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Intermolecular dipole± dipolar relaxation is considered in the framework of Red® eld equations
describing the evolution of the spin density matrices for multicomponent solutions. Two types
of contribution from intermolecular dipole± dipolar interactions are identi® ed. Contributions
of the ® rst type can be emulated using the external random ® eld (ERF) model, while con-
tributions of the second type cannot. The latter are responsible for relaxation coupling
between solute and solvent, and can be expressed in terms of cross-relaxation rates. A com-
plete system of Red® eld equations for multicomponent liquids is not practical due to its size
and the multitude of unknown parameters. For this reason, interpretation of experimental
data usually is limited to the ERF model, even if unreliable for experiments where solvent
spins are exposed to the e� ect of pulses. As an alternative, it has been suggested that complete
system of Red® eld equations can be truncated so that the solvent part is limited to spin
polarizations. Solvent multispin modes are ignored as insigni® cant from the point of view
of solute relaxation. So formulated, this approach is referred to as the c̀oupled solute solvent
relaxation’ (CSSR) model. The validity of this approximation is examined using the examples
of AX± AB and AX± ABX type binary mixtures. The elements of complete Red® eld matrices
embracing both solute and solvent are calculated. The results include cross-correlations
between intermolecular dipolar interactions, which are calculated for spherical molecules
with o� -centre spin sites. Simulations indicate that the CSSR approach provides a very
accurate approximation, regardless of the inherently complex nature of solvent relaxation
and the existence of several potential paths for intermolecular magnetization transfer. It
o� ers improvement over the ERF model, particularly in the evaluation of intermolecular
contributions, in the case when both solute and solvent spins come under the e� ect of RF
pulses during the course of experiments.

1. Introduction

Sophisticated experimental techniques based on a
variety of relaxation e� ects have become instrumental
in the investigation of complex molecular systems in
solutions. Two aspects should be emphasized. First,
intensive use is made of the long-range NOE, including
intermolecular magnetization transfer [1± 3]. This under-
scores the importance of long-range dipole± dipolar
interaction which serves as a unique probe for the inves-
tigation of molecular dynamics and structure, in parti-
cular for large biomolecules. Second, the studies of
multimode (coupled) relaxation are increasingly popular
[4, 5]. Multimode relaxation, involving multispin orders
and coherences that appear in coupled spin systems [6],
complements T1 and T2 measurements, providing addi-
tional information on molecular structure and motion.

As involved as it is, the theory of multimode relaxa-
tion tends to avoid further complications arising from
intermolecular paths. Instead, the intermolecular
dipole± dipolar (DD) interaction usually is modelled by
an external random ® eld (ERF) ® ctitious ® rst-order spin
Hamiltonian. The pitfalls of this model are known [7, 8]
but the belief exists that ERF provides a reasonable
approximation when applied with a due caution.

At the same time, the theory that incorporates DD
interactions between coupled spin systems in multicom-
ponent solutions has been developed [7, 9]. Solomon’s
equations for the intermolecular relaxation of spins 1/2
give a simple example of such a treatment [10, 11]. The
generalized formalism puts together the concept of mul-
timode relaxation and the theory of translational corre-
lation functions [12± 16]. The results potentially contain
more information on solute± solvent interactions, since
the analysis deals with coupled spin systems rather than
single-spin molecules. Rich spin context provides access
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to ® ne details of molecular dynamics, such as roto-
translational cross-correlation functions [7] discussed
in what follows. At the same time, the interpretation
of traditional experiments on coupled relaxation is
improved, since external relaxation is accounted for
accurately in this approach.

While generalized theory of intermolecular relaxation
is available, the examples of its application are rare, and
this is not accidental. The analysis employing a complete
set of spin density matrices faces serious challenges. One
is the large number of relaxation coe� cients, and the
size of the ensuing equations. Another problem is the
large number of dynamic and structural parameters
involved. Thus, it is desirable to ® nd a simpli® ed
description, more compact than a full system of Red® eld
equations for a multicomponent solution, yet more pre-
cise than a reduced system relying on the ERF model.

Such a description has been introduced by two of us
under the name c̀oupled solute solvent relaxation’
(CSSR) [17]. Similar to the ERF model, it focuses on
one particular spin system, conventionally that of the
solute (assuming that the details of solvent relaxation
are of no interest), and is only slightly more di� cult
technically. In essence, the CSSR approach assumes
that solvent can be represented by a single spin polar-
ization, regardless of how complex is the composition of
its spin system.

So far the CSSR model has been introduced ad hoc,
with no appropriate substantiation. Such a substantia-
tion certainly is needed, since in this approach we ignore
the complex character of solvent relaxation, and even
part of magnetization transfer between solute and sol-
vent. In the present paper we intend to show that CSSR
approximation describes intermolecular DD relaxation
adequately.

A good example is provided by the NMR studies of
small molecules dissolved in liquid crystals [18].
Intermolecular DD interactions provide important
relaxation mechanism in such systems. Consequently,
the question arises as to how to take the intermolecular
relaxation into account. An attempt to construct a full-
scale system of Red® eld equations, embracing dozens of
coupled protons in a liquid crystal, seems counterpro-
ductive. On the other hand, the ERF model is less than
perfect (in particular, it runs into di� culties interpreting
intermolecular relaxation rates obtained for hydro-
genated liquid crystals versus deuterated [19± 22]). In
these circumstances, CSSR seems to be a possible
answer to the problem. In this approach, a single e� ec-
tive relaxation rate is assigned to the liquid crystal 1H
(selective investigation of the proton relaxation is im-
possible since the spectra of liquid crystals are broad-
ened). It also utilizes intermolecular NOEs, that can be

measured directly and allow for the model interpreta-
tion [23± 25].

In section 2 we consider a complete system of Red® eld
equations for a multicomponent mixture as presented in
the operator basis (in Liouville space). It is shown that
certain intermolecular contributions can be emulated
within a framework of the ERF model. The remaining
intermolecular contributions, that cannot be reproduced
using the ERF Hamiltonian, represent relaxation coup-
ling between solute and solvent. Such coupling is poss-
ible only between those solute and solvent modes that
contain a one-spin part. This rigorous result clari® es the
scope and the structure of intermolecular coupling in a
full relaxation matrix.

The CSSR approximation can be put to a most thor-
ough test by examining the systems that contain tightly
coupled solvent spins. Section 3 describes full relaxation
matrices for AX-AB and AX-ABX type mixtures, with
an eye on the elements that are neglected in the CSSR
approximation. Evaluation of the Red® eld matrix
requires knowledge of roto-translational cross-correla-
tion functions. These are calculated in section 4 based
on a simple model of spherical molecules with o� -centre
spin sites. Section 5 compares solute relaxation curves
produced on the basis of full Red® eld matrices and
truncated CSSR and ERF type matrices, so that the
accuracy of the CSSR approximation can be judged.

2. Equations of multimode spin± lattice relaxation in
mixtures

With the increasing sophistication of relaxation
experiments, a variety of auto- and cross-correlation
contributions have been brought to the attention of
researchers. There is a tendency to believe that many
more examples of unusual relaxation coupling and
exotic cross-correlations can be found. Solutions of
proteins may serve as an illustration for this point. It
has been recognized [26] that protein folding and stabil-
ity, as well as binding and catalytic functions, are deter-
mined largely by interactions with solvent water. It
remains unclear, however, whether regular NOE repre-
sents the only channel for magnetization transfer from
water to protein, or whether magnetization can also ¯ ow
directly into two- or three-spin orders of protein. It
further remains to be seen if such e� ects have any
impact on the results of state-of-the-art experiments
that measure relaxation of multispin modes throughout
the polypeptide chain [27].

Under these circumstances, general consideration can
be helpful in determining what sort of relaxation coup-
ling is possible, or impossible, without going into details
of a spin system. This type of analysis is carried out here
for intermolecular DD interactions. In particular, it
demonstrates that intermolecular relaxation can couple
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only those solute and solvent modes that contain one-
spin components, and the coupling comes from DD
autocorrelations. It further helps to de® ne the simpli® ed
approach to intermolecular relaxation.

Consider a multicomponent liquid in which one of the
components is represented by Nc molecules of the sort c
(di� erent molecules of the same sort are denoted c
and ~c ). Each of these molecules bears m c magnetic
nuclei with spins 1/2. Consideration is limited to spins
1/2 since the relaxation of higher spins is dominated by
the quadrupolar mechanism which dwarfs any inter-
molecular contribution. The static spin Hamiltonian
for each of these molecules includes Zeeman and
scalar coupling terms [28]. Corresponding Liouville
space is spanned with basic operators Q c

m , that are
normalized in standard fashion, Trc {Q c ²

m Q c
n } = d mn,

where Trc is the trace over spin space of a single
molecule c . The part of this basis relevant for spin±
lattice relaxation consists of the modes commuting
with the static spin Hamiltonian.

In existing theories [7± 9, 29, 30], the spin density
matrix of the entire system is represented as a direct
product of molecular density matrices, which is reduced
to the sum of the constituent density matrices by use of
the high temperature approximation. This is tantamount
to the assumption that intermolecular spin correlations
can be neglected in the relaxation analyses of liquids [29,
31]. One known exception is intermolecular coherences
induced by the dipolar ® eld [32, 33]. This phenomenon
has been attributed to the small (due to symmetry and
molecular motion), yet observable, residual constant
part of DD interaction. Jeener, Vlassenbroek and
Broekaert [33] conclude that any resulting intermol-
ecular correlations can be neglected in relaxation coe� -
cients, and accounted for through a static Hamiltonian
within the framework of standard Red® eld theory. Our
presentation does not address this special e� ect.

Based on these premises, the equation of motion for
the spin density matrix is obtained including intermole-
cular e� ects. The analysis, carried out previously in a
basis derived from the Hilbert space wavefunctions,
can be reformulated conveniently in the operator basis
embedded in the Liouville space. The equations
describing spin± lattice relaxation in mixtures, and
explicit results for relaxation coe� cients originating
from intermolecular dipole± dipolar interactions, are
given in what follows.

The hypothesis of statistical independence of molecu-
lar spin systems in solution (equivalent to neglect of any
intermolecular spin correlations) and the high tempera-
ture approximation reduce Liouville space [28] to the
one spanned with operators V c

m = å Nc Q c
m , where the

sum is taken over all molecules of this particular sort,

and Q c
m are (identical in form) operators, each referring

to spins of one particular c -sort molecule.
Non-equilibrium states of the spin system, developed

over the course of a relaxation experiment, are charac-
terized in full by a set of modes v c

m , obtained from V c
m by

taking the trace over the spin density matrix. Since the
spin density matrix of an entire system is given by a sum
of molecular spin density matrices, vc

m can be expressed as:

vc
m = Nc

Trc {( q
c - q

c
eq)Q c

m}
Trc {q c } = Nc

Tr c {( q c - q
c
eq)Q c

m}
2m c ,

(1)
where q

c and q
c
eq are non-equilibrium and equilibrium

spin density matrices of the molecule c . The term
`magnetization modes’ is normally associated with the
expectation values, such as vc

m . Following Canet [34], we
shall also employ this term for the components of the
operator basis, such as Q c

m .
To this end, the master equation can be evaluated,

giving rise to a system of coupled equations. For the
purpose of our discussion it is su� cient to consider
the binary mixture, comprising molecules of sort z and
h (extension to multicomponent solutions is obvious).

d
dt

vz
m = - R

( z ,z )
mk v z

k - R
( z ,h )
ml vh

l ,

d
dt

vh
n = - R

( h ,z )
nk vz

k - R
( h ,h )
nl v h

l . (2)

This is a generalization of Solomon’s results for multi-
mode relaxation in binary solutions. We plan to con-
sider the relaxation coe� cients R

( z ,z )
mk that couple spin

modes belonging to the same molecule z , and R
( z ,h )
ml ,

responsible for the coupling between z and h modes.
The relaxation coe� cient R( z ,z )

mk contains an intra-
molecular contribution, along with intermolecular
terms arising from the interaction between like and
unlike molecules:

R
( z ,z )
mk = Trz {Q z ²

m
^̂Rintra

z Q z
k}

+ Nz
Trz ~z {Q z ²

m
^̂Rinter

z ~z (Q z
k + Q

~z
k)}

2m z

+ Nh
Tr z h {Q z ²

m
^̂Rinter

z h Q z
k}

2m h
. (3)

Here ^̂Rinter
z ~z represents the Red® eld superoperator for

intermolecular relaxation of like molecules, where dif-
ferent molecules of the same sort are denoted as z and

~z .
Formal notation of ^̂Rinter

z ~z implies lattice average and
double commutator over spin variables, and Trz ~z is
equivalent to Trz Tr~z . Similarly ^̂Rinter

z h represents relaxa-
tion of z by molecules of the di� erent sort h , and ^̂Rintra

z
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symbolizes intramolecular relaxation. This latter has
been studied in great detail (see [5] and [34] for review)
and will not be discussed here. Further discussion is
focused on intermolecular terms.

Relaxation coe� cients involve spectral densities of
time-dependent correlation functions evaluated at eigen-
frequencies determined by the static spin Hamiltonian.
The combinations of Larmor frequencies are retained in
the argument of spectral densities. Small shifts, such as
chemical and scalar coupling shifts, can be dropped,
since correlation times of molecular motion in liquids
typically are small enough to satisfy ( x i - x iÂ

)¿c ! 1.
De® nitions of spectral densities appearing in the lit-

erature di� er by a constant factor. The one that is used
here is

Jis,iÂ sÂm ( x ) = 1
2 ò

¥

- ¥
e- i x tgis,iÂ sÂm (t) dt, (4)

where i, iÂ label spins belonging to one molecule, s, sÂ
label those belonging to the other molecule, and
gis,iÂ sÂm (t) is a correlation function for intermolecular
dipole± dipolar interactions.

gis,iÂ sÂm (t) = ò ò dris driÂ sÂ
D

(2)*

0m ( X is)D
(2)
0m( X iÂ sÂ

)

´ P(ris, t|riÂ sÂ
)f0(riÂ sÂ

) /r3
isr

3
iÂ sÂ

. (5)

The conditional probability P(ris, t|riÂ sÂ
) and the pair

distribution function f0(riÂ sÂ
) are the same as described

by Hwang and Freed [12].
Using a spherical tensor representation for the dipole±

dipolar Hamiltonian and a Liouville space formulation
of the Red® eld theory [28], one can compute the last
term in equation (3), obtaining

2- m h Nh Trz h {Q z ²
m

^̂Rinter
z h Q z

k}

= å
m z

i,iÂ = 1 å
m h

s= 1

5
4DisDiÂ s

nh

´ å
1

p=- 1 å
1

q=- 1

1 1 2

p q - (p + q)( ){ }
2

´ Trz I
(1)
ip ,Q z

m[ ] Q z
k, I

(1) ²

iÂ p[ ]{ }Jis,iÂ sp+ q (px i + qx s), (6)

where the ® rst summation is over all pairs of spins from
molecule z , the second summation over all spins of
molecule h , and the third over spherical components
of the spin operator I

(1)
ip . Contributions from each

pair of dipole± dipolar interactions include molecular
density, nh = Nh /V , dipolar interaction constants,
Dis = - ê ê ê6Ï (¹0 /4p )hg i g s , and Wigner 3-j coe� cients.
The property of traceless spherical tensors

Tr I(l)
ip{ } = 0, l > 0 (7)

has been used to compute Trh and arrive at the above
results.

It is not di� cult to verify that contribution (6) can be
mimicked by use of an ERF Hamiltonian [28]in place of
the dipole-dipolar Hamiltonian. With the relaxation
superoperator

^̂
Rinter

z h based on the ERF Hamiltonian
instead of DD the contribution (6) can be recomputed,
yielding

2- m h Nh Trz h {Q z ²
m

^̂Rinter
z h Q z

k}

= å
m z

i,iÂ = 1

g i g iÂ å
1

p=- 1

Trz I(1)
ip ,Q z

m[ ] Q z
k,I

(1) ²
iÂ p[ ]{ } Ji,iÂp (px i).

(8)

The new spectral density Ji,iÂp ( x ) appearing here charac-
terizes the time-dependent correlation between random
® elds at the sites of spins i and iÂ :

Ji,iÂm ( x ) = 1
2 ò

¥

- ¥
e- i x t k B*

im(t)BiÂ m
(0) l dt. (9)

In this expression Bim are spherical components of the
random ® eld vector, re¯ ecting the net e� ect of spins s on
spin i.

Equations (8) and (9) can be compared with the
results obtained previously for DD relaxation and
given in equations (4) and (6). Comparison reveals
that all DD contributions are matched by the ERF con-
tributions. Moreover, they can be equated, leading to

k B*
ip(t)BiÂ p

(0) l = å
m h

s= 1

15
2

¹0

4p( ) 2
h2 g 2

s nh

´ å
1

q=- 1

1 1 2

p q - (p + q)( ){ }
2

´ gis,iÂ sp+ q (t)eiqx st. (10)

It is worth noting that this result quanti® es the relation
between ERF random ® elds and genuine intermolecular
DD correlation functions. In summary, intermolecular
contribution in R

( z ,z )
mk can be modelled successfully by use

of the ERF. This conclusion is true equally for inter-
molecular interactions between like molecules, the
second term in equation (3), as can be shown by similar
calculations.

Next, let us consider relaxation coe� cients R
( z ,h )
ml

corresponding to mutual relaxation of di� erent species.
At this point, note that Q z

m can be represented as a
linear combination of operator products I(1)

ip I(1)
iÂ q

. . . (for
example, see equations (14) and (16) below). Modes are
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classi® ed in n-quantum manfolds according to
p + q + . . .value.

Since the dipole± dipolar Hamiltonian is bilinear in
spin operators, it follows from the de® nition of R

( z ,h )
ml

and property (7) that only one-spin and two-spin prod-
ucts give rise to non-zero relaxation coe� cients. Three-
spin, or higher, products contain spin operators I(1)

ip that
cannot be matched by spin operators in the
Hamiltonian, and therefore result in zero trace. By the
same reasoning, ® rst-rank relaxation mechanisms fail to
contribute to R

( z ,h )
ml . Furthermore, the double com-

mutator in ^̂Rinter
z h can be simpli® ed using commutation

relations:

I
(1)
ip I

(1)
i Â q

, I(1)
ir I

(1)
iÂ s[ ] = I

(1)
ip I

(1)
ir I

(1)
iÂ q

, I(1)
iÂ s[ ] + I

(1)
ip ,I(1)

ir[ ]I
(1)
iÂ s

I
(1)
iÂ q

,

I(1)
ip ,I(1)

iq[ ] = (- 1)q+ p ê ê ê6Ï 1 1 1

- (p + q) q p( ) I(1)
i,p+ q,

(11)
based on the usual momentum commutation rules. After
simpli® cation, it can be seen that only single-spin opera-
tors give rise to non-zero relaxation coe� cients, and this
is due to intermolecular DD autocorrelation. All other
remaining possibilities are ruled out by the same argu-
ment that the presence of a lone spin operator results in
zero trace (equation (7)). The only non-zero contribu-
tion comes from the intermolecular DD mechanism:

R( z ,h )
ml = 2- m z Nz Trz h {Q z ²

m
^̂Rinter

z h Q h
l }, (12)

and this is di� erent from zero i� both Q z
m and Q h

l
include single-spin operators. In view of these observa-
tions, R

( z ,h )
ml is nothing other than a linear combination

of standard DD cross-relaxation rates:

C = 1
12D

2
is(6Jis,is

2 ( x i + x s) - Jis,is
0 ( x i - x s)). (13)

Finally, according to the preceding discussion, these
relaxation coe� cients cannot be reproduced by use of
the ERF model since the latter is based on the ® rst-
rank Hamiltonian. This is a manifestation of the main
shortcoming of the ERF model: its failure to reproduce
the intermolecular NOE.

General results presented here will be applied to
speci® c spin systems in the following sections.

3. Relaxation in AX± AB and AX± ABX mixtures

A general framework for treating spin± lattice relaxa-
tion in mixtures is presented above. However, in experi-
mental practice, a compact formulation accounting for
solvent induced relaxation is desirable. As shown above,
direct relaxation coupling between solute and solvent
occurs only in the context of one-spin operators. This

suggests that of all solvent modes Q h
k only single-spin

polarizations are important for solute relaxation (the
hypothesis, introduced under the name of CSSR).

The CSSR approach is aimed primarily at complex
solvents, such as liquid crystalline solvents. The exact
treatment does not seem feasible in this case due to
the size of the solvent spin system and the multitude
of structural and dynamic parameters, such as spin
coordinates and correlation times of local motions.
Even for relatively simple solvents, that can be treated
using the exact theory, the CSSR approach proves
useful since it allows us to focus on solute relaxation
and avoid tedious measurements of solvent relaxation
(the details of solvent relaxation usually are of little
interest).

Before the CSSR approach can be used in practice, it
has to be tested, since so far there is no reason to believe
that it would provide for the satisfactory approximation
(except for the intuitive insight). In fact, it has not even
been con® rmed that the CSSR o� ers an improvement
over the ERF model. The only way of verifying that is
by investigating simple model systems that lend them-
selves for the exact treatment.

Pursuing this strategy, we examine two simple binary
mixtures, with solute represented by AX and solvent by
AB or ABX spin systems. The relaxation behaviour of
the solute is at the centre of the study. The notations ab,
abx are adopted for solvent in what follows in order to
discriminate between spins in solute and solvent, thus
eliminating the need for a molecular label z . In calcula-
tion of relaxation rates A and a are treated as spins of
di� erent sorts, as well as X and x. As an argument of
spectral density x a and x b are interchangeable according
to the remark made in section 2. Operator modes
pertaining to spin± lattice relaxation in AX± ab are

Q1 = IAz, Q2 = IXz, Q3 = 2IAzIXz

Q4 = 1
Ï 2(Iaz + Ibz), Q5 = 2IazIbz,

Q6 = 1
Ï 2(cos u (Iaz - Ibz) + sin u (Ia+ Ib- + Ia- Ib+ )), (14)

where u is a strong coupling parameter for the ab
system, tan u = Jab /( x a - x b).

In the CSSR approach, only the total spin polariza-
tion Q4 is retained of three ab modes, the assumption
being tantamount to the equivalence of a and b spins.
The question remains if a and b can be treated as
equivalent, without compromising the analysis of AX
relaxation.

The calculation of spin± lattice relaxation coe� cients
(equations (3), (12)) has been performed in full,
including intermolecular relaxation of like molecules,
without making any assumptions regarding relative
concentrations of the components. The result for the
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intermolecular relaxation of ab molecules and the
intermolecular relaxation between AX and ab species
are tabulated below. The relaxation coe� cients are
expressed in terms of standard combinations of spectral
densities. The combinations arising from DD interac-
tions between spins i and s, and iÂ and sÂ (where iÂ
and sÂ may or may not refer to the same spins as i and
s), His

DD - HiÂ sÂDD, are:

T = 1
12DisDiÂ sÂ

(Jis,iÂ sÂ
0 ( x i - x s) + 3Jis,iÂ sÂ

1 ( x i)

+ 6Jis,iÂ sÂ
2 ( x i + x s)),

P = 1
12DisDiÂ sÂ

(4Jis,iÂ sÂ
0 (0) + 6Jis,iÂ sÂ

1 ( x s)), (15)

plus cross-relaxation rate C, quoted in equation (13).
Note that the order of spin labels in His

DD - HiÂ sÂDD, as
they appear in tables 1 and 2, is meaningful: it deter-

mines frequencies in T and P in accordance with the
above convention. Mirror pairs of cross-correlations,
His

DD - HiÂ sDD and HiÂ sDD - His
DD, are summed up and

placed in one column, with no distinction made between
x a and x b in the argument of spectral densities.
Intermolecular interactions involving spin X are omitted
from table 2, but their contribution can be recovered by
noting that operator modes (14) are symmetrical with
respect to A and X. It is common to ignore this con-
tribution when X is identi® ed with 13C or 15N. The
results for ab relaxation are in agreement with previous
calculations by Khazanovich and Zitserman [7] in the
extreme narrowing limit, except for the sign of R16 .

A remarkable feature is the appearance of inter-
molecular DD cross-correlations [7, 35] in tables 1 and
2 (in the ® nal columns). They appear here in the context
of one-spin and two-spin orders unlike familiar intra-
molecular DD cross-correlations in weakly coupled
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Table 1. Relaxation matrix elements for spin± lattice relaxation in an AB liquid: contributions from intermolecular DD interac-
tions. Complete expressions for Rij are obtained by multiplication of all entries by a factor n2 , where n2 is the concentration of
the ab species, and summation through the respective rows. Only non-zero elements, Rij j > i, are listed in view of the Rij = Rji
symmetry. The notations are explained in the text (equations (13) and (15)).

Ha~a
DD - Ha~a

DD Hb~b
DD - Hb~b

DD Ha~b
DD - Ha~b

DD Ha~a
DD - Hb~a

DD Ha~b
DD - Hb~b

DD

R44
1
2 (T + C) 1

2 (T + C) T + C
R46

1
2 cos u (T + C) - 1

2 cos u (T + C)
R55 T T 2T
R56 - Ï 2 sin u T - Ï 2 sin u T
R66

1
2 (T + cos2

u C + sin2
u P) 1

2 ( T + cos2
u C + sin2

u P) T - cos2
u C + sin2

u P - sin2
u P - sin2

u P

Table 2. Relaxation matrix elements for spin± lattice relaxation in an AX± ab mixture: con-
tributions from intermolecular DD interactions between AX and ab. Intermolecular
interactions involving spin X are excluded. Only non-zero elements, Rij j > i, are listed.
O� -diagonal elements that couple AX and ab blocks are related by R41 = (n2 /n1)R14,
R61 = (n2 /n1)R16, and the rest of the matrix displays Rij = Rji symmetry.

HAa
DD - HAa

DD HAb
DD - HAb

DD

R11 n2T n2T

R14 n1
1

Ï 2
C n1

1
Ï 2

C

R16 n1
1

Ï 2
cos u C - n1

1
Ï 2

cos u C

R33 n2T n2T

HaA
DD - HaA

DD HbA
DD - HbA

DD HaA
DD - HbA

DD

R44 n1
1
2 T n1

1
2 T

R46 n1
1
2 cos u T - n1

1
2 cos u T

R55 n1T n1T

R56 - n1 Ï 2 sin u T

R66 n1
1
2 (T + sin2

u P) n1
1
2 (T + sin2

u P) - n1 sin2
u P



systems that manifest themselves through three-spin
orders. Intermolecular cross-correlation functions are
expected to exist due to spatial correlation in the
motion of spins a and b involved in DD interaction
with given external spin. These quantities provide us
with the re® ned measure for what has been referred to
as `cross-correlation of external random ® elds’ and has
been investigated within the scope of ERF model [19,
20]. The possibility of pursuing the e� ects of intermole-
cular DD cross-correlations in experiments over pure
AB liquids has been pointed out by Vold and Vold [35].

By applying the CSSR approach to the system in
question the complete composite basis (14) is reduced
to Q1 ± Q4 modes. In doing so, we neglect the relaxation
transfer through R16 and R46 (see ® gure 1). The former
is due entirely to intermolecular DD interactions, as
demonstrated in section 2, while the latter also may
involve contributions from ® rst-rank mechanisms. Of
the two, only R16 a� ects AX spin system directly.

As seen from table 2, the magnitude of R16 is deter-
mined by di� erences in the Aa and Ab dipolar relaxa-
tion that can be attributed to inequivalent locations of a
and b spins within a molecule. In the case when a and b
are topologically equivalent R16 becomes zero, and the
same is true for the dipolar part of R46 . By topological
equivalence we mean that molecule allows for the sym-
metry operation that translates a into b (two spins still
have di� erent chemical shifts due to isotopic substitu-
tion, e.g., one is attached to 13C, and the other to 12C).
While little can be done about R16, the magnitude of R46

can be boosted by adding a third spin to the ab system.
This third spin, x, placed in the proximity of a and well
removed from b, produces a tangible di� erence in a and

b relaxation that results in enhanced R46 transfer. This
sort of qualitative reasoning led us to examine an abx
(ABX) system in the role of solvent.

The abx spin modes that need to be added to Q1 - Q3

are as follows:

Q4 = 1
2(Iaz + Ibz), Q5 = Ï 2IazIbz,

Q6 =
1

Ï 8
(Ex + 2Ixz){cos u + (Iaz - Ibz)

+ sin u + (Ia+ Ib- + Ia- Ib+ )},

Q7 =
1

Ï 8
(Ex - 2Ixz){cos u - (Iaz - Ibz)

+ sin u - (Ia+ Ib- + Ia- Ib+ )},

Q8 =
1

Ï 2
Ixz, Q9 = (Iaz + Ibz)Ixz,

Q10 = Ï 8IazIbzIxz. (16)

where tan u 6 = Jab /( x a - x b 6 1 /2(Jax - Jbx)), and Ex

is the spin x operator identity. Analogous to the ab
mode Q6 are modes Q6 and Q7, that correspond to
orientation of x up and down respectively (Ex 6 2Ixz is
equivalent to projection 2|6 l k 6 |x). In practice, simple
product operators can be employed to generate relaxa-
tion coe� cients. Subsequently, linear transformation
can be used to form the relaxation matrix in the
appropriate basis Q1 ± Q10 .

Of all relaxation terms only intermolecular AX± abx
relaxation is detailed here. Complete expressions for
relaxation coe� cients, including the intramolecular
part, can be found on the World Wide Web site at
http://bcs.chem.mcgill.ca/~ nikolai. As discussed above,
the coupling between spin polarization Q4 and multispin
modes Q6 and Q7 is due to the di� erence in ax and bx
relaxation rates and, additionally, to intramolecular DD
cross-correlations. Substantial relaxation coupling in the
solvent spin system provides more stringent conditions
for testing the CSSR model.

Diagonal elements in the abx relaxation matrix match
their counterparts in the ab matrix, as expected. At the
same time, o� -diagonal elements within the abx block
di� er by a numerical factor (tables 2 and 3). The reason
is that vab

4 , vab
5 , and vab

6 all correspond to the amounts of
magnetization di� erent from vabx

4 , vabx
5 , and vabx

6 , and
therefore are connected through di� erent Rij elements.
Cross-relaxation elements (12) render the matrix of
relaxation coe� cients asymmetric (see caption to
tables 2 and 3). Simple linear transformation with a
diagonal transformation matrix can be applied to
equation (2) in order to symmetrize the relaxation
matrix prior to a diagonalization routine.
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Figure 1. Structure of the relaxation matrix for an AX-ab
mixture, including intramolecular DD interactions, inter-
molecular DD interactions between both like and unlike
molecules (except those involving spin X), and CSA inter-
actions for spins A and X. One-step ( ) and two-step
( ) magnetization transfer from the solvent spin sys-
tem to the solute are shown.



The results presented in this section can be used for
computations after choosing the model to generate
correlation functions (5). Most challenging is the
calculation of roto-translational cross-correlations
(® nal columns in tables 1± 3) which must take into
account inequivalent positions of spins in a molecule.
The model allowing for analytical calculations consists
of a system of spherical molecules with o� -centre spin
sites involved in Brownian translational and rotational
di� usion [36]. The eccentricity parameters describing
o� -centre spin sites can be used to specify inequivalent
locations for a, b, and x. Autocorrelation functions were
calculated for this model by Ayant et al. [14] and their
treatment can be extended to cross-correlations as
described in the following section.

4. Calculations of intermolecular correlation functions

Intermolecular correlation functions for spins in o� -
centre position were investigated ® rst by Hubbard [36]
using a Taylor series expansion for D

(2)
0m( X r) /r3.

Generalization to a cross-correlation function (equa-
tion (5)) was done by Khazanovich and Zitserman
[7]. The theory of intermolecular relaxation has been
improved since [12, 13], and a complete solution in a
form of series has been found by Ayant et al. [14]. The
derivation presented in the latter work is extended here
for intermolecular cross-correlations. Autocorrelation
functions can be obtained as a limiting case from our
results.

The system under consideration consists of spherical
molecules undergoing free rotational and translational
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Table 3. Relaxation matrix elements for spin± lattice relaxation in an AX± abx mixture: con-
tributions from intermolecular DD interactions between AX and abx. Intermolecular
interactions involving spins X and x are excluded. Only non-zero elements, Rij j > i,
are listed. O� -diagonal elements that couple AX and abx blocks are related by
R41 = 1

2(n2 /n1)R14 , R61 = 1
2(n2 /n1)R16, R71 = 1

2(n2 /n1)R17, where the factor of 1/2 is due
to di� erent dimensionality of the two spin systems. The rest of the matrix possesses
symmetry.

HAa
DD - HAa

DD HAb
DD - HAb

DD

R11 n2T n2T

R14 n1C n1C

R16 n1
1

Ï 2
cos u + C - n1

1
Ï 2

cos u + C

R17 n1
1

Ï 2
cos u - C - n1

1
Ï 2

cos u - C

R33 n2T n2T

HaA
DD - HaA

DD HbA
DD - HbA

DD HaA
DD - HbA

DD

R44 n1
1
2 T n1

1
2 T

R46 n1
1

2Ï 2
cos u + T - n1

1
2Ï 2

cos u + T

R47 n1
1

2Ï 2
cos u - T - n1

1
2Ï 2

cos u - T

R55 n1T n1T

R56 - n1 sin u + T

R57 - n1 sin u - T

R66 n1
1
2 (T + sin2

u + P) n1
1
2 (T + sin2

u + P) - n1 sin2
u + P

R69 n1
1

2Ï 2
cos u + T - n1

1
2Ï 2

cos u + T

R77 n1
1
2 (T + sin2

u - P) n1
1
2 (T + sin2

u - P) - n1 sin2
u - P

R79 - n1
1

2Ï 2
cos u - T n1

1
2Ï 2

cos u - T

R99 n1
1
2 T n1

1
2 T

R10,10 n1T n1T



di� usion, these two forms of motion are assumed to be
independent. A hard sphere model pair distribution
function is used. One of the molecules bears two spins,
I and IÂ , their sites speci® ed by radial vectors ½

I and ½
IÂ

with the angle b between them. Both I and IÂ interact
via the DD mechanism with the external spin S residing
o� -centre on the other molecule, its site being speci® ed
by ½

S ( ® gure 2). Due to the spherical symmetry of the
problem the correlation function gIS ,IÂ Sm (t) does not
depend on the index m.

Following [14], it is convenient to introduce the
vectors characterizing rotation in the molecular frame:
½

IS = ½
I - ½

S , ½
I Â S = ½

IÂ - ½
S . Using a di� erential

representation for spherical functions and invoking
Legendre polynomials, one can perform the separation
of rotational and translational variables in the correla-
tion function.

gIS ,I Â S (t) = 4p 2 å
¥

l,l Â = 0 å
l

m= - l å
l Â

m Â =- l Â

´ 1
(2l + 1)(2lÂ + 1) Glm,l Â m Â

Klm,l Â m Â ,

Glm,l Â m Â
(t) =

¶ 2

¶ Z2
0

Y *
l+ 2,m (R0)

Rl+ 1
0

¶ 2

¶ Z2
Y lÂ + 2,m Â

(R)
Rl Â + 1á ñ ,

Klm,l Â m Â
(t) = k [q IS

0 ]l Y l,m(½
IS
0 )[q I Â S]l Â Y *

lÂ ,mÂ
(½

I Â S ) l . (17)

The quantities [q IS]l Y l,m(½
IS ) in the rotational correlator

Klm,l Â m Â
(t) obviously are transformed as spherical har-

monics under rotations. On the other hand, the
Hamiltonian of free Brownian di� usion is invariant
under rotations of the coordinate system. Thus, the cor-
relator Klm,l Â mÂ

(t) is non-zero only when l = lÂ , m = mÂ ,
and, in addition, does not depend on the value of m. The
most detailed account of underlying symmetry consid-
erations, that are in e� ect for all isotropic liquids, has
been given by Hubbard [37]. The correlator
kl(t) = Kll,ll(t) can be calculated along the lines of [14]
yielding

kl(t) = 4p (2l + 1)! å
l

¸,¸Â = 0

´
1

(2¸ + 1)!(2¸Â + 1)![ ]
1/2

´ 1
(2(l - ¸) + 1)!(2(l - ¸Â ) + 1)![ ]

1/2

´ [q I]¸[q I Â ]¸Â [q S ]2l- ¸- ¸Â k Y¸,¸(½
I
0)Y *

¸Â ,̧ Â
(½

I Â ) l
´ k Y l- ¸,l- ¸(½

S
0 )Y *

l- ¸Â ,l- ¸Â
(½

S ) l . (18)

The only di� erence here with the result obtained
by Ayant et al. is the presence of [q I]¸[q IÂ ]¸Â in
place of [q I]¸+ ¸Â and of the cross-correlation function
k Y¸,̧ (½

I
0)Y *

¸Â ,̧ Â
(½

I Â ) l of molecular rotation in place of
the corresponding autocorrelation function. Rotational
cross-correlation functions for Brownian di� usion of the
spherical top [11, 38] can now be used:

k Y¸,̧ (½
I
0)Y *

¸Â ,̧ Â
(½

I Â ) l = d ¸,¸Â d
(¸)
00 ( b ) 1

4p
exp (- t /tI

¸)

= d ¸,¸Â
1
4p

P¸(cos b ) exp (- t /tI
¸),

¿
I
¸ = (¸(¸ + 1)DI

rot)- 1, (19)

where P¸(cos b ) is a Legendre polynomial, DI
rot is

the coe� cient of rotational di� usion of the molecule
containing I and IÂ , and ¿

I
2 is further referred to as

¿
I
rot. This renders kl(t) in its ® nal form. It may be pointed

out that rotational correlator (18) can be calculated for
more elaborate types of motion, e.g., using the `model-
free approach’ [39]for I and IÂ rotating around a slowly
reorienting axis. The other correlator involved in
equation (17), Glm,l Â m Â

(t), describes purely translational
correlation as associated with the intermolecular vector
R, and can be calculated along the lines of the general
theory [12± 14]. Finally, we summarize the expressions
for the spectral density of the cross-correlation
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Figure 2. Schematic representation of the molecular
geometry used in calculations of intermolecular
DD cross-correlation functions.



function:

JIS ,I Â Sm ( x ) =
p

30dDIS
transl å

¥

l= 0

(2l + 4)!

´ å
l

¸= 0

1
(2¸ + 1)!(2(l - ¸) + 1)!

q
I

d
q

IÂ

d[ ]
¸

´ P¸(cos b ) q
S

d[ ]
2(l- ¸)

Al,̧ ( x ),

Al,¸( x ) = Re
1

z2
l,¸

1
2l + 3

- l + 3
z2

l,¸[{
´ 1 +

l + 3
zl,¸

Kl+ 5/2(zl,¸)
Kl+ 3/2(zl,¸)( )

- 1 ù
û
ü
ý
þ

,

zl,¸( x ) = ¿
IS
transl i x +

1
¿I

¸

+
1

¿S
l- ¸( )[ ]

1/2

(20)

where DIS
transl is the coe� cient of relative translational

di� usion, DIS
transl = DI

transl + DS
transl, ¿

IS
transl is the corre-

sponding correlation time, ¿
IS
transl = d2 /DIS

transl , and d is
the distance of closest approach equal to the sum of
molecular radii, d = hI + hS .

A natural de® nition of eccentricity, e
I = q

I /hI , is used
in consequent analyses. The distance d of the closest
approach can be viewed as a ® tting parameter absorbing
the de® ciencies of the model such as: absence of pair
correlation e� ects, approximation of molecular shapes
by spheres, etc. The functions Kt (x) are expressed
through the ® nite series [13]

Kt (x) =
p

2x( ) 1/2

´ exp(- x) 1 + å
t - 1 /2

q= 1

P q
p= 1(4t

2 - (2p - 1)2)
q!(8x)q( ) .

(21)

The autocorrelation function [14] is recovered automa-
tically by taking b = 0, q

I = q
I Â in equation (20). It may

be noted that the presence of P¸(cos b ) scales down the
eccentricity e� ects and may eliminate them altogether,
resulting in lower values of the spectral density than that
corresponding to a central location of spins. It also
modulates series in such a manner that vanishing
terms can appear at any point, before the cut-o� level
is reached. The part of the series corresponding to the
® rst three terms in l has been computed in reference [7]
using Abragam’ s results [11] for translational correla-
tion functions.

The dependence of the spectral density on the angle b

is illustrated using the example of a hypothetical mole-
cule with e

I = e
IÂ = 0.8. For real molecules the angle b

most often is small, but not necessarily so (for instance,
b = p for the pair of acetylene protons). As has been
pointed out, the increase in b corresponds to the
r̀eversal’ of eccentricity e� ects. Figure 3 shows that cor-
rections become increasingly important with increase in
x ¿transl. This is in agreement with previous work [14],
suggesting that eccentricity e� ects assume a greater
role at higher frequencies. At low frequencies, the spec-
tral density zooms in on extended time intervals, long
enough for eccentricity e� ects to be averaged out by fast
molecular rotation.

5. Exact and approximate approach to computations

of relaxation curves

The examples of AX± ab and AX± abx solutions, con-
sidered in section 3, are now used to test the quality of
the CSSR approximation. Both ab and abx solvents are
represented by a single proton polarization Q4

(equations (14) and (16)) in the CSSR approach. The
relaxation coupling within the solvent spin system is
therefore ignored, as well as direct solvent± solute coup-
ling R16 (and R17 in case of abx). It is this solvent± solute
coupling that will be discussed here ® rst.

One useful parameter that helps to estimate the e� -
ciency of R16 coupling can be formulated using a two by
two matrix comprising R11 , R16, R61, and R66. The
extent of coupling can be analysed by evaluating the
change in decay rates caused by R16, and the degree of
mixing between the two resulting exponentials.
However, with two factors to be taken into account,
this approach is ambiguous. Instead, a useful criterion
can be borrowed from the theory of two-dimensional
(2D) NOE experiments. We refer to a ® ctitious 2D
NOE map corresponding to our two by two matrix,
and estimate the maximum cross-peak amplitude as
related to maximum amplitude of auto-peak, I16 /I1

[40]. This approach has the advantage of being visua-
lized easily and supplies us with a well de® ned measure
for the transfer through R16 .

The analysis of transfer occurring within the two by
two matrix can be carried out analytically [40] and an
optimal mixing time can be determined for cross-peak
buildup (maximum intensity of axial peak is simply
v1(0)). We summarize the resulting expressions below:

¹
[ij]
i = Iij /Ii =

Rij

¸-

¸-
¸+( )

¸+
¸+ - ¸- vj(0)

vi(0) ,

6̧ = (1 /2) (Rii + Rjj) 6 (Rii - Rjj)2 + 4Rij Rji[ ]
1/2{ },

(22)
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where vk(0) are initial conditions after the pulse (or
preparation period) in relaxation measurements. The
transfer is zero when the solvent spin system is unper-
turbed by RF pulses, vj(0) = 0. This is in line with our
general notion that relaxation in the system is a� ected
only marginally by extraneous modes if these modes
remain unperturbed.

We select further the parameters of the model system
with the goal of testing the accuracy of the CSSR
approximation under most unfavourable conditions,
i.e., in the presence of signi® cant R16 transfer. From
an inspection of table 2 it is seen that maximum R16

transfer is expected in the weak coupling limit, u = 0
(conversely, R16 disappears in the limiting case of
equivalent ab spins). This simple situation, when the
solvent contains two weakly coupled or uncoupled
protons, cross-relaxing each other, is handled here in
the basis inherited from the ab system (equation (14)).
This basis naturally includes the total solvent polar-
ization, Q4, that plays the key role in the CSSR
approach.

The magnitude of R16 is determined by the di� erence
in dipolar relaxation of A due to interaction with a and
with b spins (table 2). With respect to the model
described in section 4 this means that R16 is only
non-zero when the eccentricities of spins a and b are
signi® cantly di� erent. In order to increase R16, spin
eccentricities are set to e

a = 0.8, e
b = 0.3, corresponding

to the large di� erence in eccentricities. The angle b is
taken equal to zero so that eccentricity e� ects are not
scaled down.

Our model allows for e� ective cross-relaxation
between solvent spins a and b, as well as solute A and

X. Chemical shift anisotropy (CSA) is added to both
spins of AX in order to provide for di� erential relaxa-
tion [4]. All intermolecular dipolar interactions involv-
ing A, a, and b are taken into account.

This model has been used to simulate v1(t) - v3(t)
relaxation curves that fully characterize spin± lattice
relaxation in an AX solute. The whole range of feasible
dynamic parameters has been scanned in these simula-
tions, covering extreme narrowing and slow motion
limits. Rotational correlation times were varied from a
small fraction of self-di� usion correlation times to their
entire values. The mixture composition ranged from
equimolar to dilute with respect to AX.

Two transfer coe� cients ¹
[16]
1 and ¹

[14]
1 were deter-

mined, and four sets of v1(t) - v3(t) curves were com-
puted in each run: exact (obtained from full 6 ´ 6
relaxation matrix), CSSR (from truncated 4 ´ 4
matrix), ERF (from further truncated 3 ´ 3 matrix),
and ® nally the one produced from a 3 ´ 3 matrix with
no intermolecular contributions. The CSSR matrix con-
tains the ¹

[14]
1 transfer path, but leaves ¹

[16]
1 outside,

while the ERF matrix does not contain intermolecular
NOE-type transfer at all. The results of the simulations
show that transfer coe� cients may indeed serve as good
indicators for changes in relaxation curves. As ¹

[14]
1

approaches the level of several percentage points it
brings about noticeable changes in the v1(t) - v3(t) pro-
® les, as illustrated by the di� erence in the CSSR and
ERF curves (by noticeable we mean above the noise
level, somewhat arbitrarily set at 5%).

Two families of relaxation curves, presented in
® gure 4, are obtained in the slow motion regime,
x ¿

AXab
transl = 100, corresponding to a negative inter-
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Figure 3. Spectral density of inter-
molecular DD cross-correlation
JIS,IÂ Sm ( x ) (equation (20)) as a
function of x ¿transl and the
angle b . The surface is computed
for the hypothetical ¯ uid consist-
ing of spherical molecules with
3 A

Ê
radius and spin eccentricities

e
I = e

I Â = 0.8.
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Figure 4. Relaxation pro® les v1(t) - v3(t) (equations (1) and (14)) for an AX spin system interacting with an ab solvent. Scalar
coupling in the ab system is vanishingly small. Initial conditions at time t = 0 include (a± c) non-selective inversion of A and
(d ± f ) selective inversion of the low-® eld line in the A doublet. In both cases excitation is accompanied by nearly complete
inversion of solvent spin a. The curves on the graphs are generated by the use of a full 6 ´ 6 relaxation matrix, a truncated
CSSR 4 ´ 4 matrix, a truncated ERF-type 3 ´ 3 matrix (dashed line), and a 3 ´ 3 matrix with no intermolecular contributions
(dotted line). Under no circumstances were the ® rst two curves visually discernible for the considered molecular model, so that
both are depicted with a continuous line.

(a)

(b)

(c)

(d)

(e)

( f )



molecular NOE near its maximum value (the hetero-
nuclear NOE in AX remains positive). The A proton
is subject to a hard pulse in this simulated experiment
(® gure 4(a± c)), or soft pulse which selectively inverts one
of doublet lines and gives rise to v1 and v3 (® gure 4(d ±
f )). The same pulse leads to the partial excitation of the
solvent spins. This models the situation where a multi-
line (possibly broadened) solvent spectrum is a� ected by
an RF pulse applied to the solute spins. It is assumed
that v4 is excited to one half of its maximum possible
amplitude and v6 to its maximum (which implies that of
the two solvent spins a is inverted). Molar composition
of the mixture used in the simulations of ® gure 4 is
1 : 100. Rotational correlation times are set at 1/9 of
self -di� usion correlation times in compliance with
hydrodynamic relationships. Intermolecular contribu-
tions account for 37% of the proton A self -relaxation
rate under these conditions, which is realistic for small
molecules [41, 42].

The curves from exact and CSSR approaches cannot
be distinguished visually in ® gure 4, while the ERF
curve is considerably o� target. This correlates well
with the fact that ¹

[14]
1 transfer at 8% and 16% is two

orders of magnitude higher than ¹
[16]
1 . The ERF curve is

based on true values of dipolar relaxation elements
(equations (3) and (8)). If these elements are treated as
® tting parameters, as is usually done, ERF curves can be
brought into good agreement with exact ones. However,
in doing so ERF coe� cients are moved far apart from
prototype dipolar elements. This can be seen especially
clearly from the v1(t) plot in ® gure 4(d ), where it
appears preferable to ignore intermolecular interactions
rather than to use genuine dipolar relaxation rates in the
role of ERF terms. Note also that neglecting ¹

[14]
1 results

in steeper relaxation decay in conditions of negative
NOE.

Standard ® tting procedures yield the ERF terms that
may di� er signi® cantly from original dipolar contribu-
tions. This e� ect is frequency dependent as intermol-
ecular NOE transfer varies with frequency. This e� ect
appears only when the solvent is perturbed by RF
pulses, since the in¯ uence of intermolecular NOE is
minimal when the solvent remains una� ected
(conversely, intermolecular NOE can be removed by
decoupling of the solvent over the period of relaxation
measurements). In these circumstances one should exer-
cise caution in interpreting ERF relaxation rates. For
example, the attempt to compare ERF contributions
obtained from measurements in hydrogenated solvents
with those found in deuterated solvents can be compro-
mised, and the result can be di� erent from what is
expected based on gyromagnetic ratios [19± 22]. While
the ERF model is likely to recover genuine dipolar
terms in the case of a deuterated solvent, which is not

a� ected by RF pulses, the same may not be true for a
protic solvent, as demonstrated by ® gure 4.

A situation similar to that illustrated in ® gure 4 is
observed also in the fast and intermediate motion
regimes, as CSSR invariably shows perfect agreement
with exact results while ERF curves are found occasion-
ally to deviate. The transfer coe� cient ¹

[16]
1 stays at least

one order of magnitude below ¹
[14]
1 , and always is found

well below the level where it can in¯ uence the shape of
curves.

As discussed previously, ¹
[16]
1 tends to be averaged out

in the extreme narrowing limit as a and b e� ectively take
central positions in rapidly rotating molecules. Even if
rotation and translation proceed on the same time scale
the intermolecular transfer ¹

[16]
1 is undercut since intra-

molecular relaxation prevails in these conditions.
Similarly, in the slow motion limit the relaxation of
the solvent is dominated by intramolecular proton±
proton interactions leading to large increases in R66

(through the spectral density at zero frequency).
Increases in R66 , combined with declines of R11, are
detrimental for ¹

[16]
1 for the reasons that can be deduced

from ® rst-order perturbation theory: small o� -diagonal
element R16 fails to couple two levels that are set wide
apart.

If we recall that this test has been devised in such a
way as to provide for a maximum ¹

[16]
1 , in particular

using the ab molecule with exaggerated di� erence in
spin eccentricities, we are led to believe that the results
are quite conclusive and ¹

[16]
1 transfer can safely be

neglected. The CSSR approximation is found to be
sound in this respect.

However, this test is not conclusive as far as relaxa-
tion coupling within the solvent is concerned, since the
system in question displays little of this e� ect. It is worth
noting that if ab relaxes solely through an intramol-
ecular DD mechanism, then our choice of modes pro-
vides for monoexponential v4(t). Feeble e� ects of
coupled relaxation in the solvent arise from intermol-
ecular DD interactions. They manifest themselves
through weak ¹

[46]
4 transfer (tables 1 and 2) which has

the same structure as ¹
[16]
1 , also depends on di� erence in

eccentricities, and, similarly, can be neglected. It has
been con® rmed experimentally [43] that the pure AB
spectrum shows simple exponential recovery if external
relaxation at A and B sites is the same. We shall now
discuss the possibilities for more pronounced coupled
relaxation e� ects in the solvent.

As ® rst-order relaxation mechanisms are taken into
account, they may contribute modestly to ¹

[46]
4 and

¹
[45]
4 through cross-correlation with DD interaction

(CSA-DD cross-correlation is the only example).
Autocorrelations also contribute to ¹

[46]
4 , but a and b

terms appear with di� erent signs, so that is expected
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(a)

(b)

(c)

Figure 5. Relaxation pro® les v1(t) ± v3(t) for an AX
spin system interacting with an abx solvent. The
model system is based on the geometry and
dynamics of 13CHCl3 dissolved in 13C12CH2, as
deduced from NMR measurements and other
sources [46]. The model mixture contains
1 mol% chloroform at a temperature - 54 ë C.
The curves on the graphs are generated by use
of a full 10 ´ 10 relaxation matrix (continuous
line), a truncated CSSR 4 ´ 4 matrix (dashed
and dotted line), a truncated ERF-type 3 ´ 3
matrix (dashed line), and a 3 ´ 3 matrix with
no intermolecular contributions (dotted line).
The ® rst two curves can be distinguished only
in the area of the tails, as shown in the inset.



to be insigni® cant. At the same time, the magnitude of
¹

[46]
4 can be boosted by introducing a third spin, x, in the

solvent spin system, and this led us to examine the case
of an abx-type solvent. Relaxation coupling between the
solvent modes is determined in this situation by a di� er-
ence in ax and bx dipolar relaxation rates, which can be
large if x is located close to a and far away from b in a
solvent molecule. This is in contrast to similar inter-
molecular terms (table 3) where the di� erence is
evened out by molecular motion. It is the presence of
a third spin that determines the complex nature of
relaxation in ab spectra [44, 45].

The AX± abx mixture used in simulations was mod-
elled after a solution of 13CHCl3 chloroform in
13C12CH2 acetylene. All relevant structural and dyna-
mical parameters can be found in the literature [46].
Acetylene spins are coupled with Jab = 9.5 Hz,
Jax = 249 Hz, Jbx = 50 Hz, and x a - x b is vanishingly
small. Initial conditions are based on selective inversion
of the low-® eld line in the A doublet which produces
equal amounts of v1(0) and v3(0). Excitation of the sol-
vent is modelled using a 180 ë rectangular pulse which
falls on-resonance with x a. Following the pulse, spin
states are computed numerically in the direct product
basis and then converted into the operator basis
(equation (16)). All of the modes v4, v6, and v7 are
excited e� ciently. Intermolecular relaxation is found
to contribute a reasonable 11% to the A self-relaxation
rate. The model of motion adopted here does not cap-
ture ® ne details of motion such as rotational anisotropy
or long-time tails of rotational correlation functions
[47].

The simulated system is in the fast motion regime with
x ¿

AXabx
transl = 0.086. In conditions of positive intermol-

ecular NOE relaxation pro® les display the same pattern
as seen previously for negative intermolecular transfer.
Only microscopic di� erences between exact and CSSR
curves can be spotted (® gure 5), being the result of two-
step transfer with ¹

[46]
4 , ¹

[47]
4 = 8% and ¹

[14]
1 = 2% (or,

more rigorously, the result of mixing within the exact
10 ´ 10 relaxation matrix).

In subsequent simulations, motional parameters of
the model have been varied, covering a multitude of
points in both slow and fast motion domains. The
CSSR and exact curves were found to be in very good
agreement, with rare discrepancies on the same small
scale as seen in ® gure 5. This result suggests strongly
that the complex chateracter of solvent relaxation can
be ignored as long as the study concentrates on solute
relaxation. The transfer ¹

[46]
4 , ¹

[47]
4 of course cannot be

neglected in studying selective relaxation of abx.
However, it has relatively little e� ect on e� ective decay
rate of Q4 and consequently minor in¯ uence on AX
relaxation.

Optimization techniques could have been employed to
® nd the maximum deviation in the CSSR curves.
However, the e� ect itself is too subtle, the number of
® tting parameters too large (this includes the variety of
initial conditions and spin con® gurations), and con-
straints too vague (such as maintaining reasonable
proportion of intra- and intermolecular rates) to justify
the use of optimization methods.

The curves generated on the basis of an exact relax-
ation matrix were used as computer simulated data in
order to estimate the quality of the ERF interpretation.
The results are to be reported elsewhere. We would
indicate here only that in the situation when the solvent
spin reservoir is perturbed by RF pulses, ERF provides
an imprecise measure of intermolecular DD contribu-
tions, and may even cause errors in the determination
of intramolecular parameters, such as ¿rot, if external
relaxation is su� ciently strong. For example, ERF-
based ® tting procedure, as applied to the set of simu-
lated curves 5(a± c), underestimates the proton CSA by
80% (® ts are not shown on the plot). Use of the CSSR
approach can be recommended in certain cases to
improve the analysis of experimental data. The example
of such a practical application can be found in our pre-
vious work [17].

One other problem that is well suited to bene® t from
the application of the CSSR approach is cross-relaxa-
tion between molecular groups. Recent study of relaxa-
tion between methylene groups in a hydrocarbon chain
[48] demonstrates the breakdown of the ERF model,
failing to reproduce the spectral densities within a
methylene group, and yielding negative values for cer-
tain ERF rates. Only intramolecular correlation func-
tions are needed in this situation, and CSSR has a
good chance of providing consistent interpretation.

The help of T. R. J. Dinesen in the preparation of this
manuscript is gratefully acknowledged, and we thank
the referees for helpful comments.
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