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Intermolecular dipole—dipolar relaxation is considered in the framework of Redfield equations
describing the evolution of the spin density matrices for multicomponent solutions. Two types
of contribution from intermolecular dipole-dipolar interactions are identified. Contributions
of the first type can be emulated using the external random field (ERF) model, while con-
tributions of the second type cannot. The latter are responsible for relaxation coupling
between solute and solvent, and can be expressed in terms of cross-relaxation rates. A com-
plete system of Redfield equations for multicomponent liquids is not practical due to its size
and the multitude of unknown parameters. For this reason, interpretation of experimental
data usually is limited to the ERF model, even if unreliable for experiments where solvent
spins are exposed to the effect of pulses. As an alternative, it has been suggested that complete
system of Redfield equations can be truncated so that the solvent part is limited to spin
polarizations. Solvent multispin modes are ignored as insignificant from the point of view
of solute relaxation. So formulated, this approach is referred to as the ‘coupled solute solvent
relaxation’ (CSSR) model. The validity of this approximation is examined using the examples
of AX—AB and AX-ABX type binary mixtures. The elements of complete Redfield matrices
embracing both solute and solvent are calculated. The results include cross-correlations
between intermolecular dipolar interactions, which are calculated for spherical molecules
with off-centre spin sites. Simulations indicate that the CSSR approach provides a very
accurate approximation, regardless of the inherently complex nature of solvent relaxation
and the existence of several potential paths for intermolecular magnetization transfer. It
offers improvement over the ERF model, particularly in the evaluation of intermolecular
contributions, in the case when both solute and solvent spins come under the effect of RF
pulses during the course of experiments.

1. Introduction

As involved as it is, the theory of multimode relaxa-

Sophisticated experimental techniques based on a
variety of relaxation effects have become instrumental
in the investigation of complex molecular systems in
solutions. Two aspects should be emphasized. First,
intensive use is made of the long-range NOE, including
intermolecular magnetization transfer [1-3] This under-
scores the importance of long-range dipole—dipolar
interaction which serves as a unique probe for the inves-
tigation of molecular dynamics and structure, in parti-
cular for large biomolecules. Second, the studies of
multimode (coupled) relaxation are increasingly popular
[4, 5] Multimode relaxation, involving multispin orders
and coherences that appear in coupled spin systems [6]
complements T} and T» measurements, providing addi-
tional information on molecular structure and motion.

§ Present address: Laboratorium fiir Physikalische Chemie,
ETH Zentrum, 8092 Ziirich, Switzerland.

tion tends to avoid further complications arising from
intermolecular paths. Instead, the intermolecular
dipole-dipolar (DD) interaction usually is modelled by
an external random field (ERF) fictitious first-order spin
Hamiltonian. The pitfalls of this model are known [7, 8]
but the belief exists that ERF provides a reasonable
approximation when applied with a due caution.

At the same time, the theory that incorporates DD
interactions between coupled spin systems in multicom-
ponent solutions has been developed [7, 9] Solomon’s
equations for the intermolecular relaxation of spins 1/2
give a simple example of such a treatment [10, 11] The
generalized formalism puts together the concept of mul-
timode relaxation and the theory of translational corre-
lation functions [12-16] The results potentially contain
more information on solute—solvent interactions, since
the analysis deals with coupled spin systems rather than
single-spin molecules. Rich spin context provides access
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to fine details of molecular dynamics, such as roto-
translational cross-correlation functions [7] discussed
in what follows. At the same time, the interpretation
of traditional experiments on coupled relaxation is
improved, since external relaxation is accounted for
accurately in this approach.

While generalized theory of intermolecular relaxation
is available, the examples of its application are rare, and
this is not accidental. The analysis employing a complete
set of spin density matrices faces serious challenges. One
is the large number of relaxation coefficients, and the
size of the ensuing equations. Another problem is the
large number of dynamic and structural parameters
involved. Thus, it is desirable to find a simplified
description, more compact than a full system of Redfield
equations for a multicomponent solution, yet more pre-
cise than a reduced system relying on the ERF model.

Such a description has been introduced by two of us
under the name ‘coupled solute solvent relaxation’
(CSSR) [17] Similar to the ERF model, it focuses on
one particular spin system, conventionally that of the
solute (assuming that the details of solvent relaxation
are of no interest), and is only slightly more difficult
technically. In essence, the CSSR approach assumes
that solvent can be represented by a single spin polar-
ization, regardless of how complex is the composition of
its spin system.

So far the CSSR model has been introduced ad hoc,
with no appropriate substantiation. Such a substantia-
tion certainly is needed, since in this approach we ignore
the complex character of solvent relaxation, and even
part of magnetization transfer between solute and sol-
vent. In the present paper we intend to show that CSSR
approximation describes intermolecular DD relaxation
adequately.

A good example is provided by the NMR studies of
small molecules dissolved in liquid crystals [18]
Intermolecular DD interactions provide important
relaxation mechanism in such systems. Consequently,
the question arises as to how to take the intermolecular
relaxation into account. An attempt to construct a full-
scale system of Redfield equations, embracing dozens of
coupled protons in a liquid crystal, seems counterpro-
ductive. On the other hand, the ERF model is less than
perfect (in particular, it runs into difficulties interpreting
intermolecular relaxation rates obtained for hydro-
genated liquid crystals versus deuterated [19-22]. In
these circumstances, CSSR seems to be a possible
answer to the problem. In this approach, a single effec-
tive relaxation rate is assigned to the liquid crystal 'H
(selective investigation of the proton relaxation is im-
possible since the spectra of liquid crystals are broad-
ened). It also utilizes intermolecular NOEs, that can be

measured directly and allow for the model interpreta-
tion 23-25]

In section 2 we consider a complete system of Redfield
equations for a multicomponent mixture as presented in
the operator basis (in Liouville space). It is shown that
certain intermolecular contributions can be emulated
within a framework of the ERF model. The remaining
intermolecular contributions, that cannot be reproduced
using the ERF Hamiltonian, represent relaxation coup-
ling between solute and solvent. Such coupling is poss-
ible only between those solute and solvent modes that
contain a one-spin part. This rigorous result clarifies the
scope and the structure of intermolecular coupling in a
full relaxation matrix.

The CSSR approximation can be put to a most thor-
ough test by examining the systems that contain tightly
coupled solvent spins. Section 3 describes full relaxation
matrices for AX-AB and AX-ABX type mixtures, with
an eye on the elements that are neglected in the CSSR
approximation. Evaluation of the Redfield matrix
requires knowledge of roto-translational cross-correla-
tion functions. These are calculated in section 4 based
on a simple model of spherical molecules with off-centre
spin sites. Section 5 compares solute relaxation curves
produced on the basis of full Redfield matrices and
truncated CSSR and ERF type matrices, so that the
accuracy of the CSSR approximation can be judged.

2. Equations of multimode spin—lattice relaxation in
mixtures

With the increasing sophistication of relaxation
experiments, a variety of auto- and cross-correlation
contributions have been brought to the attention of
researchers. There is a tendency to believe that many
more examples of unusual relaxation coupling and
exotic cross-correlations can be found. Solutions of
proteins may serve as an illustration for this point. It
has been recognized [26]that protein folding and stabil-
ity, as well as binding and catalytic functions, are deter-
mined largely by interactions with solvent water. It
remains unclear, however, whether regular NOE repre-
sents the only channel for magnetization transfer from
water to protein, or whether magnetization can also flow
directly into two- or three-spin orders of protein. It
further remains to be seen if such effects have any
impact on the results of state-of-the-art experiments
that measure relaxation of multispin modes throughout
the polypeptide chain [27]

Under these circumstances, general consideration can
be helpful in determining what sort of relaxation coup-
ling is possible, or impossible, without going into details
of a spin system. This type of analysis is carried out here
for intermolecular DD interactions. In particular, it
demonstrates that intermolecular relaxation can couple
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only those solute and solvent modes that contain one-
spin components, and the coupling comes from DD
autocorrelations. It further helps to define the simplified
approach to intermolecular relaxation.

Consider a multicomponent liquid in which one of the
components is represented by N, molecules of the sort y
(different molecules of the same sort are denoted
and %). Each of these molecules bears m, magnetic
nuclei with spins 1/2. Consideration is limited to spins
1/2 since the relaxation of higher spins is dominated by
the quadrupolar mechanism which dwarfs any inter-
molecular contribution. The static spin Hamiltonian
for each of these molecules includes Zeeman and
scalar coupling terms [28] Corresponding Liouville
space is spanned with basic operators QJ, that are
normalized in standard fashion, Tr, {Q,’,‘fQ%} = S,
where Tr, is the trace over spin space of a single
molecule . The part of this basis relevant for spin—
lattice relaxation consists of the modes commuting
with the static spin Hamiltonian.

In existing theories [7-9, 29, 30] the spin density
matrix of the entire system is represented as a direct
product of molecular density matrices, which is reduced
to the sum of the constituent density matrices by use of
the high temperature approximation. This is tantamount
to the assumption that intermolecular spin correlations
can be neglected in the relaxation analyses of liquids [29,
31} One known exception is intermolecular coherences
induced by the dipolar field [32, 33] This phenomenon
has been attributed to the small (due to symmetry and
molecular motion), yet observable, residual constant
part of DD interaction. Jeener, Vlassenbroek and
Broekaert [33] conclude that any resulting intermol-
ecular correlations can be neglected in relaxation coeffi-
cients, and accounted for through a static Hamiltonian
within the framework of standard Redfield theory. Our
presentation does not address this special effect.

Based on these premises, the equation of motion for
the spin density matrix is obtained including intermole-
cular effects. The analysis, carried out previously in a
basis derived from the Hilbert space wavefunctions,
can be reformulated conveniently in the operator basis
embedded in the Liouville space. The equations
describing spin-lattice relaxation in mixtures, and
explicit results for relaxation coefficients originating
from intermolecular dipole-dipolar interactions, are
given in what follows.

The hypothesis of statistical independence of molecu-
lar spin systems in solution (equivalent to neglect of any
intermolecular spin correlations) and the high tempera-
ture approximation reduce Liouville space [28] to the

one spanned with operators V% =S * QL where the
sum is taken over all molecules of this particular sort,

and QF are (identical in form) operators, each referring
to spins of one particular y-sort molecule.
Non-equilibrium states of the spin system, developed
over the course of a relaxation experiment, are charac-
terized in full by a set of modes vY, obtained from V% by
taking the trace over the spin density matrix. Since the
spin density matrix of an entire system is given by a sum
of molecular spin density matrices, v} can be expressed as:

Try {(PX - qu)Ql)%} =N Try {(PX - qu)Ql)%}
TI.X {px} X oy s

(1)

where p* and p% are non-equilibrium and equilibrium
spin density matrices of the molecule . The term
‘magnetization modes’ is normally associated with the
expectation values, such as v%. Following Canet [34] we
shall also employ this term for the components of the
operator basis, such as Q%.

To this end, the master equation can be evaluated,
giving rise to a system of coupled equations. For the
purpose of our discussion it is sufficient to consider
the binary mixture, comprising molecules of sort £ and
N (extension to multicomponent solutions is obvious).

v = Ny

d ) ¢ ) n

EVI% = 1%c€ Vi = 1%11 Vi,

d q nd,e_ g

—_— I’l: Y J 2
dr" - R 2)

This is a generalization of Solomon’s results for multi-
mode relaxation in binary solutions. We plan to con-

sider the relaxation coefficients R,;> that couple spin

modes belonging to the same molecule { and ,%n),

responsible for the coupling between £ and 1 modes.

The relaxation coefficient R,;> contains an intra-
molecular contribution, along with intermolecular
terms arising from the interaction between like and
unlike molecules:

<9 = Tr {04 R 0F)

Tr{05 R (0f + 0F))
2117 C

TrCﬂ {Qm Rlcrhter Q% } ( 3 )

D
mter

Here R~ represents the Redfield superoperator for
intermolecular relaxation of like molecules, where dif-
ferent molecules of the,same sort are denoted as  and (,
Formal notation of Rgger implies lattice average and
double commutator over spin variables, and Try is

+N€

+Nn

equivalent to Tr¢Trg. Similarly Rg{er represents relaxa-

intra

tion of £ by molecules of the different sort 1), and Rz
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symbolizes intramolecular relaxation. This latter has
been studied in great detail (see [5] and [34] for review)
and will not be discussed here. Further discussion is
focused on intermolecular terms.

Relaxation coefficients involve spectral densities of
time-dependent correlation functions evaluated at eigen-
frequencies determined by the static spin Hamiltonian.
The combinations of Larmor frequencies are retained in
the argument of spectral densities. Small shifts, such as
chemical and scalar coupling shifts, can be dropped,
since correlation times of molecular motion in liquids
typically are small enough to satisfy (@ - @) < 1.

Definitions of spectral densities appearing in the lit-
erature differ by a constant factor. The one that is used
here is

- o0

00
T () = & j & (1) d, (4)

where i,i- label spins belonging to one molecule, s,s”
label those belonging to the other molecule, and
g5 (¢) is a correlation function for intermolecular

dipole—dipolar interactions.
2) 2
gll; o (t) = jj driS dri'S'D E)m) (QiS)D E)m)(‘oi'S')

X P(ris, t|ri,s,) 'o(ri,s,)/r?sr?,s,. (5)

The conditional probability P(ris,t|ri,s,) and the pair
distribution function fo(rm,) are the same as described
by Hwang and Freed [12]}

Using a spherical tensor representation for the dipole—
dipolar Hamiltonian and a Liouville space formulation
of the Redfield theory [28] one can compute the last
term in equation (3), obtaining

- F Ain T
2Ny Ty {05 R 0¢}

m C m n

= Z ZﬁDiSDmnn
ZZ{(!) q p2+q))}

X Trg{[ Q,%][Qk, iop ]} ;i—lqs(pa)l + qws) (6)

where the first summation is over all pairs of spins from
molecule § the second summation over all spins of
molecule 1 and the thll‘(% over spherical components
of the spin operator I, . Contributions from each
pair of dipole-dipolar 1nteractions include molecular
density, = Ny/V, dipolar interaction constants,
D = - \}16?;10 /47:)71\{%, and Wigner 3-j coefficients.
The property of traceless spherical tensors

Tr{ )}—0 1>0 (7)

has been used to compute Try and arrive at the above
results.

It is not difficult to verify that contribution (6) can be
mimicked by use of an ERF Hamiltonian [28]in place of
the dipole- dlpoLar Hamiltonian. With the relaxation
superoperator Rg based on the ERF Hamiltonian
instead of DD the contribution (6) can be recomputed,
yielding

- N Ain T
2N Trg {OF RO}

_ i Vit 2 Tre [ﬁp'),Q%][Q%,Lﬁﬂ} " (pa).

(8)

The new spectral density J,ﬂ’i'(co) appearing here charac-
terizes the time-dependent correlation between random
fields at the sites of spins i and i:

e[ e o

In this expression B;, are spherical components of the
random field vector, reflecting the net effect of spins s on
spin i.

Equations (8) and (9) can be compared with the
results obtained previously for DD relaxation and
given in equations (4) and (6). Comparison reveals
that all DD contributions are matched by the ERF con-
tributions. Moreover, they can be equated, leading to

! 11 2 :
XZ{(/‘J q -(p+q))}

x gty (1), (10)

It is worth noting that this result quantifies the relation
between ERF random fields and genuine intermolecular
DD correlation functions. In summary, intermolecular
contribution in ,%f can be modelled successfully by use
of the ERF. This conclusion is true equally for inter-
molecular interactions between like molecules, the
second term in equation (3), as can be shown by similar
calculations.

Next, let us consider relaxation coefficients ,%n)
corresponding to mutual relaxatlon of different spemes
At this point, note that Q,,7 can be representg:d as
linear combination of operator products I I (for
example, see equations (14) and (16) below). Modes are
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classified in #n-quantum manfolds according to
p+ g+ .. .value.
Since the dipole-dipolar Hamiltonian is bilinear ir}
&n
spin operators, it follows from the definition of R,(”,
and property (7) that only one-spin and two-spin prod-
ucts give rise to non-zero relaxation coefficients. (Three—
spin, or higher, products contain spin operators /;,” that
cannot be matched by spin operators 1n the
Hamiltonian, and therefore result in zero trace. By the
same reasoning, ﬁrs%—rank relaxation mechanisms fail to
&n }
contribute ty R,7". Furthermore, the double com

mutator in r}{er can be simplified using commutation

relations:
i']_llp ll[lqals] [lpall]lSlqa

[,

(S T
(1) 4(1) + (1)
L, L, | = (- )"V Lips
[Fos1u] ) (-(p+q)qp)’”’

(11)

based on the usual momentum commutation rules. After
simplification, it can be seen that only single-spin opera-
tors give rise to non-zero relaxation coefficients, and this
is due to intermolecular DD autocorrelation. All other
remaining possibilities are ruled out by the same argu-
ment that the presence of a lone spin operator results in
zero trace (equation (7)). The only non-zero contribu-
tion comes from the intermolecular DD mechanism:

A
”%n) = mCNCTrCn {QmT ﬁater Q?}, ( 12)

and this is different from zero iff both Q,% and Q)
include s1n le-spin operators. In view of these observa-
tions, ,7, is nothing other than a linear combination
of standard DD cross-relaxation rates:

C= 'IIED%S(6J£S’B(@ + cos) - Jés’is(coi - cos)). (13)

Finally, according to the preceding discussion, these
relaxation coefficients cannot be reproduced by use of
the ERF model since the latter is based on the first-
rank Hamiltonian. This is a manifestation of the main
shortcoming of the ERF model: its failure to reproduce
the intermolecular NOE.

General results presented here will be applied to
specific spin systems in the following sections.

3. Relaxation in AX-AB and AX-ABX mixtures

A general framework for treating spin-lattice relaxa-
tion in mixtures is presented above. However, in experi-
mental practice, a compact formulation accounting for
solvent induced relaxation is desirable. As shown above,
direct relaxation coupling between solute and solvent
occurs only in the context of one-spin operators. This

suggests that of all solvent modes Q] only single-spin
polarizations are important for solute relaxation (the
hypothesis, introduced under the name of CSSR).

The CSSR approach is aimed primarily at complex
solvents, such as liquid crystalline solvents. The exact
treatment does not seem feasible in this case due to
the size of the solvent spin system and the multitude
of structural and dynamic parameters, such as spin
coordinates and correlation times of local motions.
Even for relatively simple solvents, that can be treated
using the exact theory, the CSSR approach proves
useful since it allows us to focus on solute relaxation
and avoid tedious measurements of solvent relaxation
(the details of solvent relaxation usually are of little
interest).

Before the CSSR approach can be used in practice, it
has to be tested, since so far there is no reason to believe
that it would provide for the satisfactory approximation
(except for the intuitive insight). In fact, it has not even
been confirmed that the CSSR offers an improvement
over the ERF model. The only way of verifying that is
by investigating simple model systems that lend them-
selves for the exact treatment.

Pursuing this strategy, we examine two simple binary
mixtures, with solute represented by AX and solvent by
AB or ABX spin systems. The relaxation behaviour of
the solute is at the centre of the study. The notations ab,
abx are adopted for solvent in what follows in order to
discriminate between spins in solute and solvent, thus
eliminating the need for a molecular label £ In calcula-
tion of relaxation rates A and a are treated as spins of
different sorts, as well as X and x. As an argument of
spectral density am, and ay, are interchangeable according
to the remark made in section 2. Operator modes
pertaining to spin—lattice relaxation in AX-ab are

Ql = IAZD Q2 = IXZ) Q3 = 2141y
Q4 = éz-(laz + Ibz), QS = 2],121},;,

06 = F(cos ¢ (Iz = I.) + sin ¢(Lps I + I- I+ ), (14)

where ¢ is a strong coupling parameter for the ab
system, tan ¢ = Jup /(0 = @)

In the CSSR approach, only the total spin polariza-
tion Q4 is retained of three ab modes, the assumption
being tantamount to the equivalence of a and b spins.
The question remains if a and b can be treated as
equivalent, without compromising the analysis of AX
relaxation.

The calculation of spin-lattice relaxation coefficients
(equations (3), (12)) has been performed in full,
including intermolecular relaxation of like molecules,
without making any assumptions regarding relative
concentrations of the components. The result for the
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Table 1. Relaxation matrix elements for spin-lattice relaxation in an AB liquid: contributions from intermolecular DD interac-
tions. Complete expressions for R; are obtained by multiplication of all entries by a factor n,, where n; is the concentration of
the ab species, and summation through the respective rows. Only non-zero elements, R;; j = i, are listed in view of the R; = R;
symmetry. The notations are explained in the text (equations (13) and (15)).

ax ax bb bb
Hpp - Hpp Hpp - Hpp

ab ab ax ba ab bb
Hpp - Hpp Hpp - Hpp Hpp - Hpp

Ry 3T+ C) 3+ 0)
Rys Tcos (T + C) - Jcos (T + C)
Rss T T

Rs6

R 3(T+cos’¢ C+sin’¢ P)

1(T+ cos’¢ C+ sin’¢ P)

T+ C
2T
-\/ﬁsinqﬁT -\/2sin¢T
T- cosz¢C+sin2¢P -sin2¢P -sin2¢P

Table 2. Relaxation matrix elements for spin-lattice relaxation in an AX-ab mixture: con-
tributions from intermolecular DD interactions between AX and ab. Intermolecular
interactions involving spin X are excluded. Only non-zero elements, R; j= i, are listed.
Off-diagonal elements that couple AX and ab blocks are related by Ry = (n, /nl)R14,
Re1 = (my /nl)Rm, and the rest of the matrix displays R; = R; symmetry.

Hpb - Hpb HBD - HBD
Ry mT mT
R 1 C 1 C
14 n172' n172'
1 1
Ry n172'cos ¢ C - n172'cos ¢ C
Rs3 mT mT

aA aA
Hpp - Hpp

bA bA aA bA
Hpp - Hpp Hpp - Hpp

Ry m3T

Rug nicos¢ T
Rss mT

Rsg

Res m3(T +sin’ ¢ P)

n1éT
-nlécosqb T
mT
-nl\/2 sing T
n3(T+ sin’ ¢ P) -y sin’ ¢ P

intermolecular relaxation of ab molecules and the
intermolecular relaxation between AX and ab species
are tabulated below. The relaxation coefficients are
expressed in terms of standard combinations of spectral
densities. The combinations arising from DD interac-
tions between spins i and s, and i and s’ (where i
and s~ may or may not refer to the same spins as 7 and
s), Hbp - Hpp, are:

T = TIEDisDi,S,(JSS’i/S/(COi - o)+ 37 (a)
+ 613" ( + @),
P= TIEDisDi,S,(4J65’i,S/(O) + 6J;S’i/s,(a’5))> (15)
plus cross-relaxation rate C, quoted in equation (13).

Note that the order of spin labels in Hjp - Hisp, as
they appear in tables 1 and 2, is meaningful: it deter-

mines frequencies in 7 and P in accordance with the
above convention. Mirror pairs of cross-correlations,
Hpp - Hpp and Hpp - Hpp, are summed up and
placed in one column, with no distinction made between
w, and @, In the argument of spectral densities.
Intermolecular interactions involving spin X are omitted
from table 2, but their contribution can be recovered by
noting that operator modes (14) are symmetrical with
respect to A and X. It is common to ignore this con-
tribution when X is identified with *C or "N. The
results for ab relaxation are in agreement with previous
calculations by Khazanovich and Zitserman [7] in the
extreme narrowing limit, except for the sign of Re.

A remarkable feature is the appearance of inter-
molecular DD cross-correlations [7, 35] in tables 1 and
2 (in the final columns). They appear here in the context
of one-spin and two-spin orders unlike familiar intra-
molecular DD cross-correlations in weakly coupled
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Figure 1. Structure of the relaxation matrix for an AX-ab
mixture, including intramolecular DD interactions, inter-
molecular DD interactions between both like and unlike
molecules (except those involving spin X), and CSA inter-
actions for spins A and X. One-step ( ) and two-step
(oo ) magnetization transfer from the solvent spin sys-
tem to the solute are shown.

systems that manifest themselves through three-spin
orders. Intermolecular cross-correlation functions are
expected to exist due to spatial correlation in the
motion of spins a and b involved in DD interaction
with given external spin. These quantities provide us
with the refined measure for what has been referred to
as ‘cross-correlation of external random fields’ and has
been investigated within the scope of ERF model [19,
20] The possibility of pursuing the effects of intermole-
cular DD cross-correlations in experiments over pure
AB liquids has been pointed out by Vold and Vold [35]

By applying the CSSR approach to the system in
question the complete composite basis (14) is reduced
to 01—04 modes. In doing so, we neglect the relaxation
transfer through Rjs and Ry (see figure 1). The former
is due entirely to intermolecular DD interactions, as
demonstrated in section 2, while the latter also may
involve contributions from first-rank mechanisms. Of
the two, only Rys affects AX spin system directly.

As seen from table 2, the magnitude of Ry is deter-
mined by differences in the Aa and Ab dipolar relaxa-
tion that can be attributed to inequivalent locations of a
and b spins within a molecule. In the case when a and b
are topologically equivalent Rj¢ becomes zero, and the
same is true for the dipolar part of Ry. By topological
equivalence we mean that molecule allows for the sym-
metry operation that translates a into b (two spins still
have different chemical shifts due to isotopic substitu-
tion, e.g., one is attached to "*C, and the other to 12C).
While little can be done about Rj¢, the magnitude of Rys
can be boosted by adding a third spin to the ab system.
This third spin, X, placed in the proximity of a and well
removed from b, produces a tangible difference in a and

b relaxation that results in enhanced Ry transfer. This
sort of qualitative reasoning led us to examine an abx
(ABX) system in the role of solvent.

The abx spin modes that need to be added to O; - QO3
are as follows:

01 =3I+ L), Os= 2Ll

Qs = % (E, + 21xz){cos s (Lz = In:)
+sin ¢ (Los Iye + Lo I )},

07 = % (Ey- 2I.){cos ¢ (L - I:)

+sin g (Lo + L Ipr )},

1
Q8 = @ Ixz, Q9 = (Iaz + Ibz)lxz,
QlO = \/élazlbzl,rz' (16)

where tan ¢+ = Jup (wn = an = 1/2(Jax - be)), and Ex
is the spin x operator identity. Analogous to the ab
mode Qs are modes Qs and @7, that correspond to
orientation of x up and down respectively (E, =+ 21.. is
equivalent to projection 2|i><i|x). In practice, simple
product operators can be employed to generate relaxa-
tion coefficients. Subsequently, linear transformation
can be used to form the relaxation matrix in the
appropriate basis Q1—Q1p.

Of all relaxation terms only intermolecular AX-abx
relaxation is detailed here. Complete expressions for
relaxation coefficients, including the intramolecular
part, can be found on the World Wide Web site at
http://bes.chem.mcgill.ca/ nikolai. As discussed above,
the coupling between spin polarization Q4 and multispin
modes Qg and Q7 is due to the difference in ax and bx
relaxation rates and, additionally, to intramolecular DD
cross-correlations. Substantial relaxation coupling in the
solvent spin system provides more stringent conditions
for testing the CSSR model.

Diagonal elements in the abx relaxation matrix match
their counterparts in the ab matrix, as expected. At the
same time, off-diagonal elements within the abx block
differ by a numerical factor (tables 2 and 3). The reason
is that v, v¥, and &* all correspond to the amounts of
magnetization different from vi™, &, and ™, and
therefore are connected through different R; elements.
Cross-relaxation elements (12) render the matrix of
relaxation coefficients asymmetric (see caption to
tables 2 and 3). Simple linear transformation with a
diagonal transformation matrix can be applied to
equation (2) in order to symmetrize the relaxation
matrix prior to a diagonalization routine.
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Table 3. Relaxation matrix elements for spin—lattice relaxation in an A X—abx mixture: con-

tributions from intermolecular DD interactions between AX and abx. Intermolecular
interactions involving spins X and x are excluded. Only non-zero elements, Rj; j= i,
are listed. Off-diagonal elements that couEle AX and abx blocks are related by
Ry = Xy /n1) Ry, Ret = Hnafni) Rig, Ry = Xnafny) Ry7, where the factor of 1/2 is due
to different dimensionality of the two spin systems. The rest of the matrix possesses

symmetry.

Hpp - Hp Hpp - HpD
Ry mT mT
Ris nC nC
R n1712'cos ¢+ C -n1712'cos o+ C
Ry7 n1712'cos ¢. C -n1712'cos ¢ C
Rs3 nT oy

HiSb - Hib HBb - HBb HiSh - HBb
Ry miT miT

1 1
Ry n1272'cos o+ T -n1272'cos ¢+ T
1 1

Ry7 n1272'cos ¢. T -n1272'cos o- T
Rss mT mT
Rsg -nmsin g, T
Rs; -msing. T
Res mi(T+ sin’ ¢+ P) mi(T+ sin® ¢, P) - nysin® ¢4 P
Rgo n12712'cos o+ T -n12712'cos ¢+ T
Ry mi(T+ sin’ ¢_ P) mi(T+ sin’ 4. P) - nysin® . P
Ry -nlﬁcos o. T nlﬁcos ¢. T
Ryo m3T miT
Rio,10 mT mT

The results presented in this section can be used for
computations after choosing the model to generate
correlation functions (5). Most challenging is the
calculation of roto-translational cross-correlations
(final columns in tables 1-3) which must take into
account inequivalent positions of spins in a molecule.
The model allowing for analytical calculations consists
of a system of spherical molecules with off-centre spin
sites involved in Brownian translational and rotational
diffusion [36] The eccentricity parameters describing
off-centre spin sites can be used to specify inequivalent
locations for a, b, and x. Autocorrelation functions were
calculated for this model by Ayant et al. [14] and their
treatment can be extended to cross-correlations as
described in the following section.

4. Calculations of intermolecular correlation functions

Intermolecular correlation functions for spins in off-
centre position were investigated first by Hul?lgard [36]
using a Taylor series expansion for Dofn(Q,) )i
Generalization to a cross-correlation function (equa-
tion (5)) was done by Khazanovich and Zitserman
[71 The theory of intermolecular relaxation has been
improved since [12, 13] and a complete solution in a
form of series has been found by Ayant et al. [14] The
derivation presented in the latter work is extended here
for intermolecular cross-correlations. Autocorrelation
functions can be obtained as a limiting case from our
results.

The system under consideration consists of spherical
molecules undergoing free rotational and translational
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Figure 2. Schematic representation of the molecular
geometry used in calculations of intermolecular
DD cross-correlation functions.

diffusion, these two forms of motion are assumed to be
independent. A hard sphere model pair distribution
function is used. One of the molecules bears two spins,
I and I, their sites specified by radial vectors p” and p”*
with the angle 8 between them. Both I and /” interact
via the DD mechanism with the external spin S residing
off-centre on the other molecule, its site being specified
by S (figure 2). Due to the spherical symmetry of the
problem the correlation function g,[”S’ 'S(t) does not
depend on the index m.

Following [14] it is convenient to introduce the
vectors characterizing rotation in the molecular frame:
pB = p"= pS, p"S =p" - 5 Using a differential
representation for spherical functions and invoking
Legendre polynomials, one can perform the separation
of rotational and translational variables in the correla-
tion function.

i ) ! I
gIS,I S(t) - 4 Z Z Z
14 1 m ,
L o e
(21 + 1)(20r + 1) Il R

( _ i Ylj-Zm(RO) i Yl'+2m'(R)
Gl’”,l'm' t) = aZ(Z) I%H 07> R+1

[<lm,1'm'(t) = <[P([)S]1 Yl,m(p(l)s)[P[/S]l/ Ylimf(pl/s )> (17)

The quantities [p’S‘]l Yz,m(pls) in the rotational correlator
K,m,,,m,(t) obviously are transformed as spherical har-
monics under rotations. On the other hand, the
Hamiltonian of free Brownian diffusion is invariant
under rotations of the coordinate system. Thus, the cor-
relator K,m,,,m,(t) is non-zero only when [ = [, m = m”,
and, in addition, does not depend on the value of m. The
most detailed account of underlying symmetry consid-
erations, that are in effect for all isotropic liquids, has
been given by Hubbard [37] The correlator
ki(r) = Ky,y(z) can be calculated along the lines of [14]
yielding

ki(t) = 4n(21+ 1)1 Z

B

oA+ 1)@/ + 1)!]1/2
|

1/2

1
X [(2(1- A+ 1)12(7- Ar)+ 1)!]
% [pl])\[p[»])\»[ps]y- A- A/<Y)\,7\(p([)) Y;,,;\,(p[/»

X (Y- ay- A(pg)Y;:Af,l- A»(PS)>. (18)
The only difference here with the result obtained
by Ayant er al. is the presence of [p’ Mo T in

place of L/j[])wv and of the cross-correlation function
(Yaplet) ;,,A,(p[')> of molecular rotation in place of
the corresponding autocorrelation function. Rotational
cross-correlation functions for Brownian diffusion of the
spherical top [11, 38] can now be used:

N , 1
) Viplo™ )y = iy (B)5 -exp (- /)

1
= &,A/EP)\(COS B) exp (- t/t;[\),
7= (A(A+ 1)DLy) !, (19)

where Pi(cos B) is a Legendre polynomial, Dfs is
the coefficient of rotational diffusion of the molecule
containing I and I, and 7 is further referred to as
Thor. This renders k;(¢) in its final form. It may be pointed
out that rotational correlator (18) can be calculated for
more elaborate types of motion, e.g., using the ‘model-
free approach’ [39]for I and I~ rotating around a slowly
reorienting axis. The other correlator involved in
equation (17), G;m,l,m,(t), describes purely translational
correlation as associated with the intermolecular vector
R, and can be calculated along the lines of the general
theory [12-14] Finally, we summarize the expressions
for the spectral density of the cross-correlation
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function:

o0
TS () = LZ(zl +4))
) 3Othransl )

’ 1 oo
% Z(zm DI2(7- )+ 1)![01 dl

(1-2)
x Py (cos B)I:%] Al,;\(co),
1 [+3

1
A R
(o) = Re {ZM[% -

A

9

-1
» ( L+ [+ 3 K1+5/2(ZM))

zia K3 /2(21,2\)

™ Toa

1 1\1"
za(o) = [Tt'insl( io+ =+ T) ] (20)

where Disnq is the coefficient of relative translational
diffusion, D5 = Dhanst + Diansls -rt’riml is the corre-
sponding correlation time, -rt[rdml & /Dmml, and d is
the distance of closest approach equal to the sum of
molecular radii, d = 4’ + h°.

A natural definition of eccentricity, el =pl /h’, is used
in consequent analyses. The distance d of the closest
approach can be viewed as a fitting parameter absorbing
the deficiencies of the model such as: absence of pair
correlation effects, approximation of molecular shapes
by spheres, etc. The functions K(x) are expressed
through the finite series [13]

- (2)"

""/Tjj (40 - (2p- 1)%)
Z g!(8x)’ '
(21)

The autocorrelation function [14] is recovered automa-
tically by taking B = 0, p’ = p’ in equation (20). It may
be noted that the presence of Pi(cos B) scales down the
eccentricity effects and may eliminate them altogether,
resulting in lower values of the spectral density than that
corresponding to a central location of spins. It also
modulates series in such a manner that vanishing
terms can appear at any point, before the cut-off level
is reached. The part of the series corresponding to the
first three terms in / has been computed in reference [7]
using Abragam’s results [11] for translational correla-
tion functions.

The dependence of the spectral density on the angle

x expl- x (

is illustrated using the example of a hypothetical mole-
cule with &/ = &/ = 0-8. For real molecules the angle 8
most often is small, but not necessarily so (for instance,
B = n for the pair of acetylene protons). As has been
pointed out, the increase in B corresponds to the
‘reversal’ of eccentricity effects. Figure 3 shows that cor-
rections become increasingly important with increase in
OTiransl. This 1s in agreement with previous work [14]
suggesting that eccentricity effects assume a greater
role at higher frequencies. At low frequencies, the spec-
tral density zooms in on extended time intervals, long
enough for eccentricity effects to be averaged out by fast
molecular rotation.

5. Exact and approximate approach to computations
of relaxation curves

The examples of AX—ab and AX-abx solutions, con-
sidered in section 3, are now used to test the quality of
the CSSR approximation. Both ab and abx solvents are
represented by a single proton polarization Q4
(equations (14) and (16)) in the CSSR approach. The
relaxation coupling within the solvent spin system is
therefore ignored, as well as direct solvent—solute coup-
ling Ri¢ (and Ry7 in case of abx). It is this solvent—solute
coupling that will be discussed here first.

One useful parameter that helps to estimate the effi-
ciency of Ry coupling can be formulated using a two by
two matrix comprising Ry, Ris, Rs1, and Rg. The
extent of coupling can be analysed by evaluating the
change in decay rates caused by Rj¢, and the degree of
mixing between the two resulting exponentials.
However, with two factors to be taken into account,
this approach is ambiguous. Instead, a useful criterion
can be borrowed from the theory of two-dimensional
(2D) NOE experiments. We refer to a fictitious 2D
NOE map corresponding to our two by two matrix,
and estimate the maximum cross-peak amplitude as
related to maximum amplitude of auto-peak, Iis/I;
[40] This approach has the advantage of being visua-
lized easily and supplies us with a well defined measure
for the transfer through Rje.

The analysis of transfer occurring within the two by
two matrix can be carried out analytically [40] and an
optimal mixing time can be determined for cross-peak
buildup (maximum intensity of axial peak is simply
y1(0)). We summarize the resulting expressions below:

Luhﬂ_a(gyﬁﬂ@

Al A v(0)?

(22)
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log(Jm(w))

Figure 3. Spectral density of inter-
molecular DD cross-correlation
I3 (w) (equation (20)) as a
function of ®Tgang and the
angle B. The surface is computed
for the hypothetical fluid consist-
ing of spherical molecules with

3A ragius and spin eccentricities
sl =& = 08.

where v(0) are initial conditions after the pulse (or
preparation period) in relaxation measurements. The
transfer is zero when the solvent spin system is unper-
turbed by RF pulses, v_,~(0) = 0. This is in line with our
general notion that relaxation in the system is affected
only marginally by extranecous modes if these modes
remain unperturbed.

We select further the parameters of the model system
with the goal of testing the accuracy of the CSSR
approximation under most unfavourable conditions,
ie., in the presence of significant Rjs transfer. From
an inspection of table 2 it is seen that maximum Rj¢
transfer is expected in the weak coupling limit, ¢ = 0
(conversely, Ry disappears in the limiting case of
equivalent ab spins). This simple situation, when the
solvent contains two weakly coupled or uncoupled
protons, cross-relaxing each other, is handled here in
the basis inherited from the ab system (equation (14)).
This basis naturally includes the total solvent polar-
ization, Qa4, that plays the key role in the CSSR
approach.

The magnitude of Rjs is determined by the difference
in dipolar relaxation of 4 due to interaction with a and
with b spins (table 2). With respect to the model
described in section 4 this means that Rjs is only
non-zero when the eccentricities of spins a and b are
significantly different. In order to increase Rjs, spin
eccentricities are set to £* = 0-8, £” = 0-3, corresponding
to the large difference in eccentricities. The angle S is
taken equal to zero so that eccentricity effects are not
scaled down.

Our model allows for effective cross-relaxation
between solvent spins a and b, as well as solute A and

X. Chemical shift anisotropy (CSA) is added to both
spins of AX in order to provide for differential relaxa-
tion [4] All intermolecular dipolar interactions involv-
ing A, a, and b are taken into account.

This model has been used to simulate v(7)- v3(¢)
relaxation curves that fully characterize spin-lattice
relaxation in an AX solute. The whole range of feasible
dynamic parameters has been scanned in these simula-
tions, covering extreme narrowing and slow motion
limits. Rotational correlation times were varied from a
small fraction of self-diffusion correlation times to their
entire values. The mixture composition ranged from
equimolar to dilute with respect to AX.

Two transfer coefficients uf I"and uLM] were deter-
mined, and four sets of vl(t) - V3(t) curves were com-
puted in each run: exact (obtained from full 6 x 6
relaxation matrix), CSSR (from truncated 4x 4
matrix), ERF (from further truncated 3 x 3 matrix),
and finally the one produced from a 3 x 3 matrix with
no intermolecplar contributions. The CSSR matrix con-
tains the ut}M transfer path, but leaves utﬂ outside,
while the ERF matrix does not contain intermolecular
NOE-type transfer at all. The results of the simulations
show that transfer coefficients may indeed serve as go ﬂ
indicators for changes in relaxation curves. As uﬁ4
approaches the level of several percentage points it
brings about noticeable changes in the vl(t) - V3(t) pro-
files, as illustrated by the difference in the CSSR and
ERF curves (by noticeable we mean above the noise
level, somewhat arbitrarily set at 5%).

Two families of relaxation curves, presented in
figure 4, are obtained in the slow motion regime,

Xab . . :
OTranet = 100, corresponding to a negative inter-
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\ V(D)

Figure 4. Relaxation profiles vl(t) - V3(l) (equations (1) and (14)) for an AX spin system interacting with an ab solvent. Scalar
coupling in the ab system is vanishingly small. Initial conditions at time ¢ = 0 include (¢—c) non-selective inversion of A and
(d—f) selective inversion of the low-field line in the A doublet. In both cases excitation is accompanied by nearly complete
inversion of solvent spin a. The curves on the graphs are generated by the use of a full 6 x 6 relaxation matrix, a truncated
CSSR 4 x 4 matrix, a truncated ERF-type 3 x 3 matrix (dashed line), and a 3 x 3 matrix with no intermolecular contributions
(dotted line). Under no circumstances were the first two curves visually discernible for the considered molecular model, so that
both are depicted with a continuous line.
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molecular NOE near its maximum value (the hetero-
nuclear NOE in AX remains positive). The A proton
is subject to a hard pulse in this simulated experiment
(figure 4(a—c)), or soft pulse which selectively inverts one
of doublet lines and gives rise to v; and vs (figure 4(d—
f)). The same pulse leads to the partial excitation of the
solvent spins. This models the situation where a multi-
line (possibly broadened ) solvent spectrum is affected by
an RF pulse applied to the solute spins. It is assumed
that v4 is excited to one half of its maximum possible
amplitude and vg to its maximum (which implies that of
the two solvent spins a is inverted). Molar composition
of the mixture used in the simulations of figure 4 is
1: 100. Rotational correlation times are set at 1/9 of
self-diffusion correlation times in compliance with
hydrodynamic relationships. Intermolecular contribu-
tions account for 37% of the proton A self-relaxation
rate under these conditions, which is realistic for small
molecules [41, 42]

The curves from exact and CSSR approaches cannot
be distinguished visually in figure 4, while the ERF
curve is considerably. off target. This correlates well
with the fact that u| 7 transfer at 8% and 16% is two
orders of magnitude higher than uLlﬁ]. The ERF curve is
based on true values of dipolar relaxation elements
(equations (3) and (8)). If these elements are treated as
fitting parameters, as is usually done, ERF curves can be
brought into good agreement with exact ones. However,
in doing so ERF coefficients are moved far apart from
prototype dipolar elements. This can be seen especially
clearly from the vi(z) plot in figure 4(d), where it
appears preferable to ignore intermolecular interactions
rather than to use genuine dipolar relaxation rates in the
role of ERF terms. Note also that neglecting uTM results
in steeper relaxation decay in conditions of negative
NOE.

Standard fitting procedures yield the ERF terms that
may differ significantly from original dipolar contribu-
tions. This effect is frequency dependent as intermol-
ecular NOE transfer varies with frequency. This effect
appears only when the solvent is perturbed by RF
pulses, since the influence of intermolecular NOE is
minimal when the solvent remains unaffected
(conversely, intermolecular NOE can be removed by
decoupling of the solvent over the period of relaxation
measurements). In these circumstances one should exer-
cise caution in interpreting ERF relaxation rates. For
example, the attempt to compare ERF contributions
obtained from measurements in hydrogenated solvents
with those found in deuterated solvents can be compro-
mised, and the result can be different from what is
expected based on gyromagnetic ratios [19-22] While
the ERF model is likely to recover genuine dipolar
terms in the case of a deuterated solvent, which is not

4

affected by RF pulses, the same may not be true for a
protic solvent, as demonstrated by figure 4.

A situation similar to that illustrated in figure 4 is
observed also in the fast and intermediate motion
regimes, as CSSR invariably shows perfect agreement
with exact results while ERF curves are found occasion-
ally to deviate. The transfer coe c]ient u[lé stays at least
one order of magnitude below uf(h , and always is found
well below the level where it can influence the shape of
curves.

As discussed previously, uLl l tends to be averaged out
in the extreme narrowing limit as a and b effectively take
central positions in rapidly rotating molecules. Even if
rotation and translation proc eji on the same time scale
the intermolecular transfer uﬁé is undercut since intra-
molecular relaxation prevails in these conditions.
Similarly, in the slow motion limit the relaxation of
the solvent is dominated by intramolecular proton—
proton interactions leading to large increases in Ry
(through the spectral density at zero frequency).
Increases in Re, combined with declines of Ry, are
detrimental for ullé for the reasons that can be deduced
from first-order perturbation theory: small off-diagonal
element Ry fails to couple two levels that are set wide
apart.

If we recall that this test has been deyised in such a
way as to provide for a maximum u(f , in particular
using the ab molecule with exaggerated difference in
spin eccentricities, we are lect f}o believe that the results
are quite conclusive and p ' transfer can safely be
neglected. The CSSR approximation is found to be
sound in this respect.

However, this test is not conclusive as far as relaxa-
tion coupling within the solvent is concerned, since the
system in question displays little of this effect. It is worth
noting that if ab relaxes solely through an intramol-
ecular DD mechanism, then our choice of modes pro-
vides for monoexponential V4(t). Feeble effects of
coupled relaxation in the solvent arise from intermol-
ecular DD interactions. They manifest themselves
through weak uEw tra sﬁer (tables 1 and 2) which has
the same structure as uT , also depends on difference in
eccentricities, and, similarly, can be neglected. It has
been confirmed experimentally [43] that the pure AB
spectrum shows simple exponential recovery if external
relaxation at A and B sites is the same. We shall now
discuss the possibilities for more pronounced coupled
relaxation effects in the solvent.

As first-order relaxation mechanisms are tallg6 into
a%csj)unt, they may contribgte modestly to pl ! and
u through cross-correlation with DD interaction
(CSA-DD cross-correlation is the o]nly example).
Autocorrelations also contribute to uL46, but a and b
terms appear with different signs, so that is expected
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(a)

Figure 5. Relaxation profiles vi(¢)—v3(z) for an AX
spin system interacting with an abx solvent. The
model system is based on the geometry and
dynamics of *CHCI; dissolved in *C'>CHo, as
deduced from NMR measurements and other
sources [46] The model mixture contains
1 mol% chloroform at a temperature - 54°C.
The curves on the graphs are generated by use
of a full 10 x 10 relaxation matrix (continuous
line), a truncated CSSR 4 x 4 matrix (dashed
and dotted line), a truncated ERF-type 3 x 3
matrix (dashed line), and a 3 x 3 matrix with
no intermolecular contributions (dotted line).
The first two curves can be distinguished only
in the area of the tails, as shown in the inset.
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t 46?6 insignificant. At the same time, the magnitude of
ui can be boosted by introducing a third spin, x, in the
solvent spin system, and this led us to examine the case
of an abx-type solvent. Relaxation coupling between the
solvent modes is determined in this situation by a differ-
ence in ax and bx dipolar relaxation rates, which can be
large if x is located close to a and far away from b in a
solvent molecule. This is in contrast to similar inter-
molecular terms (table 3) where the difference is
evened out by molecular motion. It is the presence of
a third spin that determines the complex nature of
relaxation in ab spectra [44, 45]

The AX-abx mixture used in simulations was mod-
clled after a solution of '“CHCI; chloroform in
BC2CH, acetylene. All relevant structural and dyna-
mical parameters can be found in the literature [46]
Acetylene spins are coupled with Jy = 9-5Hz,
Jox = 249 Hz, Jox = 50 Hz, and w, - o, is vanishingly
small. Initial conditions are based on selective inversion
of the low-field line in the A doublet which produces
equal amounts of vl(O) and V3(0). Excitation of the sol-
vent is modelled using a 180" rectangular pulse which
falls on-resonance with ,. Following the pulse, spin
states are computed numerically in the direct product
basis and then converted into the operator basis
(equation (16)). All of the modes vs, vs, and v; are
excited efficiently. Intermolecular relaxation is found
to contribute a reasonable 11% to the A self-relaxation
rate. The model of motion adopted here does not cap-
ture fine details of motion such as rotational anisotropy
or long-time tails of rotational correlation functions
[47]

The simulated system is in the fast motion regime with
wTia™ = 0-086. In conditions of positive intermol-
ecular NOE relaxation profiles display the same pattern
as seen previously for negative intermolecular transfer.
Only microscopic differences between exact and CSSR
curves can be spotte ﬁﬁg rﬁ 5), being the result of two-
step transfer with ugé, ul’l = 8% and u[l;4 = 2% (or,
more rigorously, the result of mixing within the exact
10 x 10 relaxation matrix).

In subsequent simulations, motional parameters of
the model have been varied, covering a multitude of
points in both slow and fast motion domains. The
CSSR and exact curves were found to be in very good
agreement, with rare discrepancies on the same small
scale as seen in figure 5. This result suggests strongly
that the complex chateracter of solvent relaxation can
be ignored as long as the strdy concentrates on solute
relaxation. The transfer uL%, uLM of course cannot be
neglected in studying sclective relaxation of abx.
However, it has relatively little effect on effective decay
rate of Q4 and consequently minor influence on AX
relaxation.

Optimization techniques could have been employed to
find the maximum deviation in the CSSR curves.
However, the effect itself is too subtle, the number of
fitting parameters too large (this includes the variety of
initial conditions and spin configurations), and con-
straints too vague (such as maintaining reasonable
proportion of intra- and intermolecular rates) to justify
the use of optimization methods.

The curves generated on the basis of an exact relax-
ation matrix were used as computer simulated data in
order to estimate the quality of the ERF interpretation.
The results are to be reported elsewhere. We would
indicate here only that in the situation when the solvent
spin reservoir is perturbed by RF pulses, ERF provides
an imprecise measure of intermolecular DD contribu-
tions, and may even cause errors in the determination
of intramolecular parameters, such as 7., if external
relaxation is sufficiently strong. For example, ERF-
based fitting procedure, as applied to the set of simu-
lated curves 5(a—c), underestimates the proton CSA by
80% (fits are not shown on the plot). Use of the CSSR
approach can be recommended in certain cases to
improve the analysis of experimental data. The example
of such a practical application can be found in our pre-
vious work [17]

One other problem that is well suited to benefit from
the application of the CSSR approach is cross-relaxa-
tion between molecular groups. Recent study of relaxa-
tion between methylene groups in a hydrocarbon chain
[48] demonstrates the breakdown of the ERF model,
failing to reproduce the spectral densities within a
methylene group, and yielding negative values for cer-
tain ERF rates. Only intramolecular correlation func-
tions are needed in this situation, and CSSR has a
good chance of providing consistent interpretation.

The help of T. R. J. Dinesen in the preparation of this
manuscript is gratefully acknowledged, and we thank
the referees for helpful comments.
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