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A theoretical analysis is presented for liquid-state T1r relaxation in a coupled two-spin system I
51/2, S51 in the presence of two radio-frequency fields applied to each of the spins individually.
It is demonstrated that the relaxation rate constant T1r

21 of the spin I due to scalar relaxation sharply
increases when the two radio-frequency fields are matched according to the Hartmann–Hahn
condition. Relaxation measurements on the amino-protons of 3-nitroaniline show good agreement
with theory. © 1998 American Institute of Physics. @S0021-9606~98!00518-2#
,

I. INTRODUCTION

In relaxation theory and in practical relaxation measure-
ments in liquids, one may distinguish between relaxation due
to the rotational modulation of anisotropic interactions, such
as dipolar, quadrupolar, and chemical shielding anisotropy
interactions, and relaxation caused by the modulation of iso-
tropic interactions, such as chemical shift and scalar spin–
spin couplings.1,2 The latter mechanisms are sensitive to
slow motional processes, even in the presence of rapid over-
all molecular tumbling, and can be influenced by the appli-
cation of strong rf fields. In fact, rotating-frame T1r measure-
ments have become routine procedures for separating the
two kinds of processes, leading to the sensitive monitoring of
slow forms of motion.3,4

In this paper, we concentrate on scalar relaxation in-
duced by a heteronuclear scalar spin–spin interaction modu-
lated by slow time scale processes. Abragam1 distinguishes
between ‘‘scalar relaxation of the first kind’’ and ‘‘scalar
relaxation of the second kind.’’ For the first kind, the random
processes modulate the J-coupling constant, which makes it
similar to the dipolar, chemical shielding anisotropy ~CSA!,
and quadrupolar mechanisms. One may also call this type of
mechanism scalar relaxation by J-coupling modulation. On
the other hand, for the scalar relaxation of the second kind,
the modulation is due to rapid relaxation of one of the two
coupled spins. One can characterize this mechanism as scalar
relaxation induced by random flipping of the coupling
partner.5

Depending on the relaxation rate of the coupling partner
spin S and magnitude of the scalar coupling constant J, the
spectrum of the observed spin I changes from a well-
resolved multiplet to a single possibly broadened line.6,7 In
the limiting caseof fast relaxation of spin S, thesituation can
be analyzed on the basis of Bloch–Wangsness–Redfield
~BWR! theory,8 as first shown by Solomon.9 This latter ap-
proach leads to the concept of scalar relaxation of the second
kind. The effect of the S-spin flipping can be compared to
that of chemical exchange of the spin S, which also causes a
coalescence of the spectral lines and ultimately leads to
Redfield-type spin relaxation.

Scalar relaxation is most conveniently explored by rotat-
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ing frame relaxation measurements.9–11 A dependence of T1r

on the rf-field strength indicates the presence of slow
relaxation-active processes. Their influence can be quenched
by the application of sufficiently strong rf fields.12 Similar
effects are characteristic of relaxation by the isotropic com-
ponent of the chemical shift mediated by a chemical
exchange.13 This mechanism usually can be distinguished
from scalar relaxation of the second kind by the fact that it is
insensitive to the rf field applied to the coupling partner S.

In this paper we predict and demonstrate a surprising
effect in double resonance spin-locking experiments where
two rf fields, applied to spin I and spin S with amplitudes
v1I and v1S , respectively, satisfy the Hartmann–Hahn
matching condition v1I5v1S . It turns out that under this
condition the scalar relaxation is revived and the decoupling
effect of the appliedv1S rf field is largely removed. This is
due to the presence of spectral density terms at the difference
frequencyv1I2v1S , J(TQ ,v1I2v1S), in the expression
for the relaxation rate constant:

T1r
215 1

12~2pJ!2S~S11!

3$J~TQ ,v1I1v1S!1J~TQ ,v1I2v1S!%. ~1!

The derivation of this result, which predicts a maximum of
T1r

21 nearv1I5v1S , is given in Sec. II.
Effects similar to the one reported in this paper can be

expected also for scalar relaxation of the first kind, and po-
tentially for dipolar relaxation mediated by relatively slow
motional processes in the ms to ms range.

II. SCALA R RELAXATIO N OF THE SECOND KIND IN
THE PRESENCE OF rf FIELDS

A. Genera l formalism

We consider a two-spin system IS with I 51/2, S.1/2
in isotropic solution. The equation of motion for the density
operator of the systemr(t), including the lattice variables, is
given by

d

dt
r~ t !52 i ~H9 Z1H9 rf1H9 J1H9 Q1H9 R!r~ t !, ~2!

where H9 i are the Hamiltonian commutation superoperators
H9 ir(t)5@H i ,r(t)#, with
2 © 1998 American Institute of Physics
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Here I p , Sp are components of the first-rank spherical tensor
spin operators, I 05I z , I 6157~1/A2!I 6 . Ap are components
of the second-rank spherical tensor spin operator
A05~1/A6!@3Sz

22S(S11)], A6157~1/2!~SzS61S6Sz),
A625~1/2!S6

2 , v0I and v0S are Larmor frequencies,v1I

52g IB1I andv1S52gSB1S correspond to the strengths of
the two applied rf fields B1I and B1S , v I andvS are carrier
frequencies of the rf fields,f I andfS are rf field phases, J is
the scalar spin–coupling constant between spins I and S, Q
is the quadrupole moment of the S nucleus, eq is the z com-
ponent of the electric field gradient tensor,h is its asymme-
try parameter, V represents the set of Euler angles that speci-
fies the orientation of the principal axes of electric field
gradient tensor in the laboratory frame of reference, and
D q,q8

(2) (V) are components of the second-rank Wigner rota-
tion matrices. The super-Hamiltonian H9 R symbolically rep-
resents the lattice or more specifically the reorientational mo-
tion of the molecules in the liquid.14

The relaxation mechanism discussed in this paper is a
two-step process. First, the nuclear quadrupolar interaction
H9 Q of spin S is modulated by the lattice motion H9 R and
leads to quadrupolar relaxation of spin S. The motion of the
latter, in turn, modulates the heteronuclear J-coupling inter-
action H9 J and causes scalar relaxation of the second kind of
spin I . This suggests two alternative approaches for the treat-
ment of scalar relaxation, as indicated by the left and right

FIG. 1. Scheme of the various theoretical approaches for the analysis of
scalar relaxation of the second kind. The analytical approach followed in
this paper is shown with a bold line, while the approach used for numerical
simulations is indicated with a double line @Bloch–Wangsness–Redfield
~BWR!, stochastic Liouvill e equation ~SLE!#.
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halves of Fig. 1. The two approaches differ in the sequence
H9 Q and H9 J are included, which has rather profound conse-
quences.

The most widely used approach starts with a perturba-
tion treatment of H9 Q ~left half of Fig. 1!. Standard BWR
theory8 is used with the density matrix factorized into spin
and lattice parts,r(t)5r lat

0 s IS(t), where it is assumed that
the lattice is not perturbed by the coupling to the spin system
and can be described by the equilibrium density operatorr lat

0 .
The result is amaster equation for the spin density operator
s IS(t) of the IS spin system alone:

d

dt
s IS~ t !52~ i H9 Z1 i H9 rf1 i H9 J1GQQ!~s IS~ t !2s IS

0 ! ~4!

with the equilibrium spin density operators IS
0 and the Red-

field superoperator G9 Q for quadrupolar relaxation of the spin
S.

The equation of motion in the form of Eq. ~4!, which can
be evaluated in a combined basis of the spins I and S, is
useful for numerical calculations. It has been widely
used15–18 to investigate avariety of line shape effects in sys-
tems containing quadrupolar spins, including differential line
broadening or dynamic frequency shifts. Under certain con-
ditions Eq. ~4! can be also treated using time-independent
perturbation theory as applied to the J-coupling term H9 J .
Recently such a treatment was used to analyze the scalar
relaxation of the second kind in the absence of rf fields.19

An alternative approach ~the right half of Fig. 1! starts
from a perturbation treatment of the J-coupling term H9 J ,
while postponing the consideration of H9 Q until later. To
begin with, the spin S is considered as part of the lattice
whose motion modulates the J-coupling interaction H9 J .
This interpretation9 is indeed justified since the evolution of
individual spins S involves an element of randomness asso-
ciated with the quadrupolar relaxation, proceeds on a much
faster time scale than the evolution of the spin I , and remains
in a good approximation unaffected by the spin I . This al-
lows one to use the product ansatz for the density operator,
r(t)5r lat,S

0 s I(t), where it is assumed that the ‘‘extended
lattice’’ ~lattice plus spin S! is near equilibrium and r lat,S8

0

5r latsS
0. The evolution of the spin density operators I(t)

can be described then using a version of the BWR theory
with H9 J playing the role of a weak perturbation,iH9 Ji

!iH9 Qi , iH9 Zi .20

In this work we investigate the effects of the scalar re-
laxation in the presence of two rf fields. This situation favors
the second approach described above, indicated by bold ar-
row at the top of Fig. 1. The calculations reported below
allow one to obtain compact analytical expressions which are
general with respect to the spin quantum number of spin S
and the details of quadrupolar relaxation, Eqs. ~11! and ~12!.
We begin by applying aRedfield-type procedure in the form
suggested by Argyres and Kelley21 and Albers and Deutch:22

d

dt
s I~ t !52~ i H9 Z1 i H9 rf1GQ J!~s I~ t !2s I

0!,
~5!

GQ Js I5TrS,latH r lat
0 sS

0E
0

`

dt@HJ ,@U9 ~ t;t2t!HJ ,s I ##J ,
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where we introduced the superoperator GQ J describing the sca-
lar relaxation of the spin I . The equilibrium spin density
operator of the spin S enters in this expression essentially as
identity,sS

05E/TrS$E%, in accordance with the nuclear mag-
netic resonance high-temperature approximation. The equi-
librium lattice density operatorr lat

0 refers to the reorienta-
tional degrees of freedom and in the case of isotropically
tumbling rigid molecules is equal to 1/4p. We further as-
sume aclassical behavior for the lattice and denote the trace
over the lattice variables by a horizontal bar, Trlat$r lat

0 U9 (t;t

2t)%5U9 (t;t2t). The evolution superoperatorU9 (t;t2t)
represents the solution of Eq. ~2!, where the J-coupling term
H9 J is omitted, r~t!5U9 (t;t2t)r~t2t!5U(t;t2t)r(t2t)
U(t;t2t)21. Like in the standard BWR theory, the neglect
of H9 J in the computation of U9 (t;t2t) corresponds to a
second-order perturbation treatment of HJ in Eq. ~5!.

It is convenient to introduce a rotating frame represen-

tation, r(t)5e2 i H
9

Ztr r(t), where the evolution super-

operator can be expressed as U9 (t;t2t)5e2 i H
9

Zt

U9 r(t;t2t)ei H
9

Z(t2t). We further select a basis $Bi% for the
I -spin operators in the rotating frame, in which we evaluate
the relaxation superoperator of Eq. ~5!. We do not discuss
small dynamic frequency shifts associated with Im(GQ J) and
focus instead on the relaxation contributions Re(GQ J):

Re~GQ J! i j 5Re TrISH Bi
†E

0

`

dt@H J
r ~ t !,@U9 r~ t;t2t!

3H J
r ~ t2t!,Bj ##J Y TrIS$Bi

†Bi%. ~6!

The time dependence in H J
r (t) comes solely from the

rotating-frame representation, H J
r (t)5ei H

9

ZtH J .22

For simplicity we assume that the two rf fields are ap-
plied on-resonance,v I5v0I , vS5v0S , with the phasesf I

5fS5p/2. The evolution superoperator is then expresse

U9 r~ t;t2t!5U9 I
r~t!U9 S

r ~t!5e2 iv1I I
9

yte2 i ~v1SS9 y1H
9

Q1H
9

R!t.
~7!

Note that the evolution superoperator is factorized into two
parts. The average over the lattice degrees of freedom in Eq.
~6! applies only to U9 S

r (t).
The results of Eqs. ~6! and ~7! can be used to calculate

the autorelaxation rate constant T1r
21 for the spin magnetiza-

tion B15I y . Using the explicit form of HJ(t) one obtains:

T1r
215Re ~2pJ!2 (

p,q521

1

~21!p1qei ~p1q!~v0I2v0S!t

3E
0

`

dte2 i q~v0I2v0S!t

3TrIS$I y@ I pS2p ,@U9 I
r~t!I q ,I y#U9 S

r ~t!S2q#%

3~TrI$I y
2%TrS$E%!21. ~8!

The terms with p1qÞ0 contain fast oscillatory time depen-
dencies at the difference of the Larmor frequencies and its
double and therefore can be discarded using a secular ap-
Copyright ©2001. A
as

proximation. The commutator in Eq. ~8! can be transformed
using a simple commutation identity which is formulated
below for arbitrary functions f i(I )5 f i(I 0 ,I 1 ,I 21):

@ f i~ I ! f k~S!, f j~ I ! f l~S!#5@ f i~ I !, f j~ I !# f k~S! f l~S!

1 f j~ I ! f i~ I !@ f k~S!, f l~S!#. ~9!

Making use of this identity, we obtain

T1r
215Re ~2pJ!2E

0

`

dt (
q521

1

e2 i q~v0I2v0S!t

3~TrI$I y@ I 2q ,@U9 I
r~t!I q ,I y##%TrS$SqU9 S

r ~t!S2q%

1TrI$I y@U9 I
r~t!I q ,I y#I 2q%TrS$@Sq ,U9 S

r ~t!S2q#%!

3~TrI$I y
2%TrS$E%!21. ~10!

The last term in the above summation is zero since the trace
of any commutator is equal to zero.

The superoperator U9 I
r(t) represents a purely cohe

ent evolution. The ensuing transformation can be expres-
sed by reduced Wigner matrices, U9 I

r(t)I q

5(q8521
1 dq8,q

(1) (2v1It)I q8 . Consequently, the result of Eq.
~10! can be rewritten as

T1r
215Re ~2pJ!2E

0

`

dt (
q521

1

e2 i q~v0I2v0S!tGq
S~t!

3 (
q8521

1

dq,q8
~1!

~v1It!TrI$I y@ I 2q ,@ I q8 ,I y##%/TrI $I y
2%

~11!

with the correlation functions

Gq
S~t![TrS$SqU9 S

r ~t!S2q%/TrS$E%. ~12!

To this end, the S-spin correlation functions Gq
S(t) have

to be determined. The propagator U9 S
r (t) represents the uni

tary evolution under the effect of the stochastically modu-
lated quadrupolar interaction and of the S-spin rf field. A
unitary propagation preserves the norm in the operator space,
but the averaging over the ensemble of lattice functions leads
to a ‘‘dephasing’’ of the S-spin operator components which
causes a decay of Gq

S(t).
The calculation of Gq

S(t) can be expedited if we reca
an analogue in a more familiar context. Consider the evolu-
tion of an ensemble of S spins under the effect of quadrupo-
lar interaction, modulated by molecular tumbling, and a rf
field. Assuming the temperature of the lattice to be constant,
the formal solution of the Liouvill e–von Neumann equation
leads to the following expression for the ensemble expecta-
tion value ^Sq&:

23

^Sq&~t!5TrS$SqsS
r ~t!%/TrS$E%

5TrS$SqU9 S
r ~t!sS

r ~0!%/TrS$E% ~13!

Upon setting sS
r (0)5S2q we obtain a full analogue of

Gq
S(t), Eq. ~12!. Note, however, that the origin of these tw

correlation functions is substantially different. The correla-
ll Rights Reserved.
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tion function in Eq. ~12! represents a modulation of the
Hamiltonian H9 J and does not depend on the state of the S
spin, whereas the one in Eq. ~13! describes the evolution of
the S-spin state. This difference should be kept in mind as,
for example, the outcome of the analysis based on Eq. ~12!
does not depend on the initial state of the spin S ~i.e., the
result for the I -spin relaxation rate does not depend on
whether the S spin is locked along the B1S field or forced
into nutation about B1S!.

Practical methods for evaluating Eq. ~13! have been de-
veloped a long time ago. In particular, Gq

S(t) can be evalu-
ated using the Redfield8 or the stochastic Liouvill e equation
~SLE!24 formalism. The latter option, represented with the
dashed line in the diagram of Fig. 1, becomes relevant if the
quadrupolar relaxation of the spin S is found to lie outside
the validity range of Redfield theory. The approach corre-
sponding to the extreme right wing path in Fig. 1 has been
applied by Benetis et al.25 to the analysis of paramagnetic
relaxation.

Here we assume that the evolution of the quadrupolar
spins in liquids can be adequately described by Redfield
theory, as is usually the case in liquids. This leads straight-
forwardly to the representation23

Gq
S~t!5TrS$Sqe2~ iv1SS9 y1G9 Q!tS2q%/TrS$E% ~14!

with the quadrupolar relaxation superoperator GQQ of spin S.
It should be pointed out that the correlation function Eq. ~14!
can become complex-valued since the evolution under GQQ is
nonunitary. The expression in Eq. ~14! can be evaluated in a
straightforward manner and substituted in the expression for
T1r

21, Eq. ~11!.

B. Two-spin, I51/2, S51, system in the presence of
on-resonanc e rf fields

In the following, we address the case of spin S51 which
allows for an analytical solution. It should be noted that mo-
noexponential quadrupolar relaxation for S51 is predicted
by a rigorous Redfield theory treatment26 and no mixing oc-
curs between Sz ,Sx ,Sy and other coherences or spin orders,
such as quadrupolar order, under the conditions typical of
liquid state relaxation measurements. In this case, the matrix
of the master equation for the spin S displays a block-
diagonal structure, with the $Sz ,Sx ,Sy% block given by

~ iv1SS9 y1GQQ!$Sz ,Sx ,Sy%5F 1

T1Q
v1S 0

2v1S
1

T2Q
0

0 0
1

T2Q

G . ~15!

If the molecular motion can be modeled by isotropic tum-
bling with the correlation time tR51/6DR , the relaxation
rates for S51 are given by1

1

T1Q
5

3

80 S e2Qq

S~2S21!\ D 2S 11
h2

3 D ~J~tR ,v0S!

14J~tR,2v0S!! ~16!
Copyright ©2001. A
1

T2Q
5

3

160 S e2Qq

S~2S21!\ D 2S 11
h2

3 D ~3J~tR,0!

15J~tR ,v0S!12J~tR,2v0S!!

where

J~t,v!5
2t

11v2t2

is the spectral density function. Redfield theory for quadru-
polar relaxation is valid for short correlation times fulfilling
the condition (e2Qq/\)tR!1.1 In practice, this condition
also ensures thatv1StR!1, so that the spectral densities rel-
evant for T1Q and T2Q , Eq. ~16!, become insensitive to v1S .

The correlation functions Gq
S(t) can be further obtained

in a standard manner by diagonalizing the matrix Eq. ~15!,
yielding:

G0
S~t!5

S~S11!

3
~c1e2l1t1c21e2l21t!,

~17!

G61
S ~t!52

S~S11!

6
~c21e2l1t1c1e2l21t1e2t/T2Q!,

where

l615G16AG2
2 2v1S

2 ,

c615
1

2 S 16
G2

AG2
2 2v1S

2 D ,

G65
1

2 S 1

T1Q
6

1

T2Q
D .

Substituting the results of Eq. ~17! into Eq. ~11! we obtain
the expression for scalar relaxation in the rotating frame of
the spin I 51/2 coupled to the spin S51 in the presence of
two on-resonance rf fields:

T1r
215

1

24
~2pJ!2S~S11! (

k5$21,1%
Re$2ckL~lk ,v1I !

12ckL~lk ,2v1I !1c2kL~lk ,v0I2v0S1v1I !

1c2kL~lk ,v0I2v0S2v1I !1J~T2Q ,v0I2v0S

1v1I !1J~T2Q ,v0I2v0S2v1I !% ~18!

with

L~l,v!52S 1

l2 iv D ~l complex!.

In the limiting case of v1S50, this expression is equal to the
result of Solomon:9

T1r
215 1

12~2pJ!2S~S11!$2J~T1Q ,v1I !1J~T2Q ,v0I

2v0S1v1I !1J~T2Q ,v0I2v0S2v1I !%. ~19!

For heteronuclei with sufficiently different Larmor fre-
quencies, the conditions uv0I2v0Su@v1I ,v1S and uv0I

2v0SuT2Q@1 are usually well fulfilled and the last two
terms in Eq. ~19! and the last four terms in Eq. ~18! are
negligible. In the limiting case of v1I50, Eq. ~18! is simpli-
fied to
ll Rights Reserved.
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T1r
215 1

6~2pJ!2S~S11!J~T1Q ,ṽ1S!, ~20!

where ṽ1S denotes the scaled S-spin rf-field strength,ṽ1S

5v1SAT2Q /T1Q. We further transcribe the result of Eq. ~18!
in two slightly different forms, depending on the ratio of v1S

and uG2u.
~i! v1S,uG2u: the eigenvalues l61 and weights c61 are

real. This condition requires T2Q
21.T1Q

21, which is character-
istic of medium-size or large molecules. For large molecules
and/or large quadrupolar coupling constants, the value of
uG2u can easily exceed 104 s21. This means that the condi-
tion ~i!, under discussion here, is often fulfilled even for
rather strong rf fields employed in present-day NMR spec-
troscopy. In this case, the result of Eq. ~18! can be reformu-
lated as

T1r
215 1

6~2pJ!2S~S11!$c1J~l1
21,v1I !1c21J~l21

21,v1I !%.
~21!

The decay constants l61 , T2Q
21.l1.l21.T1Q

21, and
coefficients c61 , c11c2151, depend on v1S , which results
in a nontrivial dependence of T1r

21 on v1S in Eq. ~21!. T1r
21

decreases with an increase of v1I .
~ii ! v1S>uG2u: the eigenvalues l61 contain the imagi-

nary part, v5 1S[Av1S
2 2G2

2 . This condition is relevant for
small molecules with T1Q5T2Q , as well as for medium-size
and large molecules, provided that T2Q is not very short.
Under these circumstances, Eq. ~18! can be written in the
form:

T1r
215

1

12
~2pJ!2S~S11!H J~G1

21,v5 1S1v1I !

1J~G1
21,v5 1S2v1I !2

G2

v5 1S
Q~G1

21,v5 1S1v1I !

2
G2

v5 1S
Q~G1

21,v5 1S2v1I !J ~22!

where the terms Q(t,v)52vt2/(11v2t2) arise from the
imaginary parts of c61 , and therefore bear formal resem-
blance to dynamic frequency shifts. This formula involves a
single decay constant, G15(T1Q

211T2Q
21)/2. It should be em-

phasized that the rf field v1S leads to a sampling of spectral
densities at new frequencies,v1I1v5 1S andv1I2v5 1S .

In the following we concentrate on the extreme narrow-
ing situation for the S-spin quadrupolar relaxation where
T1Q5T2Q[TQ (G250). Equation ~22! can then be simpli-
fied to:

T1r
215 1

12~2pJ!2S~S11!$J~TQ ,v1I1v1S!

1J~TQ ,v1I2v1S!%. ~23!

This is Eq. ~1! given in Sec. I. In the absence of an I -spin rf
field, v1I50, Eq. ~23! reproduces the expression reported
recently by Murali and Nageswara Rao27 ~it appears that the
results derived in the appendix of Ref. 27 are valid only in
the extreme narrowing limit , T1Q5T2Q!.

The most remarkable feature of Eq. ~23! is the presence
of v1I2v1S in the argument of the second spectral density.
This term wil l lead to a maximum in the relaxation rate
constant T1r

21 near the Hartmann–Hahn condition, v1I
Copyright ©2001. A
5v1S . It should be stressed that Eq. ~5! does not lead to the
usually expected enhanced Hartmann–Hahn cross-
polarization transfer between S and I spins, but rather to
enhanced I -spin autorelaxation.

The enhanced I -spin relaxation can be understood based
on the first approach to scalar relaxation, represented by the
left half of Fig. 1. The full spin density operators IS(t) of the
IS spin system is taken into account, and the J coupling
between the two spins wil l indeed induce aHartmann–Hahn
polarization transfer.28,29 The latter is, however, strongly
overdamped by the rapid S-spin quadrupolar relaxation and
remains negligible even for matched rf fields,v1I5v1S . In-
stead, the effect of the J coupling in this situation is mani-
fested in increased I -spin autorelaxation. The situation is
reminiscent of the effects of fast chemical exchange which
eventually leads to a exchange-narrowed line and a T2 relax-
ation enhancement.

The treatment presented in this paper with the resulting
Eq. ~23! applies to the limiting case where the polarization
transfer between the two spin species is strongly overdamped
by the rapid S-spin quadrupolar relaxation. For this reason,
the vanishing net polarization transfer is disregarded by the
formalism represented by the right half of Fig. 1. The state of
the spin S becomes independent of spin I and the two-spin
density operator can be factorized into s IS(t)5s I(t)sS

0. The
S spin is then considered to be part of the environment, and
the phenomenon becomes apure autorelaxation effect of the
I spin.

C. Validit y rang e and condition s for the observation
of a T1r

21 maximum

The validity of Eq. ~23!, and the prediction of a T1r
21

maximum depend on the applicability of Redfield theory
which is determined by the condition 2pJTQ!1. The situa-
tion is closely related to chemical exchange leading to ex-
change broadening, coalescence, and exchange narrowing,
where the smallness of the parameter 2pJTQ indicates the
coalescence of I -spin spectrum into a single line. As is fur-
ther discussed below, Redfield theory is still accurate for
2pJTQ>0.1.

For a reliable observation of the T1r
21 maximum, the ap-

plied rf fields have to be sufficiently strong,v1STQ , v1ITQ

.1, leading to the following combined inequality for the
observation of the effect based on Eq. ~23!:

2pJTQ,1,v1STQ . ~24!

This criterion can be extended to cover also the more general
case, described by Eq. ~22!, where TQ is replaced by G1

5(1/2)(T1Q
211T2Q

21):

2pJG1
21,1,v1ST1Q . ~25!

We further investigated these conditions by performing
computer simulations based on Eq. ~4!.20 As mentioned
above, this equation can be used to compute the line shape of
the I -spin resonances.6,7 The strategy is depicted in Fig. 1
with a double line ~left path!. The details of these simulations
are described in Sec. II I and in the figure captions. The
numerical approach was used to estimate T1r

21 relaxation
rate constants for the following two situations: I 51H, S
ll Rights Reserved.
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514N (e2Qq/h51.4 MHz, h50.4, J565 Hz! and I 513C,
S52H (e2Qq/h50.2 MHz, h50.4, J520 Hz!. An agree-
ment better than 1% between the simulated T1r

21 values and
the results of Eqs. ~18! and ~22! has been obtained in the
range of 50,tR,500 ps for the 1H–14N pair and 1.5,tR

,50 ns for 13C–2H pair. Under these conditions, the param-
eter 2pJG1

21 takes values up to 0.28 for both systems. This
illustrates good accuracy of the Redfield theory even for rela-
tively high values of 2pJG1

21. Similar conclusions with re-
gard to the validity range of Redfield theory were reached
using the SLE method for other relaxation mechanisms.30

A T1r
21 maximum was consistently found in both consid-

ered cases. The magnitude of the increase in T1r
21 is propor-

tional to G1
21, with G1

21'2T2Q in the spin-diffusion limit.
The effect becomes weaker as T2Q shortens for large mol-
ecules, and may also be masked by increasing dipolar relax-
ation.

D. Three-spin, I51/2, I851/2, S51, system

In Sec. III , the predicted increase in the relaxation rate is
demonstrated for proton T1r relaxation in an 14NH2 group.
The type of spin system chosen for the experimental study
warrants abrief discussion of the scalar relaxation in a spin
system comprising two equivalent spins I 51/2 coupled to a
quadrupolar spin S51. Both T1 and T2 relaxation in such a
system are, in general, multiexponential due to cross-
correlation effects. However, the T1r relaxation investigated
in this work is expected to be monoexponential. The set of
the relevant symmetry-adapted spin operators that span the
single-quantum spin I manifold consists of I y1I y8 , I yI z8
1I zI y8 , I x1I x8 , and I xI z81I zI x8 , where a prime is used to
mark the second of the two equivalent spins. With both spins
1/2 locked along the y axis, the precession frequencies for
the above coherences in the rotating frame are 0, 6v1I ,
6v1I , and 62v1I , respectively. Thus, the cross relaxation
between I y1I y8 and the rest of the coherences is negligible
provided that the rf amplitude is sufficiently high compared
to the I -spin relaxation rate constants. The relaxation of the
I y1I y8 mode in the spin-locking experiment is therefore mo-
noexponential, and it can easily be verified that the corre-
sponding relaxation rate constant T1r

21 is given by the same
expression, Eq. ~18!, as previously derived for I y .

E. Off-resonanc e rf field

For completeness, we give the result for off-resonance
spin S irradiation with the rf frequencyvS , which can be
obtained in analytical form for the case of T1Q5T2Q5TQ :

T1r
215 1

12~2pJ!2S~S11!$2 cos2u J~TQ ,v1I !

1sin2u J~TQ ,v1I1V1S!

1sin2u J~TQ ,v1I2V1S!%, ~26!

where u5tan21@v1S/~v0S2vS)] and V1S

5Av1S
2 1~v0S2vS!2. This equation predicts a maximum in

the relaxation rate constant T1r
21 when the S-spin carrier fre-

quency vS matches the resonance frequencyv0S . Poten-
tially, this offset dependence can be used for indirect regis-
tration of the spin S spectrum in situations where direct
Copyright ©2001. A
observation is impossible because of a very short relaxation
time TQ . Such an approach bears some resemblance to the
internuclear double-resonance method, INDOR.31

III. EXPERIMENTAL RESULTS

We investigated the T1r relaxation of the amino-group
protons in 3-nitroaniline ~see Fig. 2, inset!. A sample with a
concentration of 5 mM 3-nitroaniline in acetone-d6 was pre-
pared, and the spectra were acquired on a Bruker AMX600
spectrometer at a temperature of 278 K. A study of scalar
relaxation of the second kind in this system was previously
published by Mlynárik32 ~the measurements reported in Ref.
32 were carried out at a temperature of 295 K, where we
observed some minor interference from chemical exchange
effects!.

For the small molecule considered here, the quadrupolar
relaxation of 14N satisfies the conditions of extreme narrow-
ing, corresponding to T1Q5T2Q . Using the scalar coupling
constant,1J561.0 Hz, obtained by Mlynárik, and the qua-
drupolar relaxation time TQ54.2431024 s from our experi-
ments, we can estimate the characteristic parameter 2pJTQ

50.16. It was also found that 14N decoupling with a rf field
strength of 2 kHz can easily be maintained over the relax-
ation delay of 0.2 s, thus providingv1STQ.5. We conclude
that the system under consideration fulfill s the conditions of
Eq. ~24!.

The rf power was calibrated by recording a series of
single-pulse experiments with incremented pulse length and
fitting the amplitude of the signal with a damped sine curve.
The main source of uncertainty was asubtle distortion in the
shape of the pulse generated by the proton amplifier in the
high-power mode. The application of a similar calibration
procedure to the relatively sharp14N line of the NO2 group
(linewidth'100 Hz) resulted in an estimate for v1S .

The measured proton relaxation rate constants T1r
21 con-

tain a dominant contribution from scalar relaxation of the
second kind, as given by Eqs. ~19! and ~23!, together with
smaller contributions from other mechanisms, of which only
dipolar relaxation is of relevance. Dipolar relaxation also
falls in the extreme narrowing regime, so that its contribution
to T1r

21 can be estimated with good accuracy from a T1
21

measurement, leading to a value of 0.49 s21. Other terms
that can potentially contribute to the line broadening19 can be
safely neglected in the present situation.

Additionally, we explored the possibility of a ROESY
transfer from NH2 protons to the partially spin-locked pro-
tons of the aromatic ring, but no such effects have been
detected.

The results of the experiments are presented in Fig. 2.
Figure 2~a! shows the results of a traditional proton reso-
nance experiment measuring T1r

21 as a function of v1I in the
absence of 14N irradiation. A one-parameter fit based on Eq.
~19!, including the independently measured contribution
from dipolar relaxation, leads to the quadrupolar relaxation
time T1Q5427ms, in good agreement with the value o
T2Q5424ms obtained from a direct linewidth measureme
by 14N resonance.

The results shown in Figs. 2~b! and 2~c! represent proton
ll Rights Reserved.
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FIG. 2. Relaxation rate constant T1r
21 of the amino-group protons in 3-

nitroaniline (T5278 K), measured at 600 MHz 1H resonance, as afunction
of the spin-locking field strengthv1I in the presence of on-resonance14N
decoupling with amplitudev1S . ~a! v1S/2p50; the continuous curve rep
resents the results of the fitting by T1r,sc

21 1T1r,dip
21 , where T1r,sc

21 is computed
from Eq. ~19! and the constant contribution T1r,dip

21 is determined from T1

measurements T1r,dip
21 5T1

2150.49 s21. The fitting is performed for a single
parameter, T1Q , yielding a value of 427 ms. ~b! v1S/2p5762 Hz; the con-
tinuouscurve represents the result of one-parameter fitting of T1r,sc

21 1T1r,dip
21 ,

Eq. ~23!, with respect to v1S using afixed value of TQ5427ms. The dashed
curve is calculated using the same values for TQ and v1S , assuming in
addition that the amplitude of the inhomogeneous14N rf field within the
sample is distributed according to a Gaussian law with the mean valuev1S

and the standard deviation 0.1v1S ~the distribution is truncated at v1S

60.3v1S!. ~c! v1S/2p51353 Hz; analogous to panel~b!.
Copyright ©2001. A
resonance experiments with high-power14N irradiation. The
solid curves were obtained from Eq. ~23! with v1S as a
single fitting parameter, using the value TQ5427ms. The
obtainedv1S values agree within a few percent with those
estimated directly from the14N rf field calibration. As can be
seen, the enhancement of the relaxation rate near the
Hartmann–Hahn matching condition is slightly smaller than
predicted theoretically. The deviation increases toward the
higherv1S power levels @Fig. 2~c!#.

This discrepancy can be explained by the presence of
inhomogeneity of the two rf fields over the volume of the
sample. An improved agreement with the experimental data
is obtained by assuming that the amplitude of the14N rf field
within the sample is described by a Gaussian distribution
with the standard deviation of 10% of the meanv1S value.
The results are shown with the dashed curves in Figs. 2~b!
and 2~c!. Besides rf-field inhomogeneity, other sources of
this discrepancy cannot be excluded.

Figure 2reveals that measured relaxation rates never ex-
ceed the value of T2

21 in the absence of rf fields @intercept
with the vertical axis in Fig. 2~a!#. Therefore, it is somewhat
misleading to speak about ‘‘enhanced’’ relaxation in this
context. It is rather a defeat of the decoupling effect that
occurs near Hartmann–Hahn conditions, leading to a recov-
ery of a substantial portion of the original relaxation rate.
From Eq. ~23! it is seen that in the limiting case of strong rf
fields under Hartmann–Hahn conditions T1r

21 ~scalar! reaches
the maximum of one-half of T2

21 ~scalar!.
The experiments such as presented in Figs. 2~b! and 2~c!

show some potential for the determination of relaxation
times TQ . The most informative part of the dispersion curve
can be adjusted to occur at arbitrarily high v1I fields. This is
an advantage over traditional T1r

21 experiments, Fig. 2~a!,
where the most informative part of the curve occurs at low rf
power and can often not be recorded because of a loss of the
B1I spin-locking properties. This has particular relevance for
determination of long relaxation times TQ @provided that the
conditions Eq. ~24! are not violated#. As discussed above, a
limitation of the present measurement technique is its sensi-
tivity to rf-field inhomogeneity,33 although the ensuing small
error in TQ can, in principle, be eliminated by extrapolating
measurements at several rf-field strengths to v1S50.

The theoretical results obtained in this paper have been
verified also by computer simulations based on Eq. ~4!. We
have computed aseries of spectral traces which represent the
signal of the amino-group protons, recorded with different
durations of the spin-locking period, as illustrated in the inset
of Fig. 3. From these simulations, the T1r

21 values have been
extracted ~shown by the asterisks in the plot of Fig. 3!. For
3-nitroaniline the simulated T1r

21 values are found to be in
perfect agreement with the analytical results using Eq. ~23!.

The theory presented in this article also sheds some light
on the problem of S-spin decoupling,27 which is routinely
used in the spectroscopy of deuterated proteins.12 Our calcu-
lations indicate that in practice Eqs. ~22! or ~20! are often
suitable for estimating the effect of deuterium decoupling on
13C or 15N relaxation. For instance, for on-resonance2H de-
coupling with v1S/2p52 kHz, scalar relaxation of13C is
reduced below the level of deuterium-induced dipolar relax-
ll Rights Reserved.
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ation in the range of tR from 1 to 100 ns ~disregarding in-
ternal motion!. However, the decoupling wil l become inef-
fective for rotating frame measurements of 13C when the
amplitudes of the two rf fields are accidentally matched.

In conclusion, we explored the scalar relaxation of the
second kind in a IS two-spin system with I 51/2 and S
.1/2 in the presence of two rf fields. A surprising effect of
increased I -spin relaxation is observed when the two applied
rf fields are matched according to the Hartmann–Hahn con-
dition. The example of the scalar relaxation of the second
kind, considered in this work, puts into evidence the com-
mon origin of scalar relaxation and coherent heternuclear
spin dynamics.
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FIG. 3. Relaxation rate constant T1r
21 of the amino-group protons in 3-

nitroaniline. The solid curve is the same as shown in Fig. 2~c! @computed
from Eq. ~23!#. Asterisks represent the results of numerical simulations
based on Eq. ~4!. The superoperator in Eq. ~4! is evaluated in the basis
umI ,mS&^mI8 ,mS8u for the presetv1I and v1S values giving rise to a 36
336 matrix. This matrix is subsequently used to simulate a series of 1H
spectra for different durations of the spin-locking period in T1r experiment.
The intensities for different spin-locking times are fitted to a single expo-
nential to obtain T1r

21 value. The T1r
21 values derived for differentv1I values

are shown by asterisks. The values of J andv1S used in these simulations
are the same as given in the text and in the caption to Fig. 2, and the set of
spin-locking times tsl is the same as used in the actual measurements. The
elements of GQQ matrix are computed using tR , e2qQ/\, and h adjusted
such that TQ5427ms. Quadrupolar-dipolar cross correlations and dyna
cal frequency shifts were not included in GQQ . The simulated decay curves
are monoexponential in a very good approximation.
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