Entanglement as measure of electron–electron correlation in quantum chemistry calculations

Zhen Huang, Sabre Kais *

Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, United States

Received 19 March 2005; in final form 12 July 2005

Abstract

In quantum chemistry calculations, the correlation energy is defined as the difference between the Hartree–Fock limit energy and the exact solution of the nonrelativistic Schrödinger equation. With this definition, the electron correlation effects are not directly observable. In this report, we show that the entanglement can be used as an alternative measure of the electron correlation in quantum chemistry calculations. Entanglement is directly observable and it is one of the most striking properties of quantum mechanics. As an example we calculate the entanglement for He atom and H₂ molecule with different basis sets.

The concept of electron correlation as defined in quantum chemistry calculations is useful but not directly observable, i.e., there is no operator in quantum mechanics that its measurement gives the correlation energy. In this Letter, we propose to use the entanglement as a measure of the electron correlation. Entanglement is directly observable and it is one of the most striking properties of quantum mechanics.

It was nearly 70 years ago when Schrödinger gave the name ‘entanglement’ to a correlation of quantum nature. He stated that for an entangled state the best possible knowledge of the whole does not include the best possible knowledge of its parts [7]. Over the decades the meaning of the word ‘entanglement’ has changed its flavor and our view of the nature of entanglement may continue to be modified [8]. Entanglement is a quantum mechanical property that describes a correlation between quantum mechanical systems that has no classical analog [9–12]. A pure state of a pair of quantum systems is called entangled if it is unfactorizable, as for example, the singlet state of two spin-1/2 particles, \(\frac{1}{\sqrt{2}} (|\uparrow\downarrow \rangle - |\downarrow\uparrow \rangle) \). A mixed state is entangled if it can not be represented as a mixture of factorizable pure states [13–15]. Since the
seminal work of Einstein, Podolsky, and Rosen [16] there has been a quest for generating entanglement between quantum particles [10,17]. Investigation of quantum entanglement is currently a very active area and has been studied intensely due to its potential applications in quantum communications and information processing [10] such as quantum teleportation [18,19], superdense coding [20], quantum key distribution [21], telecoloning, and decoherence in quantum computers [22–24].

In order to employ the entanglement as an alternative method of measuring the electron correlation, we present the scheme to quantify entanglement based on the entanglement measure for two-particle systems [25,26]. We will obtain a general approach to quantify the entanglement measure for two-particle systems [25,26].

For two electron system in \(2m\)-dimensional spin-space orbital with \(c_a\) and \(c_b^\dagger\) denote the fermionic annihilation and creation operators of single-particle states and \([0]\) represents the vacuum state, a pure two-electron state \(|\Phi\rangle\) can be written as

\[
|\Phi\rangle = \sum_{a,b\in\{1,2,3,4,...,2m\}} \omega_{a,b} c_b^\dagger c_a |0\rangle,
\]

where \(a, b\) run over the orthonormalized single particle states, and Pauli exclusion requires that the \(2m \times 2m\) expansion coefficient matrix \(\omega\) is antisymmetric: \(\omega_{a,b} = -\omega_{b,a}\) and \(\omega_{i,i} = 0\).

In the occupation number representation \((n_1^\uparrow, n_1^\downarrow, n_2^\uparrow, n_2^\downarrow, \ldots, n_m^\uparrow, n_m^\downarrow)\), where \(\uparrow\) and \(\downarrow\) mean \(x\) and \(\beta\) electrons, respectively, the subscripts denote the spatial orbital index and \(m\) is the total spatial orbital number. By tracing out all other spatial orbitals except \(n_1\), we can get a \((4 \times 4)\) reduced density matrix for the spatial orbital \(n_1\)

\[
\rho_{n_1} = Tr_{n_1} |\Phi\rangle \langle |\Phi| = \\
\begin{pmatrix}
\rho_{n_1,0} & 0 & 0 & 0 \\
0 & 4 \sum_{i=1}^{m-1} |\omega_{2,2i+1}|^2 & 0 & 0 \\
0 & 0 & 4 \sum_{i=1}^{m} |\omega_{1,2i}|^2 & 0 \\
0 & 0 & 0 & \rho_{n_1,2}
\end{pmatrix},
\]

where \(\rho_{n_1,0}\) denotes an 'empty orbital',

\[
\rho_{n_1,0} = 4 \sum_{i=1}^{m-1} \sum_{j=1}^{m-1} |\omega_{2i,2j+1}|^2
\]

and \(\rho_{n_1,2}\) denotes 'two electron occupied orbital',

\[
\rho_{n_1,2} = 4 |\omega_{1,2}|^2.
\]

The 'one electron occupied orbital', in \((\uparrow, \downarrow)\) basis set is given by

\[
\rho_{n_{1,1}} = \begin{pmatrix}
4 \sum_{i=1}^{m-1} |\omega_{2,2i+1}|^2 & 0 \\
0 & 4 \sum_{i=1}^{m} |\omega_{1,2i}|^2
\end{pmatrix}.
\]

The matrix elements of \(\omega\) can be calculated from the expansion coefficient of the ab initio Configure Interaction (CI) method. The CI wave function with single and double excitation can be written as

\[
|\Phi\rangle = c_0 |\Psi_0\rangle + \sum_{\alpha} c^\dagger_{\alpha} |\Psi^\dagger_{\alpha}\rangle + \sum_{\alpha<\beta;\gamma<\delta} c^\dagger_{\alpha}\gamma c^\dagger_{\beta}\delta |\Psi^\dagger_{\alpha}\beta\gamma\delta\rangle,
\]

where \(|\Psi_0\rangle\) is the ground state Hartree–Fock wave function, \(c^\dagger_{\alpha}\) is the coefficient for single excitation from orbital \(\alpha\) to \(r\), and \(c^\dagger_{\alpha}\beta\gamma\delta\) is the double excitation from orbital \(\alpha\) and \(\beta\) to \(r\) and \(s\). Now the matrix elements of \(\omega\) can be written in terms of the CI expansion coefficients

\[
\omega_{1,2} = c_0^2, \quad \omega_{2,2i+1} = \frac{c^{2,i+1}_{1,2}}{2},
\]

\[
\omega_{1,2i+2} = \frac{c^{2i+2}_{1,2}}{2}, \quad \omega_{2i+1,2j+2} = -\frac{c^{2i+1,2j+2}_{1,2}}{2},
\]

where \(i,j = 1, 2, \ldots, m\). In this general approach, the ground state entanglement is given by von Neumann entropy of the reduced density matrix \(\rho_{n_1}\)

\[
S(\rho_{n_1}) = -Tr(\rho_{n_1} \log_2 \rho_{n_1}).
\]

We are now ready to evaluate the entanglement for the \(H_2\) molecule as a function of distance using a direct and simpler approach based on the two-electron density matrix calculated from the CI wave function with single and double electronic excitations. In the occupation number representation, the CI wave function is given by

\[
|\Phi\rangle = c_0 |1100 \ldots\rangle + c_1^\dagger |0110 \ldots\rangle + c_2^\dagger |1001 \ldots\rangle + c_3^\dagger |0011 \ldots\rangle + \cdots
\]

By tracing out all other orbitals except 1, we can get the reduced density matrix for \((n_1^\uparrow = 0, 1)\)

\[
\rho_1 = Tr_1 |\Phi\rangle \langle |\Phi| = \\
\begin{pmatrix}
\sum_{i=1}^{m-1} |c^2_{1,2i+1}|^2 + \sum_{i=1}^{m-1} |c^{2i+1,2j+2}_{1,2}|^2 & 0 \\
0 & |c_0|^2 + \sum_{i=1}^{m-1} |c^{2i+2}_{1,2}|^2
\end{pmatrix}.
\]

The CI wave function expansion coefficients are calculated with the electronic structure package Gaussian [27]. Thus, the entanglement of \(H_2\) molecule is readily calculated by the von Neumann entropy

\[
S(\rho_1) = -Tr(\rho_1 \log_2 \rho_1).
\]

Fig. 1 shows the calculated entanglement \(S\) for \(H_2\) molecule, Eq. (11), as a function of the internuclear distance \(R\) using Gaussian basis set 3-21G [27]. For
using Gaussian basis set 3-21G. At the limit the electron correlation for the He atom, \(R_{\text{3-21G}} \) basis set compared with the entanglement for He atom
\(S = 0.0313 \). The equilibrium distance using 3-21G basis set is
\(R_{\text{eq}} = 0.74 \, \text{Å} \).

comparison we included the usual electron correlation \((E_{\text{c}} = |E^{\text{Exact}} - E^{\text{UHF}}|) \) and spin-unrestricted Hartree–Fock (UHF) calculations [27] using the same basis set in the figure. At the limit \(R = 0 \), the dot represents the electron correlation for the He atom, \(E_{\text{c}} = 0.0149 \) (a.u.) using 3-21G basis set compared with the entanglement for He atom \(S = 0.0313 \). With a larger basis set, cc-pV5Z [28], we obtain numerically \(E_{\text{c}} = 0.0415 \) (a.u.) and \(S = 0.0675 \). Thus, qualitatively entanglement and absolute correlation have similar behavior. At the united atom limit, \(R \to 0 \), both have small values, then rise to a maximum value and finally vanishes at the separated atom limit, \(R \to \infty \). However, note that for \(R > 3 \, \text{Å} \) the correlation between the two electrons is almost zero but the entanglement is maximal until around \(R \sim 4 \, \text{Å} \), the entanglement vanishes for \(R > 4 \, \text{Å} \).

To understand the entanglement behavior for \(\text{H}_2 \) molecule using ab initio quantum chemistry methods, we calculate the entanglement for a simpler two-electron model system. This is a model of two spin-1/2 electrons with an exchange coupling constant \(J \) (a.u.) in an effective transverse magnetic field of strength \(B \) (a.u.). In order to describe the environment of the electrons in a molecule, we simply introduce a small effective external magnetic field \(B \). The general Hamiltonian for such a system is given by

\[
H = -\frac{J}{2} (1 + \gamma) \sigma_x \otimes \sigma_x - \frac{J}{2} (1 - \gamma) \sigma_y \otimes \sigma_y - B \sigma_z \\
\otimes I_2 - B I_1 \otimes \sigma_z,
\]

(12)

where \(\sigma^\alpha \) are the Pauli matrices \((\alpha = x, y, z)\) and \(\gamma \) is the degree of anisotropy. For \(\gamma = 1 \) Eq. (12) reduces to the Ising model, whereas for \(\gamma = 0 \) it is the XY model.

Our two spin problem admits an exact solution, it is simply a \((4 \times 4)\) matrix with the following four eigenvalues:

\[
\lambda_1 = -J, \quad \lambda_2 = J, \quad \lambda_3 = -\sqrt{4B^2 + J^2}, \quad \lambda_4 = \sqrt{4B^2 + J^2}
\]

and the corresponding eigenvectors:

\[
|\phi_1\rangle = \left(\begin{array}{c} 0 \\ \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \\ 0 \end{array} \right), \quad |\phi_2\rangle = \left(\begin{array}{c} 0 \\ \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \\ 0 \end{array} \right),
\]

\[
|\phi_3\rangle = \left(\begin{array}{c} \frac{\sqrt{2B}}{2\sqrt{x}} \\ 0 \\ 0 \\ 1 \end{array} \right), \quad |\phi_4\rangle = \left(\begin{array}{c} \frac{\sqrt{2B}}{2\sqrt{x}} \\ 0 \\ 0 \end{array} \right)
\]

where \(x = \sqrt{4B^2 + J^2} \). In the basis set \(|\uparrow\uparrow\rangle, |\uparrow\downarrow\rangle, |\downarrow\uparrow\rangle, |\downarrow\downarrow\rangle\), the eigenvectors can be written as

\[
|\phi_1\rangle = \frac{1}{\sqrt{2}} (|\uparrow\uparrow\rangle + |\downarrow\uparrow\rangle),
\]

\[
|\phi_2\rangle = \frac{1}{\sqrt{2}} (|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle),
\]

\[
|\phi_3\rangle = \sqrt{\frac{x - 2B}{2x}} |\uparrow\downarrow\rangle + \sqrt{\frac{x + 2B}{2x}} |\uparrow\uparrow\rangle,
\]

\[
|\phi_4\rangle = \sqrt{\frac{x + 2B}{2x}} |\downarrow\uparrow\rangle - \sqrt{\frac{x - 2B}{2x}} |\downarrow\downarrow\rangle.
\]

Now we confine our interest to the calculation of the entanglement between the two electronic spins. For simplicity we take \(\gamma = 1 \), Eq. (12) reduces to the Ising model with the ground state energy \(\lambda_3 \) and the corresponding eigenvector \(|\phi_3\rangle\). All the information needed for quantifying the entanglement in this case is contained in the two-electron density matrix.

When a bipartite quantum system AB is in a pure state there is essentially a unique measure of the entanglement between the subsystems A and B given by the von Neumann entropy \(S \) [29]. If we denote \(\rho_A \) the partial trace of \(\rho_{AB} \) with respect to subsystem B, \(\rho_A = Tr_B(\rho_{AB}) \), the entanglement of the state \(\rho_{AB} \) is defined as the von Neumann entropy of the reduced density operator \(\rho_A \), \(S(\rho_{AB}) = -Tr[\rho_A \log_2 \rho_A] \).

For our model system in the ground state \(|\phi_3\rangle\), the reduced density matrix in the basis set \(|\uparrow, \downarrow\rangle\) is given by

\[
\rho_A = \left(\begin{array}{cc} \frac{x + 2B}{2x} & 0 \\ 0 & \frac{x - 2B}{2x} \end{array} \right).
\]

Thus, the entanglement is simply given by

![Figure 1. Comparison between the absolute value of the electron correlation \(E_c = |E^{\text{Exact}} - E^{\text{UHF}}| \) and the von Neumann Entanglement (S) as a function of the internuclear distance R for the \(\text{H}_2 \) molecule using Gaussian basis set 3-21G. At the limit R = 0, the dot represents the electron correlation for the He atom, \(E_c = 0.0149 \) (a.u.) using 3-21G basis set compared with the entanglement for He atom \(S = 0.0313 \). The equilibrium distance using 3-21G basis set is \(R_{\text{eq}} = 0.74 \, \text{Å} \).]
\[S = -\frac{1}{2}\log_2 \left(\frac{1}{4} - \frac{1}{4 + \lambda^2} \right) + \frac{1}{\sqrt{4 + \lambda^2}} \log_2 \frac{\sqrt{4 + \lambda^2} - 2}{\sqrt{4 + \lambda^2} + 2}, \]

(20)

where \(\lambda = J/B \).

The value of \(J \), the exchange coupling constant between the spins of the two electrons, can be calculated as half the energy difference between the lowest singlet and triplet states of the hydrogen molecule. Herring and Flicker have shown [30] that \(J \) for H\(_2\) molecule can be approximated as a function of the interatomic distance \(R \). In atomic units, the expression for large \(R \) is given by

\[J(R) = -0.821R^{5/2}e^{-2R} + O(R^2e^{-2R}). \]

(21)

Fig. 2 shows the calculated von Neumann Entanglement \((S) \), Eq. (20), as a function of the distance between the two electronic spins, using \(J(R) \) of Eq. (21), for different values of the magnetic field strength \(B \). At the limit \(R \to \infty \) the exchange interaction \(J \) vanishes as a result the two electronic spins are up and the wave function is factorizable, i.e., the entanglement is zero. At the other limit, when \(R = 0 \) the entanglement is zero for this model because \(J = 0 \). As \(R \) increases, the exchange interaction increases leading to increasing entanglement between the two electronic spins. However this increase in the entanglement reaches a maximum limit as shown in the figure. For large distance, the exchange interaction decreases exponentially with \(R \) and thus the decrease of the entanglement. The figure also shows that the entanglement increases with decreasing the magnetic field strength. This can be attributed to effectively increasing the exchange interaction. Thus, we get the similar behavior as the entanglement for the H\(_2\) molecule as a function of the internuclear distance \(R \), using accurate ab initio methods. Because the Eq. (21) is only applicable to the large value of \(R \), it is not surprising to see, in the limit \(R \to 0 \), the entanglement converges to the He atom results in ab initio methods but disappears in this simple model.

Recently, a new promising approach is emerging for the realization of quantum chemistry calculations without wave functions through first order semidefinite programming [31]. The electronic energies and properties of atoms and molecules are computable simply from an effective two-electron reduced density matrix \(\rho_{(AB)} \). Thus, the electron correlation can be directly calculated as effectively with the entanglement between the two electrons, which is readily calculated as the von Neumann entropy \(S = -Tr\rho_A \log_2 \rho_A \), where \(\rho_A = Tr_B\rho_{(AB)} \). Utilizing this combined approach, one calculates the electronic energies and properties of atoms and molecules including correlation without wave functions or Hartree–Fock reference systems.

In summary, we presented the entanglement as an alternative measure of the electron electron correlation in quantum chemistry calculations for atoms and molecules. All the information needed for quantifying the entanglement is contained in the two-electron density matrix. This measure is readily calculated by evaluating the von Neumann entropy of the one electron reduced density operator. This definition of correlation has deep roots in quantum theory, observable, and does not need a reference system such as Hartree–Fock calculations. The approach is general and can be used for larger atomic and molecular systems.

Acknowledgments

We thank Professor Dudley Herschbach for critical reading of the manuscript. This work has been supported by the Purdue Research Foundation.

References