¼ �t þ U. Let us examine the Hartree–Fock results by defining the ionic

and nonionic geminals, respectively:

jAi ¼ 1ffiffiffi
2
p ðcy1"c

y
1# þ c

y
2"c
y
2#Þj0i

jBi ¼ 1ffiffiffi
2
p ðcy1"c

y
2# þ c

y
2"c
y
1#Þj0i

ð59Þ

If x! 0, the system is equally mixed between ionic and nonionic germinal,

jHFi ¼ jAi þ jBi. When x! þ1, jGSi ! jBi, which indicates that as x

becomes large, our system goes to the nonionic state. Similarly, jGSi ! jCi,
as x! �1, where

jCi ¼ 1ffiffiffi
2
p ðcy1"c

y
1# � c

y
2"c
y
2#Þj0i

Thus the HF results are a good approximation only when x! 0. The unreason-

able diverging behavior results from not suppressing the ionic state jAi in jHFi
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when jxj ! 1. In order to correct this shortcoming of the Hartree–Fock method,

we can combine different wavefunctions in different ranges to obtain a better

wavefunction for our system. This can be done as follows:

Range GS Energy Correlation Energy Wavefunction nþ n�

U > t 0 U �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ t2
p

jBi 1 1

�t � U � t �t þ U t �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ t2
p 1ffiffiffi

2
p ðjAi þ jBiÞ 2 0

U < �t 2U �U �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U2 þ t2
p

jCi 1 1

3. Correlation Entropy

The correlation entropy is a good measure of electron correlation in molecular

systems [5, 7]. It is defined using the eigenvalues nk of the one-particle density

matrix 1PDM,

S ¼
X

k

nkð� ln nkÞ;
X

k

nk ¼ N ð60Þ

This correlation entropy is based on the nonidempotency of the NONs nk and

proves to be an appropriate measure of the correlation strength if the reference

state defining correlation is a single Slater determinant. In addition to the eigen-

values nk of the ‘‘full’’ (spin-dependent) 1PDM, it seems reasonable to consider

also the eigenvalues nk of the spin-traced 1PDM. Among all the nk there are a

certain number N0 of NONs nk0
with values between 1 and 2 and all the other N1

NONs nk1
also have values between 0 and 1. So one possible measure of the

correlation strength of spin-traced 1PDM is

S1 ¼ �
X

k0

ðnk0
� 1Þ lnðnk0

� 1Þ �
X

k1

nk1
ln nk1

ð61Þ

Since all the nk=2 have values between 0 and 1, there is another possible mea-

surement of the correlation strength:

S2 ¼ �
X

k

nk

2
ln

nk

2
ð62Þ

4. Entanglement

The entanglement measure is given by the von Neumann entropy [78]

Ej ¼ �Trðrj log2 rjÞ; rj ¼ Trjðj�ih�jÞ ð63Þ
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where Trj denotes the trace over all but the jth site, j�i is the antisymmetric

wavefunction of the fermions system, and rj is the reduced density matrix.

Hence Ej actually describes the entanglement of the jth site with the remaining

sites [79].

In the Hubbard model, the electron occupation of each site has four possibi-

lities; there are four possible local states at each site, jnij ¼ j0ij, j "ij, j #ij, j "#ij.
The reduced density matrix of the jth site with the other sites is given by

[80, 81]

rj ¼ zj0ih0j þ uþj "ih" j þ u�j #ih# j þ wj "#ih"# j ð64Þ

with

w ¼ hnj"nj#i ¼ Trðnj"nj#rjÞ ð65Þ
uþ ¼ hnj"i � w; u� ¼ hnj#i � w ð66Þ

z ¼ 1� uþ � u� � w ¼ 1� hnj"i � hnj#i þ w ð67Þ

And the entanglement between the jth site and other sites is given by

Ej ¼ �z Log2z� uþ Log2uþ � u� Log2u� � w Log2w ð68Þ

For the one-dimensional Hubbard model with half-filling electrons, we have

hn"i ¼ hn#i ¼ 1
2
, uþ ¼ u� ¼ 1

2
� w, and the entanglement is given by

Ej ¼ �2w log2w� 2 1
2
� wÞlog2

1
2
� wÞ

��
ð54Þ

For our case of a two-site two-electron system

w ¼ 1

2þ 2½xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ x2
p

	2

Thus the entanglement is readily calculated from Eq. (69). In Fig. 4, we show the

entanglement between the two sites (top curve) and the correlation entropy S1 and

S2 as a function of x ¼ U=t. The entanglement measure is given by the von Neu-

mann entropy in which the density matrix of the system is traced over the other

site to get the reduced density matrix. The reduced density matrix describes

the four possible occupations on the site: j0i, j "i, j #i, j "#i. The minimum of

the entanglement is 1 as x! �1. It can be understood that when U ! þ1, all

the sites are singly occupied; the only difference is the spin of the electrons at

each site, which can be referred to as spin entanglement. As U ! �1, all

the sites are either doubly occupied or empty, which is referred to as

space entanglement. The maximum of the entanglement is 2 at U ¼ 0; all four
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occupations are evenly weighted, which is the sum of the spin and space entan-

glements of the system. The correlation entropy S1 vanishes for x! 0 and

x! �1 and has a maximum near jxj ¼ 1; the correlation entropy S2 vanishes

for x! 0 and increases monotonically and approaches ln 2 for x! �1. For

x! þ1 it can be viewed as t ! 0 for fixed U > 0 or as U ! þ1 for fixed t.

B. One-Dimensional Quantum Dots System

We consider an array of quantum dots modeled by the one-dimensional Hubbard

Hamiltonian of the form [82]

H ¼ �
X
hiji;s

tij cþis cjs þ U
X

i

ni" ni# ð70Þ

where tij stands for the hopping between the nearest-neighbor sites for the

electrons with the same spin, i and j are the neighboring site numbers, s is

the electron spin, cþis and cjs are the creation and annihilation operators, and

U is the Coulomb repulsion for the electrons on the same site. The periodic

boundary condition is applied. The entanglement measure is given by the von

Neumann entropy [78].

−10 −5 0 5 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x  =  U/t

S1 S2

S2 Combined Wavefunction

Figure 4. Two-site Hubbard model. Upper curve is the entanglement calculated by the von

Newmann entropy. The curves S1 and S2 are the correlation entropies of the exact wavefunction

as defined in the text. The dashed line is the S2 for the combined wavefunction based on the range

of x values. S1 for the combined wavefunction is zero.
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In the Hubbard model, the electron occupation of each site has four possibilities;

there are four possible local states at each site, jnij ¼ j0ij; j "ij; j #ij; j "#ij. The

dimensions of the Hilbert space of an L-site system is 4L and

jn1n2 � � � nLi ¼
QL

j¼1 jnjij can be used as basis vectors for the system. The entangle-

ment of the jth site with the other sites is given in the previous section by Eq. (65).

In the ideal case, we can expect an array of the quantum dots to have the same

size and to be distributed evenly, so that the parameters t and U are the same

everywhere. We call this the pure case. In fact, the size of the dots may not

be the same and they may not be evenly distributed, which we call the impurity

case. Here, we consider two types of impurities. The first one is to introduce a

symmetric hopping impurity t0 between two neighboring dots; the second one is

to introduce an asymmetric electron hopping t0 between two neighboring dots,

the right hopping is different from the left hopping, while the rest of the sites

have hopping parameter t.

Consider the particle–hole symmetry of the one-dimensional Hubbard model.

One can obtain wð�UÞ ¼ 1
2
� wðUÞ, so the entanglement is an even function of

U, Ejð�UÞ ¼ EjðUÞ. The minimum of the entanglement is 1 as U ! �1. As

U ! þ1, all the sites are singly occupied; the only difference is the spin of the

electrons on each site, which can be referred to as spin entanglement. As

U ! �1, all the sites are either doubly occupied or empty, which is referred

to as space entanglement. The maximum of the entanglement is 2 at U ¼ 0,

which is the sum of the spin and space entanglements of the system. The ground

state of the one-dimensional Hubbard model at half-filling is metallic for U < 0,

and insulating for U > 0; U ¼ 0 is the critical point for the metal–insulator tran-

sition, where the local entanglement reaches its maximum. In Fig. 5 we show the
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Figure 5. Local entanglement given by the von Neumann entropy, Ev, versus U=t in the pure case.
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entanglement as a function U=t for six sites and six electrons. Our results are in

complete agreement with the exact one obtained by Bethe ansatz [80].

C. Two-Dimensional Array of Quantum Dots

Using the Hubbard model, we can study the entanglement scaling behavior in a

two-dimensional itinerant system. Our results indicate that, on the two sides of

the critical point denoting an inherent quantum phase transition (QPT), the

entanglement follows different scalings with the size just as an order parameter

does. This fact reveals the subtle role played by the entanglement in QPT and

points to its potential application in quantum information processing as a fungi-

ble physical resource.

Recently, it has been speculated that the most entangled systems could be

found at the critical point [83] when the system undergoes a quantum phase tran-

sition; that is, a qualitative change of some physical properties takes place as an

order parameter in the Hamiltonian is tuned [84]. QPT results from quantum

fluctuations at the absolute zero of temperature and is a pure quantum effect fea-

tured by long-range correlations. So far, there have already been some efforts in

exploring the above speculations, such as the analysis of the XY model about the

single-spin entropies and two-spin quantum correlations [59, 85], the entangle-

ment between a block of L contiguous sites and the rest of the chain [51], and

also the scaling of entanglement near QPT [60]. But because there is still no ana-

lytical proof, the role played by the entanglement in quantum critical phenomena

remains elusive. Generally, at least two difficulties exist in resolving this issue.

First, until now, only two-particle entanglement is well explored. How to quan-

tify the multiparticle entanglement is not clear. Second, QPT closely relates to

the notorious many-body problems, which is almost intractable analytically.

Until now, the only effective and accurate way to deal with QPT in critical region

is the density-matrix renormalization group method [86]. Unfortunately, it is

only efficient for one-dimensional cases because of the much more complicated

boundary conditions for the two-dimensional situation [87].

In this chapter, we will focus on the entanglement behavior in QPT for the

two-dimensional array of quantum dots, which provide a suitable arena for

implementation of quantum computation [88, 89, 103]. For this purpose, the

real-space renormalization group technique [91] will be utilized and developed

for the finite-size analysis of entanglement. The model that we will be using is

the Hubbard model [83],

H ¼ �t
X
hi; ji;s

½cþiscjs þ h:c:	 þ U
X

i

1
2
� ni"

� �
1
2
� ni#

� �
ð71Þ

where t is the nearest-neighbor hopping term and U is the local repulsive inter-

action. cþisðcisÞ creates(annihilates) an electron with spin s in a Wannier orbital
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located at site i; the corresponding number operator is nis ¼ cþiscis and h i
denotes the nearest-neighbor pairs; h.c. denotes the Hermitian conjugate.

For a half-filled triangular quantum lattice, there exists a metal–insulator

phase transition with the tuning parameter U=t at the critical point 12.5

[92–94]. The corresponding order parameter for metal–insulator transition is

the charge gap defined by 4g ¼ EðNe � 1Þ þ EðNe þ 1Þ � 2EðNeÞ, where

EðNeÞ denotes the lowest energy for an Ne-electron system. In our case, Ne is

equal to the site number Ns of the lattice. Unlike the charge gap calculated

from the energy levels, the Zanardi measure of the entanglement is defined based

on the wavefunction corresponding to EðNeÞ instead. Using the conventional

renormalization group method for the finite-size scaling analysis [92–94], we

can discuss three schemes of entanglement scaling: single-site entanglement

scaling with the total system size, Esingle; single-block entanglement scaling

with the block size, Eblock; and block–block entanglement scaling with the block

size, Eblock�block. Our initial results of the single-site entanglement scaling indi-

cate that Esingle is not a universal quantity. This conclusion is consistent with the

argument given by Osborne and Nielsen [85], who claim that the single-site

entanglement is not scalable because it does not have the proper extensivity

and does not distinguish between the local and the distributed entanglement.

This implies that only a limited region of sites around the central site contributed

significantly to the single-site entanglement. Using the one-parameter scaling

theory, near the phase transition point, we can assume the existence of scaling

function f for Eblock�block such that Eblock�block ¼ qyE f ðL=xÞ, where q ¼
ðU=tÞ � ðU=tÞc measures the deviation distance of the system away from the

critical state with ðU=tÞc ¼ 12:5, which is exactly equal to the critical value

for metal–insulator transition when the same order parameter U=t is used

[92–94]. x ¼ q�n is the correlation length of the system with the critical expo-

nent n and N ¼ L2 for the two-dimensional systems.

In Fig. 6, we show the results of Eblock�block as a function of ðU=tÞ for differ-

ent system sizes. With proper scaling, all the curves collapse into one curve,

which can be expressed as Eblock--block ¼ f ðqN1=2Þ. Thus the critical exponents

are yE ¼ 0; n ¼ 1. It is interesting to note that we obtained the same n as in

the study of the metal–insulator transition. This shows the consistency of the

initial results since the critical exponent n is only dependent on the inherent sym-

metry and dimension of the investigated system. Another significant result lies in

the finding that the metal state is highly entangled while the insulating state is

only partly entangled.

It should be mentioned that the calculated entanglement here has a corre-

sponding critical exponent yE ¼ 0. This means that the entanglement is constant

at the critical point over all sizes of the system. But it is not a constant over all

values of U=t. There is an abrupt jump across the critical point as L!1. If we

divide the regime of the order parameter into noncritical regime and critical
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Figure 6. (a) Schematic diagram displays the lattice configuration with central block and the

surrounding ones. (b) Scaling of block–block for various system size and (c) scaling of block entan-

glements with the block size.
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regime, the results can be summarized as follows. In the noncritical regime, that

is, U=t is away from ðU=tÞc, as L increases, the entanglement will saturate onto

two different values depending on the sign of U=t � ðU=tÞc; at the critical point,

the entanglement is actually a constant independent of the size L. These proper-

ties are qualitatively different from the single-site entanglement discussed by

Osborne and Nielsen [85], where the entanglement with Zanardi’s measure

increases from zero to the maximum at the critical point and then decreases

again to zero as the order parameter g for the XY mode is tuned. These peculiar

properties of the entanglement found here can be of potential interest to make an

effective ideal ‘‘entanglement switch.’’ For example, with seven blocks of quan-

tum dots on a triangular lattice, the entanglement among the blocks can be regu-

lated as ‘‘0’’ or ‘‘1’’ almost immediately once the tuning parameter U=t crosses

the critical point. The switch errors will depend on the size of the blocks. Since it

is already a well-developed technique to change U=t for the quantum dot lattice

[95, 103], the above scheme should be workable. To remove the special confine-

ment we have made upon the calculated entanglement, namely, only the entan-

glement of blocks 1 and 7 with the rest ones are considered, in the following, we

will prove that the average pairwise entanglement also has the properties shown

in Fig. 6. As we change the size of the central block, its entanglement with all

the rest of the sites follows the same scaling properties as Eblock�block. It is under-

standable if we consider the fact that only a limited region round the block con-

tributes mostly to Eblock. This result greatly facilitates the fabrication of realistic

entanglement control devices, such as quantum gates for a quantum computer,

since we don’t need to consider the number of component blocks in fear that the

next neighboring or the next-next neighboring quantum dots will influence the

switching effect.

IV. AB INITIO CALCULATIONS AND ENTANGLEMENT

For a two-electron system in 2m-dimensional spin-space orbital, with ca and cya
denoting the fermionic annihilation and creation operators of single-particle

states and j0i representing the vacuum state, a pure two-electron state j	i can

be written [57]

j	i ¼
X

a;b2f1;2;3;4;...;2mg
oa;bcyac

y
bj0i ð72Þ

where a; b run over the orthonormal single-particle states, and Pauli exclusion

requires that the 2m� 2m expansion coefficient matrix o is antisymmetric:

oa;b ¼ �ob;a, and oi;i ¼ 0.

In the occupation number representation ðn1 "; n1 #; n2 "; n2 #; . . . ;
nm "; nm #Þ, where " and # mean a and b electrons, respectively, the subscripts
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denote the spatial orbital index and m is the total spatial orbital number. By tra-

cing out all other spatial orbitals except n1, we can obtain a ð4� 4Þ reduced den-

sity matrix for the spatial orbital n1

rn1
¼ Trn1

j	ih	j

¼

4
Pm�1

i;j¼1 jo2iþ1;2jþ2j2 0 0 0

0 4
Pm�1

i¼1 jo2;2iþ1j2 0 0

0 0 4
Pm

i¼2 jo1;2ij2 0

0 0 0 4jo1;2j2

0BBB@
1CCCA
ð73Þ

The matrix elements of o can be calculated from the expansion coefficient of

the ab initio configuration interaction method. The CI wavefunction with single

and double excitations can be written

j	i ¼ c0j�0i þ
X

ar

cr
aj�r

ai þ
X

a<b;r<s

c
r;s
a;bj�

r;s
a;bi ð74Þ

where j�0i is the ground-state Hartree–Fock wavefunction, cr
a is the coefficient

for single excitation from orbital a to r, and c
r;s
a;b is the double excitation from

orbital a and b to r and s. Now the matrix elements of o can be written in terms

of the CI expansion coefficients. In this general approach, the ground-state

entanglement is given by tbe von Neumann entropy of the reduced density

matrix rn1 [57]:

Sðrn1
Þ ¼ �Trðrn1

log2 rn1
Þ ð75Þ

We are now ready to evaluate the entanglement for the H2 molecule [57] as a

function of R using a two-electron density matrix calculated from the configura-

tion interaction wavefunction with single and double electronic excitations [96].

Figure 7 shows the calculated entanglement S for the H2 molecule, as a function

of the internuclear distance R using a minimal Gaussian basis set STO-3G (each

Slater-type orbital fitted by 3 Gaussian functions) and a split valence Gaussian

basis set 3-21G [96]. For comparison we included the usual electron correlation

ðEc ¼ jEexact � EUHFjÞ and spin-unrestricted Hartree–Fock (UHF) calculations

[96] using the same basis set in the figure. At the limit R ¼ 0, the electron cor-

relation for the He atom, Ec ¼ 0:0149 (au) using the 3-21G basis set compared

with the entanglement for the He atom S ¼ 0:0313. With a larger basis set,

cc� pV5Z [97], we obtain numerically Ec ¼ 0:0415 (au) and S ¼ 0:0675.

Thus qualitatively entanglement and absolute correlation have similar behavior.
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At the united atom limit, R! 0, both have small values, then rise to a maximum

value, and finally vanish at the separated atom limit, R!1. However, note that

for R > 3 Å the correlation between the two electrons is almost zero but the

entanglement is maximal until around R � 4 Å; the entanglement vanishes for

R > 4 Å.

V. DYNAMICS OF ENTANGLEMENT AND DECOHERENCE

In this section, we investigate the dynamics of entanglement in one-dimensional

spin systems with a time-dependent magnetic field. The Hamiltonian for such a

system is given by [98]

H ¼ � J

2
ð1þ gÞ

XN

i¼1

sx
i s

x
iþ1 �

J

2
ð1� gÞ

XN

i¼1

sy
i s

y
iþ1 �

XN

i¼1

hðtÞsz
i ð76Þ

where J is the coupling constant, hðtÞ is the time-dependent external magnetic

field, sa are the Pauli matrices (a ¼ x; y; z), g is the degree of anisotropy, and N is

the number of sites. We can set J ¼ 1 for convenience and use periodic boundary

conditions. Next, we transform the spin operators into fermionic operators. So

the Hamiltonian assumes the following form:

H ¼
XN=2

p¼1

apðtÞ½cþp cp þ cþ�pc�p	 þ idp½cþp cþ�p þ cpc�p	 þ 2hðtÞ ¼
XN=2

p¼1

~HHp ð77Þ
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Figure 7. Comparison between the absolute value of the electron correlation Ec ¼ jEExact �
EUHFj and the von Neumann entropy (S) as a function of the internuclear distance R for the H2 mole-

cule using two Gaussian basis sets STO-3G and 3-21G.

524 sabre kais



where apðtÞ ¼ �2 cos fp � 2hðtÞ, dp ¼ 2g sin fp, and fp ¼ 2pp=N . It is easy to

show ½~HHp; ~HHq	 ¼ 0, which means the space of ~HH decomposes into noninteracting

subspace, each of four dimensions. No matter what hðtÞ is, there will be no

transitions among those subspaces. Using the following basis for the pth

subspace, ðj0i; cþp cþ�pj0i; cþp j0i; cþ�pj0iÞ, we can explicitly get

~HHpðtÞ ¼

2hðtÞ �idp 0 0

idp �4 cosfp � 2hðtÞ 0 0

0 0 �2 cosfp 0

0 0 0 �2 cosfp

0BB@
1CCA ð78Þ

We only consider the systems that, at time t ¼ 0, are in thermal equilibrium at

temperature T . Let rpðtÞ be the density matrix of the pth subspace; we have

rpð0Þ ¼ e�b
~HHpð0Þ, where b ¼ 1=kT and k is Boltzmann’s constant. Therefore,

using Eq. (78), we have rpð0Þ. Let UpðtÞ be the time-evolution matrix in the

pth subspace, namely, (�h ¼ 1): idUpðtÞ=dt ¼ UpðtÞ~HHpðtÞ, with the boundary

condition Upð0Þ ¼ I. Now the Liouville equation of this system is

i
drðtÞ

dt
¼ ½HðtÞ; rðtÞ	 ð79Þ

which can be decomposed into uncorrelated subspaces and solved exactly. Thus,

in the pth subspace, the solution of the Liouville equation is

rpðtÞ ¼ UpðtÞrpð0ÞUpðtÞy.
As a first step to investigate the dynamics of the entanglement, we can take

the magnetic field to be a step function then generalize it to other relevant func-

tional forms such as an oscillating one [98]. Figure 8 shows the results for

nearest-neighbor concurrence Cði; iþ 1Þ at temperature T ¼ 0 and g ¼ 1 as a

function of the initial magnetic field a for the step function case with final field

b. For the a < 1 region, the concurrence increases very fast near b ¼ 1 and

reaches a limit Cði; iþ 1Þ � 0:125 when b!1. It is surprising that the concur-

rence will not disappear when b increases with a < 1. This indicates that the

concurrence will not disappear as the final external magnetic field increases at

infinite time. It shows that this model is not in agreement with obvious physical

intuition, since we expect that increasing the external magnetic field will destroy

the spin–spin correlation functions and make the concurrence vanish. The con-

currence approaches a maximum Cði; iþ 1Þ � 0:258 at ða ¼ 1:37; b ¼ 1:37Þ
and decreases rapidly as a 6¼ b. This indicates that the fluctuation of the external

magnetic field near the equilibrium state will rapidly destroy the entanglement.

However, in the region where a > 2:0, the concurrence is close to zero when

b < 1:0 and maximum close to 1. Moreover, it disappear in the limit of b!1.
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Now let us examine the system size effect on the entanglement with three

different external magnetic fields changing with time t [99]:

hIðtÞ ¼
a; t � 0

bþ ða� bÞe�Kt; t > 0

� �
ð80Þ

hIIðtÞ ¼
a; t � 0

a� a sinðKtÞ; t > 0

� �
ð81Þ

hIIIðtÞ ¼
0; t � 0

a� a cosðKtÞ; t > 0

� �
ð82Þ

where a, b, and K are varying parameters.

We have found that the entanglement fluctuates shortly after a disturbance

by an external magnetic field when the system size is small. For larger system

size, the entanglement reaches a stable state for a long time before it fluctuates.

However, this fluctuation of entanglement disappears when the system size

goes to infinity. We also show that in a periodic external magnetic field, the

nearest-neighbor entanglement displays a periodic structure with a period

related to that of the magnetic field. For the exponential external magnetic

field, by varying the constant K, we have found that as time evolves,

Cði; iþ 1Þ oscillates but it does not reach its equilibrium value at t !1.

Figure 8. Nearest-neighbor concurrence C at zero temperature as a function of the initial

magnetic field a for the step function case with final field b.
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This confirms the fact that the nonergodic behavior of the concurrence is a gen-

eral behavior for slowly changing magnetic field. For the periodic magnetic

field hII ¼ að1� sin ð�KtÞÞ, the nearest-neighbor concurrence is a maximum

at t ¼ 0 for values of a close to one, since the system exhibits a quantum phase

transition at lc ¼ J=h ¼ 1, where in our calculations we fixed J ¼ 1. Moreover,

for the two periodic sin ð�KtÞ and cos ð�KtÞ fields the nearest-neighbor

concurrence displays a periodic structure according to the periods of their

respective magnetic fields [99].

For the periodic external magnetic field hIIIðtÞ, we show in Fig. 9 that the

nearest-neighbor concurrence Cði; iþ 1Þ is zero at t ¼ 0 since the external

magnetic field hIIIðt ¼ 0Þ ¼ 0 and the spins align along the x-direction: the total

wavefunction is factorizable. By increasing the external magnetic field, we see

the appearance of nearest-neighbor concurrence but very small. This indicates

that the concurrence cannot be produced without a background external

magnetic field in the Ising system. However, as time evolves one can see the

periodic structure of the nearest-neighbor concurrence according to the periodic

structure of the external magnetic field hIIIðtÞ [99].
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Figure 9. The nearest-neighbor concurrence Cði; iþ 1Þ (upper panel) and the periodic external

magnetic field hIIIðtÞ ¼ að1� cos½Kt	Þ; see Eq. (14) in the text (lower panel) for K ¼ 0:05 with

different values of a as a function of time t.
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Recently, interest in solid state systems has increased because they facilitate

the fabrication of large integrated networks that would be able to implement rea-

listic quantum computing algorithms on a large scale. On the other hand, the

strong coupling between a solid state system and its complex environment

makes it a significantly challenging mission to achieve the high coherence

control required to manipulate the system. Decoherence is considered as one

of the main obstacles toward realizing an effective quantum computing system

[100–103]. The main effect of decoherence is to randomize the relative phases of

the possible states of the isolated system as a result of coupling to the environ-

ment. By randomizing the relative phases, the system loses all quantum interfer-

ence effects and may end up behaving classically.

In order to study the decoherence effect, we examined the time evolution of a

single spin coupled by exchange interaction to an environment of interacting

spin bath modeled by the XY-Hamiltonian. The Hamiltonian for such a system

is given by [104]

H ¼ � 1þ g
2

XN

i¼1

Ji;iþ1sx
i s

x
iþ1 �

1� g
2

XN

i¼1

Ji;iþ1s
y
i s

y
iþ1 �

XN

i¼1

hisz
i ð83Þ

where Ji;iþ1 is the exchange interaction between sites i and iþ 1, hi is the

strength of the external magnetic field at site i, sa are the Pauli matrices

(a ¼ x; y; z), g is the degree of anisotropy, and N is the number of sites. We

consider the centered spin on the lth site as the single-spin quantum system

and the rest of the chain as its environment, where in this case l ¼ ðN þ 1Þ=2.

The single spin directly interacts with its nearest-neighbor spins through

exchange interaction Jl�1;l ¼ Jl;lþ1 ¼ J0. We assume exchange interactions

between spins in the environment are uniform and simply set it as J ¼ 1. The

centered spin is considered as inhomogeneously coupled to all the spins in the

environment by being directly coupled to its nearest neighbors and indirectly to

all other spins in the chain through its nearest neighbors.

By evaluating the spin correlator CðtÞ of the single spin at the jth site [104],

CjðtÞ ¼ rz
j ðt; bÞ � rz

j ð0; bÞ ð84Þ

we observed that the decay rate of the spin oscillations strongly depends on the

relative magnitude of the exchange coupling between the single spin and its

nearest neighbor J0 and coupling among the spins in the environment J. The

decoherence time varies significantly based on the relative coupling magnitudes

of J and J0. The decay rate law has a Gaussian profile when the two exchange

couplings are of the same order, J0 � J, but converts to exponential and then a
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power law as we move to the regimes of J0 > J and J0 < J. We also show that

the spin oscillations propagate from the single spin to the environment spins with

a certain speed.

Moreover, the amount of saturated decoherence induced into the spin state

depends on this relative magnitude and approaches a maximum value for a rela-

tive magnitude of unity. Our results suggest that setting the interaction within the

environment in such a way that its magnitude is much higher or lower than the

interaction with the single spin may reduce the decay rate of the spin state. The

reason behind this phenomenon could be that the variation in the coupling

strength along the chain at one point (where the single spin exits) blocks the pro-

pagation of decoherence along the chain by reducing the entanglement among

the spins within the environment, which reduces its decoherence effect on the

single spin in return [104]. This result might be applicable in general to similar

cases of a centered quantum system coupled inhomogeneously to an interacting

environment with large degrees of freedom.

VI. ENTANGLEMENT AND DENSITY FUNCTIONAL THEORY

Density functional theory is originally based on the Hohenberg–Kohn theorem

[105, 106]. In the case of a many-electron system, the Hohenberg–Kohn theorem

establishes that the ground-state electronic density rðrÞ, instead of the potential

vðrÞ, can be used as the fundamental variable to describe the physical properties

of the system. In the case of a Hamiltonian given by

H ¼ H0 þ Hext ¼ H0 þ
X

l

ll
bAAl ð85Þ

where ll is the control parameter associated with a set of mutually commuting

Hermitian operators fbAAlg, the expectation values of bAAl for the ground state jci
are denoted by the set falg � fhcjbAAljcig. For such a Hamiltonian Wu et al.

[107] linked entanglement in interacting many-body quantum systems to density

functional theory. They used the Hohenberg–Kohn theorem on the ground state

to show that the ground-state expectation value of any observable can be inter-

changeably viewed as a unique function of either the control parameter fllg or

the associated operator representing the observable falg.
The Hohenberg–Kohn theorem can be used to redefine entanglement mea-

sures in terms of new physical quantities: expectation values of observables,

falg, instead of external control parameters, fllg. Consider an arbitrary entan-

glement measure M for the ground state of Hamiltonian (85). For a bipartite

entanglement, one can prove a central lemma, which very generally connects

M and energy derivatives.
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Lemma Any entanglement measure M can be expressed as a unique functional

of the set of first derivatives of the ground-state energy [107] :

M ¼ MðfalgÞ ¼ M
qE

qll

� �� �
ð86Þ

The proof follows from the fact that, according to the generalized Hohenberg–

Kohn theorem, the ground-state wavefunction j�i is a unique functional of falg,
and since j�i provides a complete description of the state of the system, every-

thing else is a unique functional of falg as well, including M. Wu et al. [107] use

density functional theory concepts to express entanglement measures in terms of

the first or second derivative of the ground-state energy. As a further application

they discuss entanglement and quantum phase transitions in the case of mean

field approximations for realistic models of many-body systems [107].

This interesting connection between density functional theory and entangle-

ment was further generalized for arbitrary mixed states by Rajagopal and Ren-

dell [108] using the maximum entropy principle. In this way they established the

duality in the sense of Legendre transform between the set of mean values of the

observables based on the density matrix and the corresponding set of conjugate

control parameters associated with the observables.

VII. FUTURE DIRECTIONS

We have examined and reviewed the relation between electron–electron correla-

tion, the correlation entropy, and the entanglement for two exactly solvable mod-

els: the Ising model and the Hubbard model for two sites. The ab initio

calculation of the entanglement for the H2 system is also discussed. Our results

show that there is a qualitatively similar behavior between the entanglement and

absolute standard correlation of electrons for the Ising model. Thus entangle-

ment might be used as an alternative measure of electron correlation in quantum

chemistry calculations. Entanglement is directly observable and it is one of the

most striking properties of quantum mechanics.

Dimensional scaling theory [109] provides a natural means to examine

electron–electron correlation, quantum phase transitions [110], and entangle-

ment. The primary effect of electron correlation in the D!1 limit is to

open up the dihedral angles from their Hartree–Fock values [109] of exactly

90!. Angles in the correlated solution are determined by the balance between

centrifugal effects, which always favor 90!, and interelectron repulsions, which

always favor 180!. Since the electrons are localized at the D!1 limit, one

might need to add the first harmonic correction in the 1=D expansion to obtain
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a useful density matrix for the whole system, thus the von Neumann entropy. The

relation between entanglement and electron–electron correlation at the large-

dimensional limit for the dimensional scaling model of the H2 molecule [111]

will be examined in future studies.

A new promising approach is emerging for the realization of quantum

chemistry calculations without wavefunctions through first-order semidefinite

programming [112]. Mazziotti has developed a first-order, nonlinear algo-

rithm for the semidefinite programing of the two-electron reduced density

matrix method that reduces memory and floating-point requirements by

orders of magnitude [113, 114]. The electronic energies and properties of

atoms and molecules are computable simply from an effective two-electron

reduced density matrix rðABÞ [115, 116]. Thus the electron–electron correla-

tion can be calculated directly as effectively the entanglement between the

two electrons, which is readily calculated as the von Neumann entropy

S ¼ �TrrA log2 rA, where rA ¼ TrBrðABÞ. With this combined approach,

one calculates the electronic energies and properties of atoms and molecules

including correlation without wavefunctions or Hartree–Fock reference sys-

tems. This approach provides a natural way to extend the calculations of

entanglement to larger molecules.

Quantum phase transitions are a qualitative change in the ground state of a

quantum many-body system as some parameter is varied [84, 117]. Unlike clas-

sical phase transitions, which occur at a nonzero temperature, the fluctuations in

quantum phase transitions are fully quantum and driven by the Heisenberg

uncertainty relation. Both classical and quantum critical points are governed

by a diverging correlation length, although quantum systems possess additional

correlations that do not have a classical counterpart: this is the entanglement

phenomenon. Recently, a new line of exciting research points to the connection

between the entanglement of a many-particle system and the appearance of

quantum phase transitions [60, 66, 118, 119]. For a class of one-dimensional

magnetic systems, the entanglement shows scaling behavior in the vicinity of

the transition point [60]. Deeper understanding of quantum phase transitions

and entanglement might be of great relevance to quantum information and

computation.
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