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Abstract

Spin relaxation is described for a system of three accidentally degenerate nuclear spins that can be individually
monitored, e.g., via heteronuclear scalar coupling partners. The exact treatment based on Bloch—Wangsness—Redfield theory
is shown to be consistent with the stochastic Liouville equation correcting and extending earlier findings (Briischweiler,
Chem. Phys. Lett. 270 (1997) 217). The transition to the Solomon regime is discussed when degeneracy is removed. © 1997

Elsevier Science B.V.

Nuclear spin cross relaxation, known as the nu-
clear Overhauser effect (NOE), has emerged since
the pioneering work of Solomon [1] as a powerful
method for the elucidation of molecular structure and
dynamics in the liquid state. For biomolecules in
particular, "H-'H NOE information on intramolec-
ular distances measured using multidimensional
NOESY experiments [2,3] is indispensible for deter-
mining their three-dimensional molecular structures
[4-6]. Since in the standard 2-D NOESY experiment
cross relaxation of single-spin order I;, — I, is mon-
itored via cross peaks, the involved spins must be
non-degenerate. In PN or ”C labeled systems, on
the other hand, 3-D or 4-D NOESY experiments [6]
can be applied that include as additional dimensions
the chemical shifts of "N or °C spins that are scalar
J coupled to the cross-relaxing protons. This allows
cross relaxation to be measured between degenerate
protons, provided that their BN or PC coupling
partners are non-degenerate (Fig. 1). This situation is
termed here accidental degeneracy among the proton

spins. In contrast, cross-relaxation processes of the
type I;, — [;, between equivalent spins with symme-
try-induced degeneracy, such as between two protons
in a rapidly rotating methyl group, cannot be easily
monitored. In the past, auto- and cross-relaxation
processes in the A ; spin system and similar systems
with symmetry-induced degeneracy were addressed
[8—11] using Bloch—Wangsness—Redfield (BWR) re-
laxation theory [12-15]. For dipolar relaxation
mechanisms that preserve the symmetry most treat-
ments use symmetry-adapted bases to simplify the
computations.

In a recent Letter [16], longitudinal cross relax-
ation was investigated in an accidentally degenerate
three-spin system undergoing slow rotational tum-
bling. The occurrence of a non-ergodic quasi-equi-
librium, as predicted by the stochastic Liouville
equation (SLE), was rationalized in terms of the
constants of the motion of the underlying Liouville~
von Neumann equation. It was also shown that the
more specialized Solomon equations, which in the
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Fig. 1. Schematic heteronuclear 3-D NMR NOESY experiment
allowing the detection of cross relaxation between accidentally
degenerate protons that are scalar coupled to non-degenerate e
nuclei. Polarization is transferred between protons and carbons
using INEPT [7]. 3-D cross peaks appear at the positions
{w), w5, w3} ={a(C)), w(C,), H )} with i, j=1,2,3.

spin-diffusion regime (w,7, > 1) involve only sin-
gle-spin order terms I, are inconsistent with the
SLE. This inconsistency was incorrectly attributed to
a failure of BWR theory. Instead, general BWR
theory gives within its validity range the same result
as the SLE treatment. In the following we present the
general BWR treatment of an accidentally degener-
ate three-spin 1/2 system and discuss the transition
to the Solomon equations when the degeneracy is
alleviated.

We consider an idealized accidentally degenerate
three-spin 1/2 system in isotropic solution, where
scalar J couplings between the three spins are as-
sumed to be absent and dipolar relaxation by other
nuclei as well as CSA and other relaxation mecha-
nisms are neglected. Longitudinal dipolar relaxation

of this system follows the master equation [3]
do__f I
—=-f(o-a,). (1)

Starting out from single-spin order o (0) =1;, o (1)
evolves then in a 7-dimensional Liouville subspace
spanned by the orthogonal operators containing an
odd number of single-spin operators

B =1, By=1l. ., By=I,,

B, =411, 1, ,
Bs:‘/5(11112+13—+]1212—13+)’
Bs=\/5(11—]2:13++11+[2;13—)a
B7=‘[5(11+12—I3:+11—12+137)- (2)

Spin operators containing an even number of single-
spin operators, such as 27, 1, or 27 '/?I, . I, , relax

in a Liouville subspace that is disconnected from the
one of Eq. (2) [17,18]. In Eq. (}) unitary evolution

caused by the Zeeman part —1H = —1w0[ I, +1,.
+ 1., ...] was dropped, since ——1H B;=0 (_}—
1, 7) and Hz commutes with F The three

Hermman operators

By = ﬁi(11312+13_—1“12_13+),

By = ‘fz_i(lhlzzlu_ L h L),
Bm=\/2—i(11+12—13;_11—12+13;)r (3)

which are anti-symmetric with respect to permuta-
tion of the spin indices of the two shift operators, are
not excited by dipolar relaxation due to their differ-
ent symmetry properties [17,18]. They are however
coupled to the zero-quantum terms B, B, and B,
by chemical shift evolution, which becomes impor-
tant when degeneracy is removed (vide infra). The
Redfield matrix elements I, =~ can be expressed as a

mn

function of the power spectral density

Jya(@) = [ €p(n)cos(wr)ar, )
where
Ciju(t) = <’l_,'3(0) e (1) Y20(0ij(0)’ ‘Pf_,'(O))

XY30(0u(1), 0(1))? (5)

Jij.«(@) is sampled at frequency zero, at the Larmor
frequency w,= —yB,, and at 2w,. Y, () is a
spherical harmonic, and r,;, 8, (¢) and ¢, (t) are the
polar coordinates of the internuclear vector r;; be-
tween spins { and j in the laboratory frame. {
defines the prefactor

4 h Mo \2
Al

10 27 4
that will be used below, where 7y is the gyromagnetic
ratio, # is Planck’s constant, and u, is the perme-
ability of free space. Thus, for a spherical top

molecule tumbling with a correlation time 7, =
1/(6 D), where D is the rotational diffusion constant

151,

27,
i (6)

l+w'rc2

Jij, w(w) =

- 2(C05 Xij, "
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P,(x)=(Gx*—1)/2and ,, , is the angle between
the internuclear vectors r;; and r,,. The Redfield

J
matrix elements I, are symmetric (I, , =T,,) and
given by

= 28{V12.12(0) + 3715 12( @)
+6J15 12(2w) +713,13(0) + 3715 13( @)
+6J13'13(2w0)},
Iy =3¢{J510(@0) + Ji315( @0) + Ty 25( @)},
55 = 38{5712.12(0) + 315 12(@y)
+6J15 12(2w0) + 57,5, 5(0)
+3J53,15( @) + 6715 13(20)
+6J5303(wo) = 8112,13(0)}7
r,= %f{_Ju.lz(O) + 6-’12.12(2“’0)}’
Iy =30J1505(w,),

mn

)
I's= 7—2_§{112.|3(0) +6J,, 3(2w,)},

1
L= 753:5{2]12,13(0) = 3J12.( ) = J15,23(0)

+6112.23(2“’0) - 2113.23(0) -

3
Is=— ‘/_E“g{JB,n( wg) +J12,13( “’0)}’

s6 = %§{4J12,12(0) - 2112,13(0) + 3712, 13( @)
- 2J12,23(0) + 371, 5( o) — Ji3.23(0)

+6J13.23(2“’0)}- (7)

The Redfield elements that are not given explicitly in
Eq. (7) can be easily derived from the ones listed
above by permutation of the spin labels, which enter
Jij. (@) as indices. For example, element [, is
obtained from I by exchanging spin 1 with spin
2:

3
= — _\/5‘5{113‘0( wp) + 712 25( ‘“0)}‘

In case of different chemical shifts 2, (2, and
0, Eg. (1) is modified according to
do

—d—t——lHU F(a’ O s (8)

3]13,23( “’o)} ,

where

A

z= [9111:"’02[2:’*'0313;’ ]

and the zero-quantum subspace must be extended by
the three operators By, By and B,; defined in Eq.
(3). They show a slightly different auto- and cross-
relaxation behavior than their symmetric counter-
parts Bs, B, and B;:

Iy = %5{5112.12(0) + 3112,12( wg)
+ 671 12(2w0) +5J15,15(0) + 3113,13(“’0)
+6J1513(20,) + 475 25(0) + 6J23.23( wy)

_8‘]12‘13(0)}’
qu = %5{-4112.12(0) + 2J12,13(0)

3‘]12.13( wy) + 2112,23(0) - 3112.23( wg)

—3113,23(0) —6']13,23(2‘“0)}' )

The commutator superoperator part of Eq. (8) has the
elements:

AL -], -,

Thus, the differential chemical shifts induce oscilla-
tions inthe two-dimensional subspaces {Bs, Bg},
{B,, By} and {B,, B,,}. If sufficiently large, the-
seoscillations suppress certain relaxation pathways
by rendering certain terms of matrix I in Eq. (8)
non-secular. Note that auto-correlated dipolar dy-
namic frequency shifts lead to the same type of
oscillatory behavior, which however is usually rather
small [19].
The solution

o(t) =exp{(~il§z— f)t}(o-(O) ~0,) t oy

of the inhomogeneous master equation Eq. (8) was
evaluated numerically by the diagonalization method
with initial condition ¢ (0) =21/, .. Results are shown
in Fig. 2 for the three-spin system, which was previ-
ously discussed by the SLE [16], undergoing isotropic
tumbling in the high-field limit w,7, > 1, where
dynamic frequency shifts vanish [19]. In case of full
degeneracy 2, = 2, = {2, (Fig. 2), the results ob-
tained from the stochastic Liouville equation are



242 N.R. Skrynnikov, R. Briischweiler / Chemical Physics Letters 281 (1997) 239-242

1.0
08 1 A
06}

I.

( JZ> 04}F 2
0.2
0.0

1.0 i

08\ | BW

06l

<Ijz> 04t 2
0.2
0.0

1.0 ‘
0.8 C

Jj 04
02l 2
?'go 05 70
0.8 D
06}

I.
( ]Z> 04}
0.2 3
0.0

0 0.5 1.0
t (s)

Fig. 2. Effect of longitudinal intramolecular relaxation on Zeeman
polarizations {/;.) (j=1,2,3) in a three-proton system tumbling
isotropically in the high-field limit with 7, = 25 ns and w,7, > 1.
The geometric arrangement of the three spins is linear with
distances r, = 204, ry3 = 2.2A and initial condition is o (0)=
21,.. Panels A to D show the cross-relaxation behavior for
different chemical shifts £2,, £2, and 25:(A) 2, =, = 2, =0,
B) 2,=0. 2,=0, 2,/Qw)=5Hz, (C) 2,=0, 2, /2w)
=5 £,/Qw)=10 Hz, (D) 2,=0, {£,/Qw)=1000,
0, /(27)= 2000 Hz.

exactly recovered (fig. 3 in Ref. [16]). For small
chemical shift differences the chemical shift evolu-
tion in the zero-quantum subspace manifests itself in
small-amplitude oscillations (Fig. 2B and C). If the
chemical shift differences are sufficiently large (Fig.
2D) the oscillations disappear and the relaxation
behavior converges towards the solution of the gen-
eralized Solomon equations that include only the
basis operators B,, B, and Bj (fig. 2 of Ref. [16]).
Cross relaxation to three-spin order B, is negligible
since w7, > 1[16].

Strong J coupling effects can lead to oscillatory
TOCSY-like modulations in longitudinal cross-re-
laxation experiments [3] and J couplings can lead to
an oscillatory behavior in transverse cross relaxation
experiments [20]. In the present context, small ampli-

tude oscillations (Fig. 2B and C) arise for longitudi-
nal cross relaxation in the absence of scalar J cou-
plings solely because of small chemical shift differ-
ences. In this regime, where the secular approxima-
tion of BWR theory is not valid, longitudinal cross
relaxation of the three-spin 1/2 system involves a
10-dimensional Liouville subspace. While the transi-
tion to the accidentally degenerate case allows a
reduction to a 7-dimensional space, an increase of
the chemical shift differences which moves the sys-
tem away from degeneracy gradually leads to the
4-dimensional longitudinal subspace {B,, ..., B,},
since symmetric and anti-symmetric zero-quantum
operators { Bs, Bg}, { B, B}, { B;, B,,) exhibit oscilla-
tions that efficiently ‘decouple’ them from the rest.
In this regime the secular approximation of BWR
theory applies. If in addition w,7, > 1, the widely
used generalized Solomon equations become valid.
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