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ABSTRACT: Spin liquids�an emergent, exotic collective phase of matter�have
garnered enormous attention in recent years. While experimentally many
prospective candidates have been proposed and realized, theoretically modeling
real materials that display such behavior may pose serious challenges due to the
inherently high correlation content of such phases. Over the last few decades, the
second-quantum revolution has been the harbinger of a novel computational
paradigm capable of initiating a foundational evolution in computational physics. In
this report, we strive to use the power of the latter to study a prototypical model, a
spin-1/2-unit cell of a Kagome antiferromagnet. Extended lattices of such unit cells
are known to possess a magnetically disordered spin-liquid ground state. We
employ robust classical numerical techniques such as the density-matrix
renormalization group (DMRG) to identify the nature of the ground state through
a matrix-product state (MPS) formulation. We subsequently use the gained insight
to construct an auxiliary Hamiltonian with reduced measurables and also design an ansatz that is modular and gate-efficient. With
robust error-mitigation strategies, we are able to demonstrate that the said ansatz is capable of accurately representing the target
ground state even on a real IBMQ backend within 1% accuracy in energy. Since the protocol is linearly scaling O(n) in the number
of unit cells, gate requirements, and the number of measurements, it is straightforwardly extendable to larger Kagome lattices that
can pave the way for efficient construction of spin-liquid ground states on a quantum device.

■ INTRODUCTION
Quantum spin liquids are exotic phases of matter that arise in
systems of interacting quantum spins.1 Unlike conventional
magnets, where the spins align in a well-defined pattern at low
temperatures, spin liquids do not exhibit long-range magnetic
order, even at absolute zero. Instead, they are characterized by a
unique combination of long-range quantum entanglement,
fractionalized excitations,2 and emergent gauge fields.1,3 The
strong entanglement between spins over long distances is
responsible for the global topological order observed in spin
liquids, which is distinct from the broken symmetries seen in
conventional ordered states.
Spin liquids can have either a gapless or a gapped excitation

spectrum. Gapped spin liquids are well-characterized by the
global topological structure of their ground-state wave functions.
They exhibit emergent quasi-particle excitations that have
nontrivial statistical interactions, for instance, anionic statistics
in two dimensions.4 Gapless spin liquids, on the other hand, are
more challenging to characterize as their ground states can be
highly degenerate, and even quasi-particle description com-
pletely breaks down in some cases.5 Gapless spin liquids exhibit
power-law decay of correlation profiles of observable quantities.

Among various spin-liquid systems, the antiferromagnetic
Heisenberg model on the Kagome lattice holds a particular
significance. The two-dimensional lattice consisting of hexagons
with corner-sharing triangles (see Figure 1) introduces strong
geometric frustration that leads to intriguing physics. Numerical
simulations have suggested the existence of various spin-liquid
states on the Kagome lattice, including the resonating valence
bond (RVB) state and the Z2 spin liquid.2,6,7 Such RVB states
were first investigated by Pauling8 for describing π-bonded
organic molecules and then subsequently used by Anderson9 in
connection to Mott insulators. For extended lattices, the
presence of an RVB ground state usually implies that the
valence bond pairs are itinerant and can delocalize throughout
the lattice.
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Experimental studies have identified several materials as
potential hosts of spin-liquid behavior on the Kagome lattice.
For instance, Herbertsmithite (ZnCu3(OH)6Cl2), a mineral
compound with copper ions arranged in a Kagome lattice, has
shown signatures of spin-liquid behavior.10−12 Another mineral
is Barlowite (Cu4(OH)6FBr), which exhibits a Kagome lattice
formed by copper ions.13 Furthermore, Na4Ir3O8 is a material
where the Ir ions, having a spin-1/2, reside on a Hyperkagome
3D lattice. Studies suggest that the ground state of the
Heisenberg model on this lattice may exhibit a quantum spin-
liquid phase with a spinon Fermi surface.14 Such spinon
excitations arise due to itinerant unpaired electrons not
participating in the ground-state bonding framework. The list
extends to other polycrystallites like (CsX)Cu5O2(PO4)2

15 and
even in Tb3Sb3Mg2O14 where each of Tb3+ and Sb5+ have
alternating Kagome sublattices16 or in other pyrochlore
derivatives like in La3Sb3Zn2O14.

17,18 It is important to note
that the formation of a perfect Kagome lattice in natural
materials can be challenging due to factors like lattice
distortions, impurities, and disorder. Despite the emergence of
promising candidates, experimentally confirming the existence
of a pristine spin-liquid material remains a significant challenge.
Despite the progress in experimental investigations, theoreti-

cal modeling of Kagome spin liquids remains challenging due to
the strong correlations involved. In this paper, we focus on the
theoretical investigation of a spin-1/2 antiferromagnetic
Heisenberg model on the Kagome lattice. A potential initial
step in understanding the Kagome lattice involves preparing its
ground state and subsequently conducting investigations using
the prepared ground state. This article focuses on achieving the
ground state of Kagome lattices using a variational quantum
eigensolver (VQE). Such quantum simulations, variational and
otherwise, have become quite popular in recent years and been
performed for a variety of other systems using diverse
methodologies.19−29 However, even constructing the ground
state of a single plaquette within the Kagome lattice requires 12

qubits. Various studies30,31 have demonstrated that when
attempting to attain the ground state of Hamiltonians with a
significant number of qubits (>8), any Hamiltonian-agnostic
ansatz, beyond a certain depth, inevitably leads to a barren
plateau. This barren plateau phenomenon is attributed to the
excessive expressibility of the ansatz.32−34 To circumvent the
issue, it is necessary to employ an ansatz that possesses just
enough expressibility to capture the system’s ground state,
without being overly expressive for other arbitrary states.
In this study, we develop a physics-inspired analogue that is

capable of capturing the ground state of a single plaquette
system. In order to achieve this, we generate two-point
correlation profiles between various pairs of lattice sites using
the density-matrix renormalization group (DMRG), which is
computationally cheaper than exact diagonalization. We choose
an ansatz that also conforms to the same correlation profile
based on which pairs of lattice sites exhibit a substantial
correlation. One can even go one step further to pick ansatz that
has the same sign of the correlations as the ones obtained via
DMRG. Furthermore, we also define two auxiliary Hamilto-
nians, which can be treated as reduced versions of the original
Hamiltonian. Through appropriate classical preprocessing, we
show that the ground state of the auxiliary Hamiltonians is
identical to the ground state of the target Hamiltonian. By
utilizing the reduced Hamiltonian, we can achieve certain
benefits when simulating the real device compared to using the
original Hamiltonian. Specifically, the reduced Hamiltonian
significantly diminishes the number of gates required for
computing expectations of the Hamiltonian multiple times
during the optimization process. This reduction in the number
of measurements enhances the performance of the VQE within
the present era of noisy intermediate-scale quantum (NISQ)
technologies. Naturally, all our results will be validated by
performing calculations resulting in high-fidelity ground states
on actual quantum hardware.
Even though there exists another work that attempts to

perform a digital quantum simulation of the Kagome unit cell
using Hamiltonian variational ansatz,35 however unlike us, the
said report does not perform computations on an actual
hardware but merely provides results using noise models on a
simulator. Also being inspired from a classical preprocessing
based on a thorough DMRG analysis, the approach we follow
and the ansatz we use is quite different from them. The modular
two-qubit ansatz that ref 35 employs requires the use of two
single-qubit gates and one f Sim gate that in turn requires a
SWAP gate to be implemented (see Section IV in ref 35). Each
such SWAP gate would need on an average three CNOT gates
for implementation (sequential arrangement of such CNOT
gates will lead to some fortunate cancellation, which motivates
the discussion of an average case). As we shall see later, our
ansatz is also modular with two-qubit connectivity requiring just
a single CNOT gate. This ensures crisp convergence to the
ground state even on the real hardware with a statistical error
being ≤1%. In addition, as we shall discuss, our approach would
also linearly scale in the number of such two-qubit gates even for
an extended Kagome lattice with multiple plaquettes, making it
efficient and less susceptible to noise injected from NISQ
platforms. We shall also present a systematic analysis for the
choice of optimizers, initial parametrization, and error-
mitigation strategies to use that is not explored elsewhere.
Analogue simulation of Kagome ground state has also been
undertaken using the 219-atom programmable quantum
simulator.36 In this approach, arrays of 87Rb atoms were placed

Figure 1. Unit cell (highlighted in blue) as used in this work within a
larger Kagome lattice. Nodes of the unit cell (brown) are the locations
of spins/qubits. Displayed is the specific connectivity pattern as used in
this work and also the contribution from each edge to the overall
Hamiltonian in eq 1.
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on the edges of a Kagome lattice. Such atoms are excitable to a
high-energy Rydberg state, thereby turning on the dipolar
interactions with neighboring vertices and effectively mimicking
the dimer bonds in a RVB. Rydberg blockade naturally limits the
density of such dimeric bonds on the atomic assembly at an
appropriate filling fraction. The assembly was adiabatically time-
evolved to create quantum states that inhabit the span of several
paired valence bond configurations with no local order. The
onset of a quantum spin-liquid phase was detected by using both
diagonal and off-diagonal string operators. Since the present
work is a digital simulation, it is naturally apparent that our
approach is entirely different from the aforesaid attempt but
shall act as a complementary recipe.
In the following section, we investigate the Kagome unit cell

classically using DMRG as a precursor for choosing a suitable
ansatz. Thereafter, we discuss the choice of ansatz and methods
to define an auxiliary Hamiltonian to afford measurement
reduction. We then present a discussion on the choice of
optimizers, initial parametrization, and error-mitigation strat-
egies that shall be used and present the results on the actual
hardware.We conclude thereafter discussing the extendability of
our ansatz for larger systems and using recent experimental
efforts to study myriad applications of RVB in physics and
chemistry even beyond the precincts of spin liquids. This
highlights the importance of our investigation.

■ METHODS
Model. An antiferromagnetic Kagome lattice consists of

several tesselated unit cells, each of which can be described as
being composed of qubits interacting according to the following
Heisenberg Hamiltonian with homogeneous interactions
(XXX)

= + +H J J X X YY Z Z( ) ( )
i j

i j i j i j
( , ) (1)

where (X, Y, Z) are usual Pauli operators and the indices (i, j)
refer to respective sites/qubits. The set η is defined according to
the adjacency matrix (connectivity pattern) of the interaction
graph illustrated in Figure 1. A pair of qubits (say (k,m)) sharing
a specified edge in the unit cell shown in Figure 1 contributes a
J(XkXm + YkYm + ZkZm). The connectivity graph we followed in
this work defines the set η as

= {

}

(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 0), (0, 6),

(1, 6), (1, 7), (2, 7), (2, 8), (3, 8), (3, 9), (4, 9),

(4, 10), (5, 10), (5, 11), (0, 11) (2)

The model can be interpreted as consisting of a flip−flop term
(XiXj + YiYj) that contributes to off-diagonal entries in the
configuration basis (eigenbasis of ∑i Zi) by coupling
configurations that have the same number of overall excitations
but only differ in the orientation of spins at the ith and jth sites
only. The remaining ZiZj term contributes to diagonal entries
and is responsible for primarily making the model antiferro-
magnetic given that the overall scale of the interaction strength J
≥ 0. The model possesses a set of discrete Z2 symmetries over
reflection across the planes xy, yz, and xz that keeps the
Hamiltonian defined in eq 1 invariant under transformation ofXi
→ −Xi, Yi → −Yi, and Zi → −Zi ∀ i. In addition, the model also
has a continuous U(1) that leads to particle number
conservation making ∑i Zi commute with the Hamiltonian in
eq 1. In other words, the Hamiltonian matrix in the

configuration basis would be blocked wherein within each
block one shall only have configurations that belong to a
particular eigenspace of ∑i Zi tagged by a given eigenvalue. All
such configurations have fixed number of excitations and the

dimension of such a subspace having k excitations would be( )N
k

where N is the total number of spins. We shall see that the
ground state that we are interested in would belong to ⟨∑i Zi ⟩ =
0 sector.
Classical Analysis: Motivation for the Choice of

Ansatz. To motivate the choice of a reasonable ansatz that
can reduce the computational time of actual quantum hardware
without compromising accuracy, we shall first study the unit cell
classically. The technique of choice is DMRG using a matrix-
product state ansatz. DMRG was first introduced in ref 37 as a
method for studying one-dimensional quantum systems. The
method has been routinely used ever since for analyzing strongly
correlated electronic as well as spin systems with high accuracy.
The algorithm is based on the idea of truncating the Hilbert
space of the system while preserving its essential properties. The
specific version of the algorithm we use represents the target
state of the system as a matrix-product state (MPS). In such an
MPS ansatz, each component of the state of the system is written
as a tensor network comprising the product of individual tensors
defined at a local site in the system. The bond indices among the
tensors are contracted while keeping the physical indices free.
Mathematically, an MPS can be described as a sum of the
product of matrices

| = ··· |
{ } { }

s s s s, , ...
s

s s s s n
, , ,

1 2 3n
n n

n
n n

1
1

2
1 2

1
1 1

where Λs di
are complex square matrices of order χ known as the

bond dimension. αi are the bond indices and si are the physical
indices. The bond dimension of the local tensor quantifies the
entanglement between the sites of the system. MPS with fixed
bond dimension χ can approximate a quantum state residing in a
N-qubit Hilbert space using only O(Nχ2) parameters. One can
then use this ansatz and minimize the energy of the system by
iteratively optimizing the expectation value of the Hamiltonian
until a desired level of accuracy is reached.
Unlike in 1D, even though DMRG in 2D has an unfavorable

scaling over the width of the lattice, a number of techniques have
been developed over recent years to ameliorate the issues for
practical usage as described in refs 38,39. This has made the
algorithm more favorable than many other popularly used
methods in condensed matter physics like analytical treatments
using Bethe ansatz, conformal field theory (both of which are
not extendable beyond 1D), and quantum Monte Carlo-based
methods that often suffer from nonnegativity of numerically
obtained probability values due to the infamous sign problem.
Indeed, some of the benchmark studies on potential suspects of
2D spin liquids stabilized by anisotropy,40 multispin inter-
actions41 were initiated using DMRG. In fact, DMRG has been
used to study antiferromagnet Kagome lattices (an extended
version of the exact system we are interested in)42,43 quite
fruitfully.
Motivated by such developments, we employ the algorithm to

classically study the unit cell as described above. We use the Julia
version of the ITensor library for all computations and employ
an MPS with a maximum bond dimension of 200 and a
maximum number of sweeps kept at 40 during the execution of
the protocol. Arnoldi’s method is used for diagonalizing the
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reduced density matrices on the local Hilbert spaces. The
spectrum of the latter was subsequently used to truncate the
wave function MPS. To assess the quality of the numerical
computation, we compare all results with exact diagonalization
(note that exact diagonalization is not required for our protocol,
and we just use it as a benchmark to show that our DMRG
results are in great agreement. For larger systems, such a
comparison need not be done).
We compute the four lowest-energy eigenstates of each from

both methods and display the resulting energies in Figure 2a,b.
We see for all four states the energy error is less than 2% of the
exact values, with the error being near zero for the two ground
states in which we are interested. In addition, in Figure 2c, we
plot the ⟨∑i Zi⟩ value for the two ground states as obtained from
DMRG and ED and show that within numerical precision, both
the ground states inhabit the ⟨∑i Zi⟩ = 0 eigenvalue sector.
Next, to assess the structural attributes of the MPS wave

function and the exactly diagonalized one, we compute the Neel
correlation function defined as follows

{ }S k S i x y z k i( ) ( ) , , , ( , ) (3)

where Sα are the spin matrices defined in terms of Pauli
operators (X, Y, Z) as

= = =S
X

S
Y

S
Z

2
,

2
,

2x y z

We display the results in Figure 3a,b for α = z, i.e., with Sz
operators for each of the two ground states seen in Figure 2. We
see astonishing anticorrelation between specific pair of spins that
are (0,6)/(6,0), (1,7)/(7,1), (2,8)/(8,2), (3,9)/(9,3), (4,10)/
(10,4), and (5,11)/(11,5) in the first ground state from DMRG
and between pairs (0,11)/(11,0), (1,6)/(6,1), (2,7)/(7,2),
(3,8)/(8,3), (4,9)/(9,4), and (5,10)/(10,5) in the second
ground state. It must be emphasized that for each reference spin
k, we see a spike in the Neel correlation for i = k too, which is
exactly 0.25. This is expected as =S k( )z

2 1
4

. The orthogonality
of the two obtained ground states dictates the correlation
profiles of each peak on different sites, leading to two sets of pairs
as mentioned above. The states from ED for both the ground
states seem to be such a superposition of the two degenerate
ground states from the ones obtained from DMRG and hence
show anticorrelation for both sets of pairs above. The profiles for

⟨Sx(k)Sx(i)⟩ and ⟨Sy(k)Sy(i)⟩ are similar to the ones for Sz due to
the directional symmetry in the Hamiltonian in eq 1. Based on
this correlation profile, we are inclined to conclude that a valid
representation of the ground state of the target Hamiltonian will
be one wherein specific pair of spins have highly nontrivial
interaction leading to anticorrelation.
We then move on to analyze the mutual information i j( , )

that is defined as follows

= +i j S i S j S i j( , ) ( ( )) ( ( )) ( ( , ))1 1 2 (4)

where (i, j) denotes a pair in the set η (in eq 2) and the entropy is
defined as S(X) = −Tr(X ln(X)) where X is the reduced density
matrix of the corresponding qubits. We designate the pairs in eq
2 using the letters A−R for convenience of representation. This
encoding is defined as

=
=
=
=
=

= = = =

= = = =

=
=
=
=
=

A B
C
D
E

F G H I

J K L M

N O
P
Q
R

(0, 1),
(1, 2),
(2, 3),
(3, 4),
(4, 5),

(5, 0), (0, 6), (1, 6), (1, 7),

(2, 7), (2, 8), (3, 8), (3, 9),

(4, 9),
(4, 10),
(5, 10),
(5, 11),
(0, 11) (5)

The results from the two ground-state MPS of DMRG
calculations are displayed in Figure 3c,d as a function of a list of
qubit pairs (see eq 5). We see that for the first ground state, pairs
likeG = (0,6), I = (1,7), K = (2,8), M = (3,9),O = (4,10), andQ
= (5,11) show unusually high mutual information but all other
pairs have mutual information on zero. This is only possible if in
this ground state (Gr-state-1) all other pairs except those above
have factorizable reduced states but the two qubits in each of the
pairs G, I, K, M, O, and Q have inherently quantum-correlated
joint state 2ρ(i, j) that is not factorizable (i.e., the correlation is
such that the entropies of the one-particle reduced state of each

Figure 2. (a) Energy obtained from DMRG and exact diagonalization (ED) as described in the text for the four lowest-energy eigenstates of
Hamiltonian in eq 1. There are two degenerate ground states at −18.0J that are replicated by DMRG with near exact accuracy (states are marked as
ground state 1 and ground state 2). (b) Energy error obtained fromDMRG and exact diagonalization (ED) as described in the text for the four lowest-
energy eigenstates of Hamiltonian in eq 1. There are two degenerate ground states at −18.0J that are replicated by DMRG with near-exact accuracy
(states are marked as ground state 1 and ground state 2). (c) ⟨∑i Zi⟩ from the two ground states (see panel (a) or (b)) obtained fromDMRG and ED.
Both the states belong to the ⟨∑i Zi⟩ = 0 eigenvalue sector.
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qubit in the pair cannot reproduce the total joint entropy). A
similar conclusion can be drawn for the other ground state (Gr-
state-2) too but for pairs H, J, L, N, P, and R (see eq 5) for a

definition of the pairs. Lastly, in Figure 3e,f, we plot ∑i∈D⟨Zi⟩
where the setD =G, I,K,M,O, andQ is for the first ground state
(see Figure 3e) and D = H, J, L, N, P, and R is for the second

Figure 3.Neel correlation function for all 12 spins in the unit cell defined in Figure 1 obtained from the first ground state of both DMRG and ED as a
function of spin indices along the unit cell. The reference spin is denoted as k and all other target spins as i, consistent with the notation in eq 3. From
the DMRG plots, we see prominent anticorrelation between certain pairs of spins only, namely, (0,6)/(6,0), (1,7)/(7,1), (2,8)/(8,2), (3,9)/(9,3),
(4,10)/(10,4), and (5,11)/(11,5). The slight discrepancy between ED and DMRG stems from the fact that it is possible for numerical algorithms to
return an arbitrary superposition of the two ground states seen in Figure 2. (b) Same as in panel (a) but for the second ground state where we see
prominent anticorrelation between certain pairs of spins only, namely, (0,11)/(11,0), (1,6)/(6,1), (2,7)/(7,2), (3,8)/(8,3), (4,9)/(9,4), and (5,10)/
(10,5). (c) Plots for pair mutual information in the joint two-body state of all pairs (A−R) (see eq 5 for the definition of pairs) for both the ground
states obtained from DMRG calculations. In ground state 1 (Gr-state-1), the joint two-body state of the qubit pairs G, I, K,M,O, andQ have inherent
quantum correlation (given the overall full MPS is a pure state) and hence possesses an entropy S that cannot be reproduced by the sum of the
entropies of the corresponding one-body reduced density matrices of the qubits. All other pairs seem to have a factorizable state. (d) Same as in panel
(c) but for the second ground state whereH, J, L,N, P, and R have inherent quantum correlation. (e) ⟨∑i Zi⟩ where i∈ pairsG, I, K,M,O, andQ only
indicating that such pairs share a joint state with ⟨∑i Zi⟩ = 0 in the first ground state. (f) Same as in panel (e) but for pairs H, J, L, N, P, and R in the
second ground state, indicating such each pair shares a joint state with ⟨∑i Zi⟩ = 0.
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ground state (see Figure 3f). This is done by computing the
reduced density matrix 2ρ(i, j) ∀(i, j) ∈ D and then computing
the said two-body z-component of the total spin average. The
results indicate that the joint state of the spins in each such pair is
such that it not only is factorizable from the remaining pairs (see
Figure 3e,f) but also has an overall z-component of spin as zero.
This is true for both the ground states even though the
respective pairs where this happens are complementary.
The data from the DMRG simulations (see Figure 3a−f)

clearly states that the quantum states obtained from the MPS
representation of DMRG calculations have special quantum
correlation between specific pairs (eitherG, I,K,M,O,Q orH, J,
L, N, P, R depending on which of the two ground state is
investigated). All other pairs seem to have a factorizable state.
Each of the correlated pairs shares a joint state that is made from
exclusive amplitudes on the two-qubit basis configurations |01⟩
and |10⟩. This is bolstered by the fact that the Neel correlation in
such pairs shows perfect anticorrelation (of magnitude 1/4) and
also the fact that the z-component of the total spin is zero. We
will present more direct evidence in the following section.
Auxillary Hamiltonians with Reduced Measurements.

In this section, we show that the problem of finding the ground
state of the target Hamiltonian in eq 1 is equivalent to finding the
ground state of two auxiliary Hamiltonians (H1, H2). The
anticorrelation profile in the previous section coupled with the
mutual information data indicates that special qubit pairs may
share a nonfactorizable joint state in the span of configurations |
10⟩ and |01⟩. In this section, we engineer two simple
Hamiltonians whose ground state happens to be a perfect
match with the ground state of the Hamiltonian in eq 1. We call
such Hamiltonians as HVBS−0(J) and HVBS−1(J), anticipating the
valence bond nature of its respective ground states.44 The
interaction terms within the two Hamiltonians are defined as

= + +H J J X X YY Z Z( ) ( )
i j

i j i j i jVBS 0
( , ) 1 (6)

= + +H J J X X YY Z Z( ) ( )
i j

i j i j i jVBS 1
( , ) 2 (7)

where the two sets κ1 and κ2 consist of pair of spins defined as
follows

= {
}

= {
}

G I K M O
Q

R H J L N
P

: (0, 6), : (1, 7), : (2, 8), : (3, 9),
: (4, 10), : (5, 11)

: (0, 11), : (1, 6), : (2, 7), : (3, 8),
: (4, 9), : (5, 10)

1

2

(8)

We compute the four lowest-energy eigenstates of both
HVBS−0(J) and HVBS−1(J) and compare the results with ED and
DMRG calculations of the full system in eq 1 in Figure 4a. We
see that even though the two auxiliary Hamiltonians HVBS−0(J)
andHVBS−1(J) differ from the full system in terms of excited-state
energy values, the ground-state energy values of HVBS−0(J) and
HVBS−1(J) surprisingly match with the ground-state energy value
of Hamiltonian in eq 1. This does not yet prove that all of these
Hamiltonians have the same ground state; it only shows that
HVBS−0(J) and HVBS−1(J) have an isoenergetic ground state with
the Hamiltonian in eq 1. We verify this again: in Figure 4b, we
display the energy error of HVBS−1(J) and HVBS−0(J) from the
energy of Hamiltonian in eq 1, indicating that the errors are
actually quite low. In Figure 4c, we use the MPS of the ground
state of HVBS−1(J) and HVBS−0(J) and compute its energy with
respect to the full Hamiltonian in eq 1, i.e., compute ⟨ψVBS−0|
H(J)|ψVBS−0⟩ and ⟨ψVBS−1|H(J)|ψVBS−1⟩ where H(J) is the full
Hamiltonian defined in eq 1 and ψ is the ground state of
HVBS−1(J) andHVBS−0(J). We see that ψVBS−0 and ψVBS−1 also act

Figure 4. (a) Energy values of the four lowest-energy eigenstates of HVBS−0(J), HVBS−1(J), and the full H(J) in eq 1. All three Hamiltonians have
isoenergetic ground states even though their excited states differ. (b) Energy error of the ground-state energy values ofHVBS−0(J) andHVBS−1(J) from
the ground-state energy value obtained from DMRG/ED ofH(J) in eq 1. The ground-state energy values exactly match. But this alone does not prove
that they share the exact same ground state (it only establishes all three ground states are isoenergetic). (c) To prove this, we use theMPS of the ground
state ofHVBS−1(J) andHVBS−0(J) and compute its energy with respect to the full Hamiltonian in eq 1, i.e., compute ⟨ψVBS−0|H(J)|ψVBS−0⟩ and ⟨ψVBS−1|
H(J)|ψVBS−1⟩whereH(J) is the full Hamiltonian defined in eq 1 and ψ is the ground state ofHVBS−1(J) andHVBS−0(J). We obtain the same energy value
as before. This establishes that the ground states of HVBS−1(J) and HVBS−0(J) act as a valid representation of the ground state of H(J) in eq 1. (d) We
resolve each of the ground state of HVBS−0(J) and HVBS−1(J) in the basis of the eigenstates (both DMRG/ED) of the Hamiltonian in eq 1. We see for
each the probability adds up to 1, indicating that ψVBS−0 and ψVBS−1 live in the span of the ground state of H(J) in eq 1.
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as a valid choice of the ground state of Hamiltonian in eq 1 and
return the exact same energy as before. By a variational theorem,
it is possible to then construct any valid ground state of eq 1 from
these two states and vice versa. To prove this assertion, we use as
basis the two ground states obtained from DMRG and ED
discussed before and resolve each of ψVBS−0 and ψVBS−1. We find
that the probabilities of projecting any of the VBS state onto the
two degenerate ground states obtained fromDMRG/ED add up
to 1. This is displayed in Figure 4d. This indicates that ψVBS−0
and ψVBS−1 lives in the span of the two eigenstates from DMRG
and ED of the Hamiltonian in eq 1. We thus have conclusively
proved that the three Hamiltonians, HVBS−0(J), HVBS−1(J), and
the one defined as H(J) in eq 1, not only have an isoenergetic
ground state but actually share the same ground state in the
sense that the ground state of one can be used as a valid
representation for the ground state of the other two and lives in
the span of the ground states of other two.
We shall choose either Hamiltonian HVBS−0(J) or HVBS−1(J)

for all computations henceforth. The advantages of choosing
either of the two are in the fact that both HVBS−0(J) and
HVBS−1(J) have reduced connectivity compared to the
Hamiltonian in eq 1 and for VQE computations, one needs a
reduced number of Pauli measurements for each (see the list in
eq 8). This saves computational load and mitigates error
drastically as there are less number of expectation values for the
noise to corrupt. Also, both Hamiltonians have a reduced
density of states near the ground energy level (see Figure 4a that
shows that the next excitation for either is at −14J) compared to
the Hamiltonian in eq 1 so it is less likely for the VQE algorithm
to be trapped locally and return a superposition of ground and
higher-energy states.
Choice of the Ansatz. Based on the DMRG computations

in the above section and the discussion in the Auxillary
Hamiltonians with Reduced Measurements section, we can

safely prepare the ground states ofHVBS−1(J) andHVBS−0(J) and
claim that those are ground states of the target Hamiltonian
defined in eq 1. As established from the DMRG calculations, the
ground states of HVBS−1(J) and HVBS−0(J) are known to be
singlet pairs (also, the ground state of eq 1 possesses properties
satisfying this as seen in the correlation profile before) with even
a subspace U(1) symmetry of a single excitation within each
interacting pair, and we propose to use either of two prospective
ansatze as described in Figure 5a,b. Each of the two ansatz has a
modular structure with exclusive connectivity between the
following interacting pairs of spins

= {
}

G I K M O

Q

: (0, 6), : (1, 7), : (2, 8), : (3, 9),

: (4, 10), : (5, 11)
1

(9)

and each of which can prepare the ground state of HVBS−0(J).
Both the prospective candidates prepare a state ψ(θ, ϕ)

between each such interacting pair described as ψ(θ, ϕ) =
cos(θ/2)|01⟩ + sin(θ/2) exp(iϕ)|10⟩ in the above list. The joint
many-body ground state will be Kronecker product of the singlet
pairs represented by two-qubit states ψ(θ, ϕ). The ansatz in
Figure 5a does this by starting from the initial configuration of |
01⟩ that is generated by the use of the first X gate (little endian
ordering is followed) in the inset of Figure 5a. Once such a
configuration is created in the single-excitation subspace, the
two-qubit gadgetU(θ, ϕ) for this ansatz thereafter implements a
Givens unitary (G(θ, ϕ))45−48 defined as follows

Figure 5. (a) Prospective choice of an ansatz that consists of a two-qubit gadget U(θ, ϕ) between pairs like (i, j), (k, l), (m, n) ∈ κ1. The gadget
implements a Gievens unitary rotation capable of generating a state in the single-excitation subspace, i.e., in the span of |10⟩ and |01⟩. The elemental
gate decomposition of the gadget is given alongside. The number of unique parameters (θ, ϕ) is 2 due to symmetry in the desired state as discussed
before. (b) Complete 12-qubit ansatz as used for the VQE calculations in this work. The two-qubit gadgetU(θ, ϕ) in this case again acts only between
interacting pairs like (i, j), (k, l), (m, n) ∈ κ1. The gadget comprises a single-qubitU3 gate and a CNOT gate controlled on state |0⟩ of the control qubit.
The unique parameter count is 2 and these parameters are denoted as (θ,ϕ). They collectively define the operations of theU3 gate in each couplet. The
CNOT in each pair creates a correlated two-qubit state in the span of |10⟩ and |01⟩. We discuss about such interacting couplets in the next section
specifically. Note that this ansatz consists of 1 CNOT gate per interacting pair that makes it more economical and less susceptible to gate infidelities
compared to panel (a), thereby justifying its choice.
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Thus, the overall unitary is U(θ, ϕ) = (X ⊗ I)G(θ, ϕ) that
creates the desired superposition. However, as is seen in the
inset of Figure 5a wherein the full elemental decomposition of
G(θ, ϕ) is explicated, the ansatz requires 3 CNOT gates per
interacting pair that enhances the likelihood of the implementa-
tion to be error-prone on a near-term device. Contrary to this
popular choice, we present in this manuscript another ansatz
that is far more economical. Like the one above, this ansatz also
comprises of a pairwise interacting gadget U(θ, ϕ) that only
couples pair of spins (p, q) ∈ κ1. The unique parameter count as
before will be 2 and denoted (θ, ϕ). It is kept the same for all
pairs due to similar correlation profiles, mutual information
values, and symmetry of each pair (see Figure 3). However,
unlike before, the ansatz in Figure 5b (see inset) implements the
target unitary asU(θ,ϕ) = (U3(θ,ϕ, 0)⊗ I)(X⊗ I)CNOT(X⊗
I), thereby requiring just 1 two-qubit gate (CNOT) for each pair.
The single-qubitU3(θ,ϕ, 0) gate creates the superposition of the
control qubit, thereby leading to the formation of a state in the
span of |00⟩ and |10⟩. The CNOT gate being controlled on the
state |0⟩ thereafter exclusively transforms |00⟩ → |01⟩. To use
this scheme, one must emphasize that it is mandatory to
initialize the qubits in |0⟩⊗n. Henceforth, we shall use this ansatz
for all computations in the manuscript.
Choice of the Optimizer. To analyze the performance of

various optimizers, we performed numerous calculations on the
ibmq-qasm simulator by importing noise models (choice of the
noise model is due to FakeHanoi backend) using several
available optimizers. The code base to perform all quantum
simulations is implemented using Qiskit.49 Figure 6 shows the
convergence of the energy as a function of the epochs (iteration
index), and it can be seen that most optimizers perform well on
this ansatz. We see that while most optimizers perform

reasonably well and eventually attain the desired accuracy,
COBYLA provides the fastest convergence within 10−20
iterations. This has been corroborated multiple times for this
specific case with different initial parameters. Since enhanced
number of iterations on a quantum device would incur more
error due to increased number of operations and decoherence of
the qubit register, we stick to using COBYLA as the preferred
optimizer for all cases henceforth.

■ RESULTS AND DISCUSSION
Initial Parameters and Error-Mitigation Schemes

Using a Single Interacting Component of the Ansatz: A
Two-Qubit System. Our analysis in the Classical Analysis:
Motivation for the Choice of Ansatz section revealed
anticorrelation between two adjacent lattice sites inhabiting
the triangular facets of the Kagome unit cell (see Figure 1). Also,
the pinwheel structure of the Kagome lattice unit cell has C6
symmetry. Therefore, starting with the anticorrelated two-qubit
system can provide a good foundation for comprehending the
ground state of the 12-qubit Kagome lattice. Based on this
finding for a two-qubit system, we propose an ansatz given by
ψ(θ, ϕ) = cos(θ/2)|01⟩ + sin(θ/2) exp(iϕ)|10⟩. The corre-
sponding ansatz can be implemented onto a quantum circuit just
by using aU3(θ, ϕ, 0) gate, and a CNOT gate as shown in Figure
7.

Intuition about the performance of this two-qubit ansatz can
be beneficial for achieving convergence in the overall
optimization algorithm for all 12 qubits, particularly when
operating on real-world quantum devices, which are often noisy.
We shall therefore use this two-qubit ansatz to study what kind
of initial parameters are to be used for warm starting on a real
quantum device for the 12-qubit case. We will also study what
should be the optimal choice of the error-mitigation schemes.
Incorporating such effective error-mitigation techniques can
significantly improve the accuracy of the final results. The two-
qubit Hamiltonian for any one interacting pair (say (0,6)th qubit
pair) is given by

= + +H X X Y Y Z Z2
0 1 0 1 0 1 (11)

where we have relabeled the dummy indices. The ground state of
this Hamiltonian is variationally obtained by minimizing the
parameters (θ, ϕ) within the ansatz described in Figure 7. To do
this, we also use several different choices of error-mitigation
techniques by evaluating their effectiveness in our specific case
against the imported noise model (choice of the noise model is
due to FakeHanoi backend) in the ibmq-qasm simulator. These
schemes includes zero-noise extrapolation (ZNE),50 Pauli
Twirling (popularly called T-Rex),51 and measurement error
mitigation (MEM),52 which are the commonly used methods to
mitigate errors in quantum computing. The code base to
perform all such simulations with and without error-mitigation
schemes is implemented using Qiskit.49 Various factors
influence the performance of each of these techniques when it
is employed to attenuate the effect of noise, including but not
limited to the following. For instance, ZNE can become
increasingly complex as the number of qubits grows as well as the

Figure 6. Performance of different optimizers when VQE computations
are performed for the full 12-qubit ansatz by importing the noise model
(FakeHanoi backend) on the ibmq-qasm simulator.

Figure 7. Two-Qubit ansatz used within the VQE calculations.
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fidelity of quantum gates is high as it requires running the same
circuit multiple times with different levels of noise. In contrast,
Pauli twirling can be applied more efficiently as it involves
preparing a more robust single noisy state that can be used for
multiple operations. Furthermore, the MEM method builds a
calibration matrix that is shown in Figure 8a. The size of this
calibration matrix grows exponentially, which therefore can be
quite a costly exercise to evaluate exactly when the number of
qubits become high. Furthermore, in the context of variational
quantum eigensolver (VQE), it is worth noting that the
performance of different error-mitigation schemes varies
depending on the choice of optimizer used in the optimization
process that in turn drastically affects the quality of
convergence.53

We use the two-qubit Hamiltonian defined in eq 11 and
optimize the ansatz in Figure 7 with respect to the variational
parameters using a noise model imported from the FakeHanoi
backend. The corresponding results for the energy function and
the relative % energy error vs the epochs when using MEM are
shown in Figure 8b,c. As can be seen in Figure 8c, the % error for
the case of the FakeHanoi backend without considering any
error-mitigation scheme is around 5−10%. When we use the
calibration matrix from MEM, the error is mitigated and comes
down to around 1−2% (Figure 8c) but not below that. On the
other hand, if ZNE is used, from the results as illustrated in
Figure 8d,e, we see that it is possible to reach even below 1%
error in the obtained final energy. Thus, MEM was unable to
reduce the error percentage as much as ZNE could do on the
noisy model, and thus it will not be selected for executing VQE
for the full 12-qubit system on an actual quantum device as we
shall explore next. From the results of the computation with
ZNE, the final converged parameters that minimized the energy
for the two-qubit case were found to be θ ∼ π/2 and ϕ ∼ π,

which is essentially a Bell state of the kind | |10 01
2

, thereby
further corroborating our previous findings of having anti-
correlated pairs. We use this set of parameters as an initial warm
start for the full 12-qubit case, which we investigate next.
Simulations on a Real Quantum Hardware. In this

section, we show the results corresponding to the VQE
calculation for finding the ground-state energy of the 12-qubit
Kagome lattice on the ibm_hanoi that is one of the IBM
Quantum Canary Processors. The code base to perform all such
simulations on the real hardware with and without error-
mitigation schemes is implemented using Qiskit.49 Based on the
analysis of the aforementioned results on quantum devices, it is
evident that for good accuracy, one needs to have an intuition of
the starting step motivated by the physics of the problem. We
use the ansatz as motivated in the Classical Analysis: Motivation
for the Choice of Ansatz section and warm start the optimization
by using initial parameters as discussed in the previous section.
We fixed the choice of the optimizer as COBYLA since its
performance is the best, as discussed. Also, we performed the
optimization using the two error-mitigation schemes: Pauli−
Twirling (T-Rex) and ZNE. The ground-state energy obtained
upon optimization using the above specifications is well within
the desired accuracy of relative energy error 1% on the
ibm_hanoi device. ibm_hanoi is a 27-qubit device with the
median CNOT error of 7.504 × 10−3, median readout error of
1.150 × 10−2, median T1 error of 148.74 μs, and median T2 error
of 116.04 μs as per the latest calibration statistics.
We performed three runs using the T-Rex error-mitigation

scheme and three runs using the ZNE scheme (Figure 9a−f).
The results displayed in the figure show the convergence of
energy as a function of the epochs. As can be seen in the figure,
near the end of the optimization process, the converged energy is

Figure 8. (a) Calibration matrix for all of the four configurations of the two-qubit example (see Figure 7). (b) Plots of energy, as a function of the
number of epochs using a noise model coming from the FakeHanoi backend, with and without measurement error mitigation (MEM). (c) Same as in
panel (b), except the y-axis is relative % energy error with respect to the true energy of E0 = −3J, especially focusing on the last few iterations. The red
dashed lines indicate % energy error =±1%. (d) Plots of energy, as a function of the number of epochs using a noise model coming from the FakeHanoi
backend, with and without zero-noise extrapolation (ZNE). (e) Same as in panel (d), except the y-axis is relative % energy error in energy with respect
to the true energy of E0 = −3J especially focusing on the last few iterations. The red dashed lines indicate % energy error = ±1%. Unlike in panel (c)
where MEM could barely attain an accuracy within ±1% error range, we see ZNE results are below the same quite effortlessly. All results are obtained
by importing the said noise model on the ibmq-qasm simulator with COBYLA as the optimizer.
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very close to−18J that is the desired value. Also, we show in each
of the insets of Figure 9a−f the relative energy error computed
using the difference between the true energy E0 = −18J and the
obtained ground-state energy over the last few iterations, and the

plots confirm that the accuracy of our optimization protocol is
well within the relative error of 1% limit for most cases (the said
limit is denoted using red dashed lines in insets of Figure 9a−f).
We summarize the results in Table 1 and also calculate the mean

Figure 9. (a) Plots of energy obtained through optimization, as a function of the number of epochs for the full 12-qubit ansatz (see Figure 5) using Pauli
twirling (T-Rex) on the ibm_hanoi quantum device. (b) Same as in panel (a) with the second instance of Pauli twirling (T-Rex). (c) Same as in panel
(b) except with a third instance of Pauli twirling (T-Rex). (d) Plots of energy obtained through optimization, as a function of the number of epochs for
the full 12-qubit ansatz (see Figure 5) using zero-noise extrapolation (ZNE) on ibm_hanoi. (e) Same as in panel (d) with the second instance of ZNE.
(f) Same as in panel (d) with the third instance of ZNE. Insets in each plot (a−f) show the associated relative energy error % for each run over the last
15 iterations when a reasonable convergence is reached. The ±1% relative energy error limit from the target energy E0 = −18J is shown as a red dashed
window within each inset. For each instance, we warm start from an initial parameter set obtained by randomly sampling within 1% error of the
optimized parameter values (θ ∼ π/2,ϕ ∼ π) procured from the ZNE-mitigated independent run of the two-qubit component as discussed in Figure 8.
COBYLA is used as the optimizer of choice for all cases.
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energy and standard deviation using the last 15 iterations of the
optimization process. The converged set of parameters (θ, ϕ)
correspond to the last iteration step, and the relative energy error
% using the mean energy in the third column is also presented.

■ CONCLUSIONS
In this report, we have shown the construction of a physically
inspired ansatz for the quantum simulation of a resonance
valence bond state (RVB) that is the ground state of a Kagome
unit cell, commonly prescribed as a candidate for a gapped spin
liquid. The ansatz discussed in this report heavily relies on the
fact that the DMRG calculations on the said unit cell showed
significant two-point correlations only for spins present on the
sites in the outer triangles of a Kagome unit cell. Through
suitable analysis, it was also shown that it is possible to construct
a ground-state function that has a significant and negative
correlation only for the adjacent sites on the outer triangles.
Using the said information, we defined two auxiliary
Hamiltonians with reduced measurements whose ground state
is identical to the system of interest. Equipped with such an
operator and an ansatz, we performed a thorough analysis of the
choice of optimizer required for a variational computation, the
choice of initial state, and the error-mitigation techniques to be
employed. Lastly unlike in a previous report,35 we validate all our
inferences by showing the results of computations within 1%
error in energy even on a real quantum device ibm_hanoi.
The ansatz we designed can be generalized to larger Kagome

lattices naturally. This could be attributed to the existence of
long-range order in kagome Heisenberg antiferromagnets as
discussed in ref 44. The authors of ref 44 consider a kagome
lattice as a set of stars with 12 spins arranged in a triangular
lattice as in Figure 10. The authors showed that the interaction
between the stars leads to a band of singlet excitations and can be
considered a perturbation in the low-energy sector. Extensive
work exists in the literature confirming the resonating valence
bond state nature of such ground states.54,55 To quantify the
scalability, consider a larger lattice with N qubits. Then, one can
construct N/12 disjoint stars (since each qubit is part of exactly
one star). So, our final ansatz would requireO(N/12) single and
two-qubit gates at constant depth (O(1)). This is definitely
advantageous compared to a generic ansatz (with larger depth)
that does not exploit the hidden long-range order in the Kagome
lattices or even the ansatz proposed in ref 35 which uses a
specialized f Sim gate implementable using a SWAP gate
(requiring three CNOT gates on average for each bond) unlike
ours that requires just 1 CNOT gate per bond. There is also an

advantage in terms of the unique parameter count (in our case, it
is just 2 for each unit cell) and also auxiliary Hamiltonians with
reduced number of measurables (see Auxillary Hamiltonians
with Reduced Measurements section) and reduced number of
shots, thereby reducing statistical error. The simplification we
used for the reduction in the unique parameter count based on
symmetry arguments can be adopted for other larger lattices
with other symmetries depending on the topology of the lattice
(for example,42 looks at cylindrical and torus topology out of
many) and also for simulating correlated states in other
problems like exciton condensates56,57 and simultaneous
Fermion-exciton condensates that has been recently real-
ized.58,59

Since our method entails preparing RVBs in real quantum
devices with high fidelity, this holds significance across multiple
areas of physics and chemistry, even beyond the domain of
quantum spin liquids. This is because the ground-state
preparation carried out in this paper would serve as a starting
step for various studies one could conduct on systems that
support RVBs as their ground states and be an impetus for areas
in physical chemistry wherein they feature extensively. In
physical chemistry, RVBs arose fairly early due to Pauling in the
theory of conjugated electrons in π-bonded organic frameworks.
Thereafter, it has been used to qualitatively understand bonding

Table 1. Summary of the Results from Actual Hardware ibm_hanoia

device (error-mitigation scheme) job description Eavg/J σE davg
/J %

E E

E
avg 0

0
parameters ± ±( ),

2 2

IBM Hanoi (T-Rex) run 1 (Figure 9a) −18.0216 0.1307 0.12 (1.607 ± 0.004, 3.141 ± 0.003)
run 2 (Figure 9b) −17.7963 0.1591 1.13 (1.844 ± 0.004, 3.083 ± 0.002)
run 3 (Figure 9c) −17.9182 0.1427 0.45 (1.509 ± 0.003, 2.984 ± 0.004)

IBM Hanoi (ZNE) run 1 (Figure 9d) −17.8233 0.2294 0.98 (1.644 ± 0.004, 3.092 ± 0.005)
run 2 (Figure 9e) −17.8996 0.1226 0.56 (1.549 ± 0.002, 2.974 ± 0.003)
run 3 (Figure 9f) −17.8257 0.2267 0.97 (1.598 ± 0.003, 3.236 ± 0.004)

aEavg/J and σE davg
/J are the mean energy and the associated standard deviation, respectively, computed using the last 15 iterations of each run to

account for fluctuations in self-convergence (see inset of Figure 9a−f). The relative energy error % in the fifth column is computed using the Eavg in
the third column and the true energy value E0 = −18J. The converged set of unique parameters (θ̅, ϕ̅) is also averaged over the same set of
iterations and presented in radians along with their respective standard deviations (σθ, σϕ) defining error ranges as ±

2
and ±

2
. The exact values

are = =( ),
2

, as discussed for noiseless simulations.

Figure 10. Pinwheel structure of several Kagome unit cells. The ansatz
that we picked satisfies the C6 symmetry and also matches the spin
correlations obtained for the ground state of this lattice,54 thereby
making it extendable to handle larger Kagome lattices too.
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in graphene within the length scale of few atomic units60 and also
in explaining the electronic structure of recently synthesized
spiro-bis(1,9-disubstituted phenalenyl)boron-based neutral rad-
ical conducting solids, which despite having high density of
states at the Fermi-level needs activated conductivity (with an
activation energy of 0.054 eV) owing to the possible formation
of a dimeric valence-bonded ground state.61,62 Charge density
phases in the benzannulated variant due to interchain
interaction thereby competing with the formation of the RVB
state making the latter stable at certain temperatures have also
been reported.63 It has also been used for explaining the
breakdown of the free-electron Fermi liquid theory observed
from Compton scattering experiments in lithium clusters from a
quantum Monte Carlo-based study that claims to show
significant contribution to the cohesive energy of the cluster
from electron pairing, resulting in an RVB-like state.64 Even in
copper carbodiimide (CuNCN), the anomalous temperature
dependence of spin susceptibility has been attributed to the
formation of a possible RVB-like state at low temperatures, a
theory that enjoys semiquantitative agreement with the
experiment.65 In condensed matter physics, the earliest
attention that RVBs enjoyed was in the celebrated work of
Anderson and Sethna66−68 to partially explain the phase diagram
of traditional cuprates in high-Tc superconductivity. It was later
extended by Kotliar69 to account for s-wave and d-wave
superconducting parameters and thereafter by Baskaran to
MgB2.

70 In addition, our circuit ansatz can also be used for the
study of related valence bond solids with localized dimers like in
the Mazumdar−Ghosh model71 with next to the nearest-
neighbor interaction or under certain limiting conditions in a
higher-dimensional Shastry and Sutherland model.72,73 Quite
recently,74 experimental creation of an RVB state in an artificial
magnet has been reported with even single-site addressability in
which Ti atom clusters are probed on a MgO surface using a
scanning tunneling microscope showing evidence of dimeriza-
tion. Also, instead of dimerizing to form an overall singlet,
dimerization into a triplet (called tRVB) has been proposed as
the basic building block in ferromagnetic strange metals like in
ref 75 and in certain transition-metal dichalcogenides like 1-
TaS2.

76 In light of these studies, we feel that probing the RVB
structure on a quantum device should be of profound
importance and a timely investigation that can benefit several
disciplines.
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