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A zero-quantum/double-quantum HNCO(H) constant time ex- consisting of the 1HN, 15N, and 13C * nuclei of the peptide
periment is presented for the quantitative evaluation of dipole– plane in proteins. A key feature of the experiment is that
CSA cross-correlated relaxation involving the 1HN, 15N, and 13C * the cross-correlated relaxation effects of interest are mani-
nuclei of the peptide plane. A simple procedure that allows the fested as differential monoexponential relaxation in the two
extraction of cross-correlated relaxation rate constants from inten- components of the normally well-resolved 15N– 1HN doublet.
sity ratios of well-resolved doublet components along v1 is de-

This allows a simple and robust procedure for the extractionscribed. The experiment is demonstrated on fully 13C, 15N-labeled
of cross-correlation parameters, which is well suited to prac-ubiquitin. q 1998 Academic Press
tical applications.Key Words: nuclear spin relaxation; dipole–CSA cross-corre-

Most NMR studies on peptide-plane dynamics focus onlated relaxation; ZQ/DQ spectroscopy; chemical shielding anisot-
{1H}15N-NOE data and on T1 , T2 autorelaxation measure-ropy; protein backbone dynamics; anisotropic motion.
ments of 15N nuclei (11) and more recently also of carbonyl
13C * nuclei (12) . Because of the rigidity of the peptide plane
the combined use of all these parameters helps one to derive
a more realistic picture of peptide-plane motions in termsThe potential of nuclear spin cross-correlated relaxation
of locally isotropic or anisotropic reorientational fluctuationsas a source of structural and dynamic information in biomol-
(13) . It is shown here that dipole–CSA cross-correlatedecules, complementing the standard T1 , T2 , NOE relaxation
relaxation rate constants provide additional independent in-parameters, was recognized some time ago (1–5) . In partic-
formation toward this goal.ular, magnetic dipole–dipole and dipole–CSA (chemical

The proposed ZQ/DQ HNCO(H) experiment is depictedshielding anisotropy) cross-correlation parameters provide
in Fig. 1 with the central building block CT as a constant-information about dihedral angles, CSA tensors, and aniso-
time period of length T . At the beginning of this blocktropic intramolecular and overall tumbling motion. However,
transverse two-spin 15N, 13C * terms CxNx, CxNy are presentin the past quantitative determination of cross-correlation
in the spin-density operator that can be decomposed into ZQrate constants required a large experimental effort and often
coherences C/N0 , C0N/ and DQ coherences C/N/ , C0N0 .accurate knowledge of scalar J-coupling constants, which
They experience during the time T auto- and cross-correlateddid not stimulate widespread applications. Recently, new
relaxation together with chemical shift and scalar J-couplingexperiments were proposed, which are conceptually related
evolution. The ZQ/DQ HNCO(H) experiment of Fig. 1 isto experiments for scalar J-coupling determination, allowing
a 2D experiment, but the CT building block can easily beefficient measurements of heteronuclear cross-correlated re-
incorporated into experiments of higher dimensions. Thelaxation rate constants in biomolecules (6, 7) .
sum G of cross-correlation rate constants is obtained in aHere we present a general scheme for measuring cross-
straightforward manner from the intensity ratio of the peakcorrelation-induced cross-relaxation effects in three-spin
doublet components along v1 using G Å (2T )01ln{I2(T ) /systems by using ZQ/DQ (zero-quantum/double-quantum)
I1(T )}.NMR experiments. ZQ/DQ experiments were previously ap-

This and other relationships are derived in the followingplied for protein resonance assignment (8, 9) , for J-coupling
by considering the weakly coupled three-spin 1

2 system 1HN
measurements (10) , and for measuring dipole–dipole cross-

15N 13C * spins of the peptide plane with the static Hamilto-correlated relaxation (7) . We show here that this class of
nian H0experiments can also be used for the quantitative extraction

of various dipole–CSA cross-correlation rate constants in-
H0 Å vHHz / vNNz / vCCz / 2p 1JNHHzNzcluding some rate constants which are otherwise difficult to

assess. The method is demonstrated for the three-spin system / 2p 2JCHHzCz / 2p 1JNCCzNz , [1]
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FIG. 1. Pulse sequence of the 2D ZQ/DQ HNCO(H) constant time experiment for dipole–CSA cross-correlated relaxation measurements of the
peptide plane of 15N, 13C-labeled proteins. Cross-correlated relaxation is monitored during the constant delay T , highlighted in the pulse sequence. 15N
quadrature detection along t1 is achieved by incrementing f1 according to the TPPI–States method. Two peak doublets are obtained per residue at the
positions vZQ Å (1 / k)vN 0 vC { pJZQ and vDQ Å (1 / k)vN / vC { pJDQ. Alternatively, f2 can be incremented for C* quadrature detection
resulting in a spectrum with the peak doublets at positions vZQ Å vC 0 (1 / k)vN { pJZQ and vDQ Å vC / (1 / k)vN { pJDQ. The parameter k

can be adjusted in the range 0 ° k ° (e 0 2D) / tmax
1 to minimize spectral overlaps. All RF pulses without a phase label are applied along the x axis.

Selective water flipback pulses are used with a rectangular shape and a RF-field strength of ÉgB1É/ (2p) Å 250 Hz. Pulsed field gradients are inserted
as indicated for coherence-transfer pathway selection and residual water suppression. 1H and 15N composite pulse decoupling is achieved using WALTZ-
16 with ÉgB1É/ (2p) Å 4 and 1 kHz, respectively. The transfer delays D and e are set to D à 1/(4JNH) and e à 1/(2JNC). Phase cycling is as follows:
f1 Å 8(x , 0x), f2 Å 2(x , x , x , x , 0x , 0x , 0x , 0x), f4 Å 0f5 Å 4(x , x , 0x , 0x), f6 Å 0f7 Å 8x , 8(0x) , frec Å 2(x , 0x), 4(0x , x), 2(x , 0x) .

where vH, vN, and vC are the Larmor frequencies of the The coefficients bZ Q
1 and bZ Q

2 are proportional to the peak
spins involved; 1JNH, 2JCH, and 1JNC are the scalar J-coupling volumes of the ZQ doublet components that are separated
constants between the three spins; and the spin operators in the spectrum by 2pJZQ, and bDQ

1 and bDQ
2 are proportional

are denoted by the respective element letters. The master to the corresponding volumes of the DQ doublet. GZ Q
in ,

equation, which governs the spin dynamics, has a block- GZ Q
anti , G

DQ
in , and GDQ

anti are the autorelaxation rate constants of
diagonal matrix representation with respect to the ZQ and the in-phase and antiphase ZQ and DQ operators N/C0 Å
DQ manifolds spanned by the operators BZ Q

1 Å 1
2N/C0 / BZ Q

1 / BZ Q
2 , 2N/C0HN

z Å BZ Q
1 0 BZ Q

2 , N/C/ Å BDQ
1 /

N/C0HN
z , BZ Q

2 Å 1
2N/C0 0 N/C0HN

z and BDQ
1 Å 1

2N/C/ BDQ
2 , and 2N/C/HN

z Å BDQ
1 0 BDQ

2 . The scalar J-coupling
/ N/C/HN

z , BDQ
2 Å 1

2N/C/ 0 N/C/HN
z ( the conjugate constants and the cross-correlated relaxation rate constants

entering Eqs. [2] and [3] aremanifolds transform correspondingly):

d

dt
bZQ Å 0

ipJZQ / GZ Q
in / GZ Q

anti

2
/ GZQ GZ Q

in 0 GZ Q
anti

2

GZ Q
in 0 GZ Q

anti

2
0ipJZQ / GZ Q

in / GZ Q
anti

2
0 GZQ

bZQ 0 i(vN 0 vC)bZQ [2]

d

dt
bDQ Å 0

ipJDQ / GDQ
in / GDQ

anti

2
/ GDQ GDQ

in 0 GDQ
anti

2

GDQ
in 0 GDQ

anti

2
0ipJDQ / GDQ

in / GDQ
anti

2
0 GDQ

bDQ 0 i(vN / vC)bDQ. [3]

The coefficient vectors bZQ and bDQ represent the ZQ and JZQ Å 1JNH 0 2JCH [5]
DQ components of the spin-density operator s

JDQ Å 1JNH / 2JCH [6]

GZQ Å GN,NH / GC,CH 0 GN,CH 0 GC,NH [7]
bZQ Å SbZ Q

1

bZ Q
2
D Å STr{BZ Q†

1 s}

Tr{BZ Q†
2 s} D GDQ Å GN,NH / GC,CH / GN,CH / GC,NH. [8]

GI ,SW denotes a CSA–dipole cross-correlation rate constantand bDQ Å SbDQ
1

bDQ
2
D Å STr{BDQ†

1 s}

Tr{BDQ†
2 s} D . [4]

with respect to the CSA interaction of spin I and the dipolar
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interaction between spins S and W . Dipole–dipole cross- glected, leading in the absence of RF pulses to the following
simple ZQ evolution:correlated relaxation and cross-correlation effects involving

the HN CSA interaction affect neither GZQ nor GDQ.
For W Å I , which applies to GN,NH and GC,CH, bZ Q

1,2 ( t) Å exp{0i(vN 0 vC { pJZQ) t}

1 expH0S (GZ Q
in / GZ Q

anti )
2

{ GZQD tJbZ Q
1,2 (0) .GI ,IS Å 0 1

30gIB0jIS{sx[4Jd,x(0) / 3Jd,x(vI)]

/ sy[4Jd,y(0) / 3Jd,y(vI)]}, [9]
[13]

and for W x I , which applies to GN,CH and GC,NH,
An analogous expression is valid for DQ evolution. Since
JZQ and JDQ are dominated by the 1JNH coupling (É1JNHÉ É

GI ,SW Å 0 1
30 gIB0jSW {sx4Jd,x(0) / sy4Jd,y(0)}, [10] 94 Hz and É

2JCHÉ É 2–5 Hz), the secular approximation is
well fulfilled for the system considered here. Note that in
the absence of scalar J-coupling evolution, realized, e.g.,where B0 is the magnetic field strength, gI is the gyromag-
by spin-lock experiments (16) , the ‘‘secular’’ condition isnetic ratio of spin I , jIS Å (m0 /4p)\gIgS »r

03
IS … , and rIS is

usually more stringent ÉGZQ/DQ
É @ ÉGZ Q/DQ

in 0 GZ Q/DQ
anti É/2.the distance between spins I and S . sx and sy depend on the

If this condition is not fulfilled the relaxation becomes multi-principal values sxx , syy , szz (sxx / syy / szz Å 0) of the
exponential.CSA tensor of spin I : sx Å sxx 0 szz and sy Å syy 0 szz .

The experiment of Fig. 1 is of the ZQ/DQ HNCO typeThe power spectral density functions Jd,x(v) and Jd,y(v)
(9) with a constant time (CT) element inserted. This schemeare the Fourier transforms of the cross-correlation functions
allows separation of the oscillatory terms in Eq. [13] frombetween the principal axes x and y of the CSA tensor and
the ‘‘dissipative’’ G terms. During the CT period no RFthe dipolar director ( index d). Equation [10] is an extension
pulses are applied on the 1H spins such that cross-correlatedfor a non-axially symmetric CSA tensor of the corresponding
relaxation can occur during the total time T . After Fourierexpression of Ref. (5). Equations [9] and [10] are valid for
transformation, cross-correlated relaxation manifests itselfarbitrary permutations of the CSA axis labels. Since the CSA
only in the intensity of the doublet lines, but not in theirinteraction and the dipolar interaction entering GI ,SW of Eq.
linewidth. As in other CT experiments the linewidth is deter-[10] are not required to be in spatial proximity, GI ,SW was
mined by apodization and by the inhomogeneity of the mag-previously termed ‘‘remote cross correlation’’ (14) . A di-
netic field. Line splitting due to the scalar coupling with Ca

pole–dipole cross-correlation analogue was described in
spins is removed by a selective 1807 pulse on the Ca spins.Ref. (7) .

The intensities of the doublet components (separated byFor isotropic overall rotational tumbling with the correla-
the scalar couplings JZQ and JDQ, respectively) decaytion time tc and local fluctuations in the extreme narrowing
monoexponentially with T ,limit (tintv0 ! 1), the power spectral density entering Eqs.

[9] and [10] can be expressed in a model-free way (15, 16) ,
IZ Q

1,2 (T ) } bZ Q
1,2 (T )

Jd,m(v)
Å expS0SGZ Q

in / GZ Q
anti

2
{ GZQDTDbZ Q

1,2 (0) , [14]

Å 2S 2
d,mtc

1 / (vtc ) 2 /
2(P2(cos xd,m) 0 S 2

d,m)teff

1 / (vteff ) 2 , [11]

and the analogous expression applies to IDQ
1,2 (T ) }

bDQ
1,2 (T ) . The desired cross-correlated relaxation rate con-

where P2(x) Å (3x 2 0 1)/2. The effective correlation time stants GZQ and GDQ can then be directly extracted from the
teff is given by t01

eff Å t01
c / t01

int and xd,m is the angle intensity ratios at a single mixing time T :
between the CSA principal axis Vm (m Å x , y , z) and the
dipolar director Vd . The generalized order parameter is

GZQ Å 1
2T

lnS IZ Q
2 (T )

IZ Q
1 (T ) D

S 2
d,m Å

4p
5

∑
2

mÅ02

»Y2m(Vd) … »Y *2m(Vm) … , [12]
and GDQ Å 1

2T
lnS IDQ

2 (T )
IDQ

1 (T ) D . [15]

where Y2m(V) are the normalized second-order spherical
Finally, linear combination of GZQ and GDQ leads accordingharmonics.
to Eqs. [7] and [8] toIf É2pJZQ

É @ ÉGZ Q
in 0 GZ Q

antiÉ/2 and É2pJDQ
É @ ÉGDQ

in 0
GDQ

antiÉ/2 in Eqs. [2] and [3], the secular approximation can
G local Å GN,NH / GC,CH Å 1

2(GDQ / GZQ) [16]be applied (17) , i.e., the off-diagonal elements can be ne-
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G remote Å GN,CH / GC,NH Å 1
2(GDQ 0 GZQ) . [17]

Thus, the ZQ/DQ experiment yields the sum of ‘‘symmet-
ric’’ pairs of CSA–dipole cross-correlated rate constants.
G local can be further decomposed by measuring GN,NH or
GC,CH from single-quantum experiments (6 ) , whereas
G remote is more difficult to decompose and is best directly
interpreted.

The effect of additional spins on the measured cross-
correlated relaxation rate constants has been estimated by
including a H a or a C a spin as a fourth spin in the master
equation and by simulating the decay of ZQ/DQ doublets.

FIG. 3. Experimental cross-correlation rate constants G remote vs G local

(see Eqs. [16] and [17]) of 48 peptide planes of ubiquitin recorded with
the pulse sequence of Fig. 1 under the conditions given in Fig. 2.

The values of G ZQ and GDQ determined from these simula-
tions on the basis of Eqs. [15] – [17] show that the influ-
ence of additional spins can be neglected in good approxi-
mation as they almost equally affect the doublet compo-
nents. Thus, the proposed HNCO(H) experiment offers a
convenient way to determine the above cross-correlation
rate constants without any assumption being made about
additional relaxation contributions or unresolved scalar J
couplings that in other cross-correlation experiments tend
to complicate the interpretation (5 ) . These types of cross-
correlation parameters have the advantage over standard
T2 and T1r parameters that they are independent of slow
conformational exchange (18 ) provided that the scalar J
couplings involved are not modulated (16 ) .

The 2D ZQ/DQ HNCO(H) experiment of Fig. 1 was
applied to human ubiquitin, a small globular protein with
an isotropic rotational tumbling correlation time tc Å 4.1
ns at 300 K (19, 20 ) . Examples of ZQ and DQ peak
doublets along v1 are shown in Fig. 2. The cross-corre-
lated relaxation rate constants were extracted by fitting
Eq. [15 ] to the peak intensity ratios obtained for different
relaxation delays T . All peak intensities follow, within
the experimental accuracy, a monoexponential decay as
a function of T , which is consistent with the theoretical
prediction of Eq. [14 ] . The cross-correlated relaxation
effects are exemplified with the two peptide planes con-FIG. 2. Experimental results of the 2D ZQ/DQ HNCO(H) experiment
necting residue Lys 29 with residue Ile 30 (plane 1) andof Fig. 1 applied to human ubiquitin at 300 K and 14.1 T B0-field strength.

Quadrature detection on 15N was used in v1 and the 13C * demodulation Ser 65 with Thr 66 (plane 2 ) . For plane 1 dipole–CSA
frequency was shifted to 182.5 ppm by time-proportional phase incremen- cross correlation for the ZQ coherence is considerably
tation of f3 . The parameter k was set to k Å 0. In A, contour plots of ZQ more effective than that for the DQ coherence, while for
and DQ cross-peak doublets are shown for the peptide plane between Lys

plane 2 the two relaxation rates are similar with a slightly29 and Ile 30 and between Ser 65 and Thr 66 with T Å 80 ms, where v1

smaller effect for the ZQ coherence. This results in acorresponds to the ZQ/DQ dimension and v2 to the HN frequency. Projec-
tions are drawn along the cross-correlated relaxation-active ZQ/DQ fre- different sign of the remote cross-correlated relaxation
quency domain v1 ( 15N ppm scale) . Peak intensities were fitted to the rate constants G remote for the two residues. The experimen-
function of Eq. (15) as shown in B for relaxation delays T Å 40, 60, 80, tal G local and G remote values of these two peptide planes
and 100 ms. The extracted cross-correlation rate constants are for the peptide

are given in the legend to Fig. 2.plane between Lys 29 and Ile 30 G local Å 5.7 { 0.2 s01 and G remote Å 02.3
Using the experiment of Fig. 1, the cross-correlated relax-{ 0.2 s01 and for that connecting Ser 65 with Thr 66 G local Å 4.8 { 0.2

s01 and G remote Å 0.4 { 0.2 s01 , respectively. ation rate constants G local and G remote could be measured for
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assumed, which was found in molecular dynamics simu-
lations often to be the case (13 ) . The principal axes of
the various spin interactions probe the reorientational
fluctuations about the various axes differently as is re-
flected in the distinct behavior of G local and G remote as
functions of the sab and sg fluctuation amplitudes. While
an increase of sab and sg leads to a reduction of G local ,
sab and sg have an opposite influence on G remote . The
two cross-correlation parameters have a similar dynamic
range, but only G remote crosses zero for realistic fluctuation
amplitudes. Most experimental values of Fig. 3 lie inside
the range covered by the simulated cross-correlation pa-
rameters of Fig. 4, despite the fact that the CSA tensors
involved may significantly deviate from the standard val-
ues (22, 23 ) underlying Fig. 4.

In conclusion, the CT pulse-sequence element of Fig. 1
is well suited to measuring dipole–CSA cross-correlated
relaxation via multiple-quantum coherences. Its application
is not restricted to the HNCO(H) experiment presented here
and it can be inserted into other 2D and 3D heteronuclear
transfer experiments to quantitatively measure heteronuclear
cross-correlated relaxation processes. A study is currently
under way in our group that explores the practical use of
these relaxation parameters in combination with standard
autorelaxation parameters to characterize local and global

FIG. 4. Dependence of cross-correlation terms G local (A) and G remote
isotropic and anisotropic protein dynamics.

(B) on internal anisotropic reorientational fluctuations of the peptide plane
as described by the 3D GAF model (13) assuming v0tint ! 1. The rate
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