
MOLECULAR PHYSICS, 1994, VOL. 83, NO. 6, 1133-1144 

Geometric phase in NMR interferometry experiment 

By N. R. SKRYNNIKOV and B. C. SANCTUARY 

Department of Chemistry, McGill University, 801 Sherbrooke Street West, 
Montreal, Canada H3A 2K6 

(Received 21 June 1994; accepted 24 August 1994) 

Experimental detection of geometric phase effects is based on interferometry 
techniques. The observation of a nonadiabatic geometric phase in nuclear 
magnetic resonance has been reported by D. Suter, K. T. Muelter, and A. Pines 
(1988, Phys. Rev. Lett., 60, 1218). A rigorous interpretation of their results is 
presented here. The experiment exploits the concept of fictitious spin-l/2 
subsystems embedded in a spin system of higher order. A relevant expression 
for the geometric phase is derived here using the Euler rotation representation 
for the SU(2) group. In order to correlate the experimental data to the geometric 
phase, a decomposition of the density matrix in a basis of pure states is used 
and the isomorphism between the cyclic evolution of pure states and mixed states 
is constructed. Rigorous treatment of the dynamic phase, along with technical 
aspects of the experiment, shows that the observed echo shift is related directly 
to the geometric phase, in agreement with Suter et al. The observed geometric 
phase is classified as a frame-related phase. 

1. Introduction 

The discovery of the topological phase by Berry [1], followed by fundamental 
generalization due to Aharonov and Anadan [2], initiated intense experimental 
studies aimed at the detection of the geometric phase. To mention only a few, this 
included neutron interferometry [3], nonlinear optics [4] and electron diffraction 
studies [5]. 

Considerable effort was applied in the field of magnetic resonance and related 
areas. The adiabatic (Berry's) phase has been the subject of study by Pines' group 
I-6] and its manifestation in magic-angle spinning experiments has been examined by 
Gan and Grant [7]. The non-Abelian Berry's phase was investigated in a nuclear 
quadrupole resonance experiment by Tycko [8] with the refined interpretation 
proposed recently by Kwon, Kim and Kim [9]. The connection with Bloch-Siegert 
shift was drawn by Furman and Kadzhaya [10]. Finally, Berry's phase effects in the 
context of dissipative evolution in electron spin resonance were discussed by Gamliel 
and Freed [11]. It should be noted that all of the forementioned magnetic resonance 
studies are confined to the case of adiabatic evolution. In contrast, the experiment 
due to Suter, Mueller and Pines [12] (SMP experiment) deals with the nonadiabatic 
geometric phase, which should be regarded as a more general concept [2]. 

The original communication which reports the SMP experiment [12] contains 
the physical basis for an understanding of the observed geometric phase effect. 
Experiments were performed over a three level spin system which shows a simple 
doublet spectrum. The magnetization vector associated with one pair of levels was 
forced into a cycle of evolution along a closed circuit on the Bloch sphere. The 
accumulated phase shift, containing the geometric part, was detected with the help 
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of a spin-echo sequence applied to the other pair of levels. Such indirect detection 
is possible due to the common level shared by two transitions. 

The goal of this paper is to provide for a rigorous mathematical interpretation 
of the SMP experiment. The points of particular interest include the correlation 
between the geometric phase exhibited by pure states and mixed states, as well as 
the problem of invariance of the geometric phase under a rotating frame trans- 
formation. The approach presented here is convenient for treating nuclear magnetic 
resonance (NMR) interferometry experiments since it allows for accurate separation 
of the two evolving subsystems within a spin density matrix. 

The basis for the concept of the geometric phase is constituted in the fact that 
the Hilbert space of a quantum mechanical system can be expressed locally as the 
direct product M | U(1), where U(1) is associated with the phase coordinate (Abelian 
phase is implied here). The union of subsets M forms a projective Hilbert space. 
Cyclic evolution curves embedded in M give rise to a multiplicative phase factor 
which includes the part determined by the geometry of the curves. Judicious choice 
of the projective Hilbert space is, we believe, a key point in geometric phase 
calculations. 

One choice available for a periodic Hamiltonian is based on the application of 
Floquet theory. The coordinate system, implanted into a projective Hilbert space, is 
represented by an n x n unitary matrix. Cyclic evolution paths are given by periodic 
matrices S( t )  which can be found from the Floquet decomposition of the evolution 
operator [13]. 

Another choice is available for Hamiltonians possessing Lie algebraic properties 
[14-16]. This approach, applied in our analysis, facilitates the construction of a 
compact projective Hilbert space coordinatized by raising (lowering) operators of 
the algebra. It is shown below how the solid-angle result for the geometric phase can 
be derived in a concise manner using an appropriate representation of the SU(2) 
group (cf. reference [17]). Explicit forms of evolution paths in projective Hilbert 
space can be found by solving systems of differential equations which follow from 
the Schr6dinger equation. 

2. Spin evolution under SU(2) Hamiltonian 

Consider the evolution of a quantal system under the Hamiltonians 

H ( t )  = ~Ox(t)I x + ~oy(t)Iy + coz(t)/~. (1) 

This possesses the simple Lie algebra structure of su(2) and, therefore, the evolution 
operator constitutes an element of the group G = SU(2), allowing for a variety of 
exponential representations [18]. We opt for the representation which is used for 
generating Wigner rotation matrices. This was applied to the analysis of the geometric 
phase in rotating systems by Cui [19]. The representation is given by 

D(~,  fl, ~) = e ir(t)lz e i#(t)1r e i '~mz. (2) 

Evidently, the evolution operator corresponding to Hamiltonian (1) falls in the class 
defined by equation (2), U(t ,  t o ) =  Dv(c~, fl, ~), with initial conditions given by 
f i(to) = O, ~(to)  = - -y ( to ) .  

Assume a spin system is prepared initially in the form of a fully polarized beam 
containing spins of different sorts and modified subsequently in the course of the 
preparation period by the action of operator (2). The evolution of the state I~bm(to)) 
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produced can be described using the group properties of rotations D as 

I~'m(t)) = U(t, to)l~Pm(to)) = Dr(co, fl, 7)VD(%, rio, 70) ~, w~'j, m)]  
L J=Jo d 

Jn 

= D(C, fl', 7') ~ wjlj, m). (3) 
J= Jo 

The primes on the Euler angles are dropped in the following. The construction used 
for the initial state I~m(t0)) may seem to be artificial, but it is significant for 
establishing the connection between evolution of pure states and mixed states (see 
equation (16)). Ansatz (3) can be inserted in the Schr6dinger equation with 
Hamiltonian (1), leading to a system of differential equations for ~(t), fl(t), 7(0 [20, 
21]. 

Inspecting expression (3), it is noted that the phase increment acquired by the 
state during a cycle of evolution is associated entirely with the exp (i~(t)Iz) term. In 
other words, the maximum isotropy subgroup [14] of SU(2) with respect to 
~"=~o w~lj, m) coincides with its Cartan subgroup .3, which is generated by a single 
operator I z and, in general, is parametrized by one angle a(t) only. However, in order 
to account for trajectories which commence at fl(to) = 0 (north pole), equation (3) 
must be put into a symmetric form: 

J. 
[ff~(t)) = D ( - 7 ,  fl, 7) e('(~176 ~ wjlj, m). (4) 

J= Jo 

This yields the representation of the coset space G/~ = SU(2)/U(1) in the form of 
D ( -  7, fl, 7). The coset space G/7~ can be identified as a realization of projective Hilbert 
space. It allows for the mapping onto a two-sphere, SU(2)/U(1) = SO(3)/SO(2) = S 2. 
The geometric phase effects are then associated with closed trajectories in this 
projective Hilbert space which are specified, in general, by a pair of conditions 
fl(to + T ) =  fl(to), 7(to + T ) =  7(to). In the particular case that fl(to)= 0 cyclic 
trajectories need to be closed only in fl(t) as a consequence of the coordinate 
singularity. In this special case the minimum available realization of projective Hilbert 
space is a circle S ~ parametrized by fl(t). 

The results obtained are used to generate generalized coherent states [14, 15] or 
single valued cyclic states [2] which are used to calculate the geometric phase in the 
Aharonov-Anandan analysis: 

J~ 

I~b,,(t)) -- D(-y( t ) ,  fl(t), 7(0) ~ wjlj, m). (5) 
j=jo  

The geometric phase can be found following the Aharonov-Anandan's  prescription 
that involves the differentiation of Iq~,,(t)). Relevant relationships for the spin algebra 
obeying 

[I,, Ii] = iEktmI m (6) 
can be formulated as 

exp (--iOIu)I~ exp (iOIu) = 17 cos 0 + %.vlv sin 0, (7) 

where ~ktm is the Levi-Civita tensor. Processing the derivative by use of equation 
(7) and then taking the integral over the period of evolution yields the following 
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result for the geometric phase: 

m (1 COS fl(t))~(t) dt ZGeom(r) = i (r [q~m(t)> at = m - 
d to d to 

= ~c (1 -- cos fl(t)) dT. (8) 

The final equality in equation (8) is written as the contour integral along a closed 
path C on the surface of the two-sphere discussed above. It recovers, in a simple 
manner, the well known solid angle result for the geometric phase [17]. 

The evolution operator U(t, to) is often treated with the help of unitary time 
dependent transformations, for example, invoking the interaction representations. In 
practice, there is no need to go beyond the class of transformations belonging to 
SU(2), denoted by DT(t2): 

U(t, to) = OT(~2(t))~l(t, to)O T 1(~2(to) ) = OT(~(t))O~(~, fl, ~)DT l(~(to)). (9) 

The Euler angles ~(t),/~(t), ~(t) can be determined from the system of differential 
equations [20] following the Schr6dinger equation with correspondingly transformed 
Hamiltonian: 

d 
I-I(t) = D T  I ( Q ( t ) ) H ( t ) D T  (~2(t)) -- iDT 1 (Q(t)) ~ D T (~(t)). (10) 

Obviously, representation (9) preserves the results obtained for the evolving state, 
including the overall phase and its geometric component. Alternatively, the trans- 
formed evolution operator t~(t, to) can be chosen to describe the net evolution effects 
in the sense of equation (3). In doing so the results for the overall and geometric 
phases are reformulated in terms of ~(t),/~(t), ~7(t). 

Thinking of Dv(t2) as a coordinate frame transformation, we can refer to 0(t, to) 
as a frame-related evolution operator. The dynamics of the system under U(t, to) are 
determined by the modified Hamiltonian/4(t)  and, therefore, are different from the 
original dynamics. This is exemplified in classical mechanics by the appearance of 
fictitious forces in rotating systems. Hence, the description involving Du(~, fl, 9) leads 
to frame-dependent results for the overall phase and its geometric component 
[22 24]. 

Considering frame-related evolution, phase effects can be removed by choosing 
DT(t2) = U(t, to), which corresponds to a choice of the frame where the evolving state 
remains constant. In this case the trajectory {/~(t), ~7(t)} collapses into a point, killing 
the geometric phase as well as the overall phase. On the other hand, it is always 
possible to provide for a transformation which preserves the overall phase, but makes 
the geometric phase nil. It can be stated, in this situation, that the geometric 
component is shifted into the dynamic part of the overall phase. For the special case 
of fl(to) = 0 this can be achieved by means of Dr(t2) = D(-7, /3 ,  7). 

Consider the example of the rotating frame transformation which is involved in 
the concept of an SMP experiment. The transformation is given by 

DT(g2(t)) = D(~ot, 0, 0) = exp (i~otlz). (11) 

Inserting this into equation (9) and putting to = 0 yields immediately ~ = ~,/~ = fl, 
= ~ - cot. Hence, the geometric phase in the laboratory frame Z~,om(T), equation 
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(8), is related to the rotating frame geometric phase ~eom(T) by 

f 
t o + T  

Z~e0m(T) = ~ o m ( T )  + m~ (1 - cos fl(t)) dt. (12) 
w to 

As may be seen, the difference between the laboratory frame and the rotating frame 
results is nontrivial and it is not compensated fo rby  'rotating frame detection' as 
adopted in experimental NMR. 

In the general case, cyclic trajectories are closed in fl(t), 7(0 and, therefore, the 
overall phase is unaffected by a rotating frame transformation. However, in the special 
case of fl(to) = 0 (which is of particular interest for the NMR experiment in question) 
the overall phases are related by 

~(~) . . . .  l l ( T )  = ~ 3  . . . .  I I ( T )  + m~oT, (13) 

as follows from equation (4): Evidently, in this situation the difference is absorbed 
by 'rotating frame detection', which is conventional for experimental NMR. 

To this end let us consider a mixed state (density matrixf tr(t) of a quantum 
mechanical ensemble. Cyclic evolution of mixed states was first considered by 
Uhlmann [25] who formulated the concept of parallel transport in operator space 
using amplitude and phase factors attributed to the density matrix. This can be 
realized by decomposition of the density matrix in a basis of pure states, as has been 
pointed out by Dabrowski in his discussion of non-Abelian phases in model optical 
experiments [26]. This approach is exploited here allowing for reformulation of the 
density matrix evolution in terms of effective pure states. At this stage our goal is to 
construct the geometric image for mixed state evolution and to draw the connection 
between the trajectories of pure states and hypothetical trajectories of density 
matrices. 

Consider the quantum system exposed to the Hamiltonian of equation (1). The 
evolution of the density matrix is given by the adjoint representation of SU(2): 

~(t) = Adu tr(to) = U(t, to)a(to)U-l(t, to). (14) 

It is well known [27] that this adjoint representation specifies continuous homo- 
morphism of SU(2) onto SO(3), Ad SU(2) = SO(3). The group SO(3) is generated 
by superoperators Ix, Iy, Ix, which satisfy the commutation relationships (6). Thus, 
the group element can be represented as 

/)(c~, fl, 7) = exp (i7(t)[z) exp (ifl(t)~) exp (ict(t)[~). (15) 

Group SO(3) can be viewed as a restriction of SU(2) to the irreducible representation 
spaces of integer rank supplied with Cartan bases of spherical harmonics Y~). Using 
the Cartan basis of spherical harmonics we introduce evolving mixed states in analogy 
with evolving pure states of equation (3): 

J. 
o-m(t ) =/)(~, fl, ~/) ~, wj Y~). (16) 

J=Jo 

It can be shown that the dynamics of mixed state (16) as expressed by ~(t), fl(t), 7(0 is 
equivalent to the dynamics of pure state (3) with Euler angles obeying one and 
the same system of differential equations. The differential equations can be derived 
by substitution of ansatz (16) into the quantum Liouville equation, followed by 
the application of superoperator commutation relationships analogous to (7) and 
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spherical harmonics orthogonality. The extraction of the maximum isotropy subgroup 
associated with I'z can be carried out along the same lines, providing for a mapping 
onto SO(3)/SO(2) = S 2. 

The results obtained deserve some additional comments. Due to the Hermiticity 
of the density matrix, construct (16) allows for the value of m = 0 only. This means 
that the initial states capable of cyclic evolution are produced by SU(2) transformation 
of the diagonal density matrix (cf. equation (3)). The equilibrium density matrix gives 
an example of the cyclic initial state. Furthermore, the overall phase, calculated for 
the density matrix evolving along the closed circuit, is nil. The density matrix 
treatment obviously can be extended to the case of frame-related evolution, and 
comments above concerning the special case of fl(to) = 0 also remain valid. It should 
be pointed out that the Euler angles involved in equation (16) are under experimental 
control and subject to direct measurements in an NMR experiment. 

Finally, we derive the useful result which has been exploited in the paper of Suter, 
Mueller and Pines [12]. The operators Ix, Iy, Iz can be combined into first-rank 
spherical tensor components Itm ~) giving rise to another realization of representation 
space of SO(3). By virtue of the irreducibility the Hamiltonian of equation (1) can 
be expressed using the adjoint representation of lz: 

H(t) = ~o exp ( i j=)  exp (ivY/y) exp (i~[=)Iz. (17) 

Making use of equations (3) and (17), the criterion for the dynamic phase [2] to 
vanish is established as 

cos ~ cos fl + sin o a sin fl cos (4 - ?) = 0. (18) 

This condition corresponds to the orthogonality of two vectors: the first vector, as 
specified by {fi(t), 7(t)}, traces the trajectory of the state on the surface of the sphere 
S 2, whereas the second one {v~(t), ~(t)} corresponds to a trajectory of Hamiltonian 
(17). Obviously, this observation remains valid in the case of frame-related evolution 
under/4(t). 

3. Interpretation of the Suter-Mueller-Pines experiment 

A pair of dipolar-coupled spin 1/2 nuclei oriented in a liquid crystalline 
environment were chosen in the SMP experiment as a model system for demonstration 
of geometric phase effects in NMR. This system can be represented equivalently 1-28] 
by a spin I = 1 subject to an axially symmetric quadrupolar interaction with the 
symmetry axis along the z direction. It is often convenient to treat this system with 
the help of fictitious spin 1/2 operators [29, 30]. 

The SMP experiment (figure 1) consists of a spin-echo sequence selectively 
applied to the high field transition with the consequent observation of an echo signal. 
Meanwhile, the magnetization associated with the low-field transition is forced into 
a cycle of evolution along the closed circuit. This was found to result in a phase shift 
of the echo signal correlated to the geometric phase. 

Cyclic evolution of the low-field component has been realized by means of 
offset continuous wave (CW) irradiation or pulse trains. These are generally referred 
to as a C sequence in the following. Since the duration of a C sequence is several 
times the duration of a 90 ~ pulse, we can disregard any relaxation effects in the 
course of a C sequence. Also the effects of irreversible relaxation are assumed 
negligible over the course of the whole experiment. Geometric phases in dissipative 
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Experimental scheme of SMP [12]. The magnetization associated with the low-field 
transition is involved in a cycle of evolution through a specially engineered C sequence. 
The resulting phase shift is transferred onto the high-field transition via the common 
level, and is subsequently detected by means of the spin echo. 

systems constitute a rather special case [31] which does not enter into the present 
anaysis. 

In the following consideration we use the decomposition of a mixed state (density 
matrix) into a set of pure states [26]. This decomposition is non-unique and leads 
to stochastic evolution of pure states in the case when the interaction with the lattice 
is taken into account [32]. However, if this interaction is disregarded then there exists 
a well defined homomorphism between the mixed state representation and the pure 
state representation with respect to the quantum Liouville and Schr6dinger equations. 

The starting point of our consideration is the decomposition of the equilibrium 
density matrix into pure states. We describe an ensemble as a set of orthogonal pure 
states {[-15,  10), I1)} weighted with the probabilities W-l, Wo, W~ adjusted in such 
a way as to satisfy a Boltzmann distribution. At this point our goal is to keep track 
of the spin evolution up to the moment when the system is exposed to a C sequence. 
The effect of the first 90 ~ pulse is described readily by the use of a perturbation 
approach leading to the following mixture of pure states: 

1~-1) = exp (i2_ l t ) [ - 1 )  

[Go) = (X/2) -1 exp (i2ot)[0) - i(x/2 ) -  1 exp (iRxt)[1) 

[~1) = - i (x /2 )  -1 exp (i2ot)[0) + (x/2) -1 exp (i2~t)[1) 
where 

(19) 

t = n/(2(x/2)o~) 

2,. = moo o + (m 2 - 2/3)e~Q 

stands for the intensity of the RF pulse and c% designates the effec- Here a)l p 
tive quadrupolar splitting. Once again, the states (19.1-19.3) are weighted with 
w_l, Wo, W~. 

In order to incorporate the effects of reversible relaxation, we assume that the 
magnetic field is inhomogeneous within a sample, which is expressed by the 
distribution f(6o O. Under these conditions the set of evolving vectors splits into a 
'fan' of components [~"(t, &o)) weighted with the probabilities W".f(&o). The 
evolution is still given by equations (19), now with time t playing a role of temporal 
variable and 2" replaced by 2"(&o) = 2,. + rose). 
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In this situation it is easy to verify that the decay of the density matrix component 
Po. l ( t ) ,  as generated by the set of vectors (19.1-19.3), is given by the Fourier transform 
of f (ae~) .  The decay function corresponding to the observable free induction decay 
(FID) is real (i.e., does not incorporate a frequency shift) provided that f(6~o) is 
symmetrical with respect to ~o. 

The effect of a 180 ~ pulse after a period of free evolution z is determined similarly. 
Subsequent free precession is written as 

[~- l(t, 6~o)) = exp (i2_ l(t%o)[t - -  ~ ' ] ) [ -  1 ) 

]~o(t, 6o~)) = - ( x / 2 ) - 1  exp (i21(6o~)z + i2o[t -- z])[0) 

--i(x/2) -1 exp (i2oz + i21(6~o)[t - - z ] ) ] l )  

[~l(t, 6~o)) = -- i(x/2)- 1 exp (i21(&o)T + i2o[t -- z])[0) 

-- (x/Z) -1 exp (i2o z + i21(6o~)[t - v])[1). (20) 

This gives rise to an echo signal centred at t = 2v. As expected, it recovers the original 
FID shape. Vectors (20) are used as the initial states for subsequent calculation of 
cyclic evolution under the C sequence. 

The initial state can be discussed also in terms of its density matrix as generated 
by vectors (20). From SMP, the transverse magnetization is seen to vanish at the 
moment when the C sequence is applied. This feature is provided for by the proper 
choice of f(3~o) in our model. Therefore, the initial density matrix is diagonal 
P-~,-1 = W_ 1, Po,o = P~.I = (1/2)(Wo + W~), consistent with the fact that irreversible 
relaxation is absent. 

Now we are in a position to investigate the effect of C sequence. The Hamiltonian 
corresponding to the C sequence can be written generally as 

H ( t )  = H o + V(t)  = -COoI  z - o~o(I 2 - 2/3E) 

+ o~i(t)(cos ( ~ t  + ~o(t))I x - sin (~ot + q~(t))Iy), (21) 

where ~ = ~o - coQ - A, with A playing the role of small offset, and where ~ol(t) and 
~p(t) are the intensity and phase of the RF irradiation which vary from one pulse to 
another within the C sequence. By the argument of time-dependent perturbation 
theory [33], only on-resonance (or close to resonance) terms of V(t)  are retained, 
which leads to the matrix representation of H ( t )  as 

H(t) = ( ~ / 2 ) -  ~o)l(t) e x p  (i(o)t + q~(t))) ( - -  1/2)(o) o - mQ) + t l E  , 

0 0 ( -  3 /2 ) (m  o --  mQ/3)  

(22) 
where 

r /=  (1/2)(~ o + o~Q/3). 

The term qE,  proportional to the identity E, has been extracted in such a way so as 
to make the upper block of the matrix traceless. 

In view of the block-diagonal structure of H(t ) ,  Hilbert space can be represented 
as a direct product of two uncoupled subspaces. One is the two-dimensional subspace 
spanned by ] -  1 >, ]0>, and the other is the one-dimensional subspace associated with 
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vector I1). Projecting the vectors of equation (20) into these two subspaces yields 

I~- l(t, &o))l, = exp (i2_ l(&o)Et - ~3)1-1> 

[(o( t, ~ ) ) l i  = Jill(t, &o)>h = - ( x / 2 ) - t  exp (i21(6co)t + i2oEt - v])10> 

I(o(t, &o))h, = - i l ( l ( t ,  c$co))[ii = - i (x/2)  -1 exp (i2o~ + i)].x(cSco)[t - v])ll). (23) 

In the same manner, the density matrix can also be projected into these two subspaces. 
At this point we can make the identification of the first subspace with a fictitious 

spin-l/2 space. Initial states of equation (23) can be regarded as polarized states of 
a spin-l/2 system, [ff/a/2(to)) = wl/2[1/2 , 1/2), [~_1/2(t0)) = W'1/2[1/2,- 1/2), falling 

= ~J=io wjlJ, m) of equation (3). The initial density matrix for the in the class [q*,,(to)) J" 
fictitious spin-l/2 system can be represented in turn by ao(to)= woY~o~ wlY(o 1), 
belonging thereby to the class of equation (16), ao(to) i, = y'q=~o % Y~). The corre- 
sponding block of Hamiltonian (22) can be regarded as a spin-l/2 Hamiltonian, 
including a Zeeman splitting of e~ o - coo and an RF irradiation of intensity (x/2)~ol(t ). 
Obviously, a spin-l/2 system is formed in this way, which is embraced by our general 
description of spin dynamics under SU(2). Thus, all the results formulated in section 
2 can be applied. 

In the SMP experiment, the single transition density matrix ao(to) is forced into 
a cycle of evolution along a closed trajectory on the surface of S 2. A number of 
different cyclic trajectories (see figure 2) were generated by use of specially designed C 
sequences. As follows from the analysis presented in section 2, the trajectories 
subtended by effective states 1@l/2(t)), [~_ 1/2(t)) reproduce closed paths associated 
with ao(t ). Thus, the geometric phases accumulated by 1~1/2(to)), ]~O_ 1/2(t0)) are given 
by one-half of the solid angle enclosed by ao(t ) trajectories on the surface of the 
Bloch sphere. Note that the original dynamics of the system has been replaced in 
the SMP consideration by rotating frame dynamics. Therefore, the geometric phase 
obtained should be recognized as a frame-related phase. 

The quantity which is related to the observable spin-echo phase shift is, in fact, 
the overall phase acquired by Iq/1/z(to)). According to equation (13), it is expressed as 

1/2 ~1/2 ~1/2 XO . . . .  n(T) = (1/2) coT, ZDynam(T) --[- ~(Geom(T) + (24) 

where T is the duration of the C sequence. In order to determine the echo response 
it is necessary to combine the vector 1~1/2(to + T))  with the component evolving in 
the one-dimensional subspace ]~o(to + T)). This operation eliminates the phase shift 
arising from the t/E term in equation (22). Finally, in order to compare with the 
experimental data, detection in the rotating frame must be taken into account. This 
yields the result for the observable phase shift 6 c induced on the echo signal due to 
the effect of the C sequence, 

~C ~1/2 ~1/2 = ~(Dynam(T) + ZGeom(T) -- (1~2)AT. (25) 

This result can be discussed once the C sequence is specified. Different C sequences, 
as implemented in the SMP experiment, are presented in figure 2. 

I. The trajectory 'slice' (figure 2 (a)). The trajectory is generated using a pair of 
180 ~ on-resonance pulses, shifted by 0 with respect to each other. The offset, A, is 
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(b) 
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Figure 2. Different types of closed trajectory on the Bloch sphere representing the cyclic 
evolution of the single-transition density matrix, as realized in the SMP experiment: 
(a) slice, (b) triangle, and (c) cone. 

kept zero for the duration of the experiment. As pointed out in the SMP com- 
munication, the dynamic phase vanishes along the trajectory due to the orthogonality 
of the vectors corresponding to the evolving state and the driving Hamiltonian (the 
condition is formulated in equation (18)). Thus, 6 c -1/2 = ZGeom(T) o r ,  recalling result 
(8), the observable shift is equal to one half the solid angle subtended by the trajectory. 
For the trajectory under consideration this implies 6 c = 0, in agreement with 
experimental data. 

II. The trajectory 'triangle' (figure 2 (b)). The trajectory is generated by use of a 
90 ~ pulse, followed by a composite z pulse, and then another 90 ~ pulse with 
appropriately adjusted phase. The composite z pulse [34] consists of three on- 
resonance selective pulses with effective net propagator of the form exp (iOIz).  In view 
of this propagator, the action of the z pulse can be represented by an additional term 
~ z ( t ) I  z introduced in the Hamiltonian of the fictitious spin-l/2 system (notice that 
a z pulse acts selectively on the low-field transition). The time dependence of coz(t ) 

f to+T 09z(t) d t  = O. reflects the fact that the z pulse is active for a fraction of time T, jto 
The dynamic phase vanishes for I~kl/2(t)) by the argument of orthogonality, equation 
(18), including the part of the trajectory traversed under the effect of o9~(t)1z. 
Consequently, the observable shift is found to be 6 c = -1/2 ZGeom(T) = (1/2)0, in agree- 
ment with the experiment results. 

III. The trajectory 'cone' (figure 2(c)). The trajectory is generated by off- 
resonance irradiation of the low-field transition. The intensity of the RF field is 
constant, o91(0 = co 1, and the RF phase r is taken to be zero. The dynamic phase 
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~1/2 ZDynam(T) can be calculated using expression (3) for cyclic states along with the 
explicit solution for the Euler angles. This approach, however, proves to be tedious, 
since ~(t), fl(t), 7(0 are relatively complex functions in the present case [20]. 
Alternatively, we can build the cyclic state in a more tractable form by using a 
double-rotating frame representation which relies on a different type of exponential 
operator (it can be viewed also as the product of two Euler rotations): 

1~/1/2(t)) = exp ( -  i~Ir) exp (-- i~2tlz) exp (i~Iy)l~tl/2(to)), (26) 
where 

u ~ = arctg (o~t/A) 

Applying the same differentiation rules as in section 2 to cyclic state (26), we can 
calculate the dynamic phase as defined by Aharonov and Anandan [2], ~1/2 ~(Dynam(T) ~--- 
(1/2)A T. Therefore, the observable shift is once again 6c = ,~Geom~'l/2 tT~j, being equal to 
one half of solid angle, which is expressed as [35] 

6c ___ n(1 _ A ) .  (27) 

It is unnecessary to make any reference measurements in order to extract the 
geometric phase in this experiment. With this reservation, we can consider the 
theoretical prediction to be fully consistent with experiment results. 

In conclusion, a three level spin system constitutes a framework for a NMR 
interferometry experiment. The isomorphism between SU(2)/U(1) and SO(3)/SO(2) 
allows direct experimental implementation of various closed trajectories for effective 
pure states on the Bloch sphere. The geometric phases acquired by effective states 
can be measured with the proviso that the dynamic phase disappears along the 
evolution path or, otherwise, is eliminated by rotating frame detection. Direct 
calculation of phases can be tedious due to the fact that the C sequence propagator 
does not commute with itself at different moments of time. However, the solid angle 
result for the geometric phase, deduced by use of the Euler angle parametrization, 
makes it possible to circumvent this difficulty by referring directly to the geometry of the 
evolution paths. The geometric phase observed in the Suter-Mueller-Pines experi- 
ment can be classified as frame-related, in contrast to the invariant Kobe's phase. 
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