# Gas-Phase Structure and Unimolecular Dissociation of Cysteine Sulfinyl Radical Ions

# PURDUE V E R S I T Y

## Overview

- Tandem mass spectrometry and ab initio calculations were used to probe the structure and understand gas-phase unimolecular dissociation behavior of small cysteine containing sulfinyl radical ions.
- N-acetylation, O-methylation, stable-isotope labeling were used to investigate the structural and energetic information.
- Location of charge significantly impacts charge vs. radical driven fragmentation of sulfinyl radical ions.
- Proposed mechanism for the major fragmentation pathways are presented.

# Introduction

- Radicals play important roles in biological systems via reactions toward a wide variety of biomolecules. Undesirable chemical modification of biomolecules by OH radical can result in irreversible cell damage or lysis. Irregular concentrations of hydroxyl radical has proven to be related to oxidative stress and aging.<sup>1-2</sup>
- Sulfur containing amino acid residues, such as cysteine and methionine, are among the most reactive sites toward OH attack.<sup>3</sup>
- Characterization of the thus formed peptide/protein radical intermediates is a key step to understanding the associated biological consequences.<sup>4</sup>
- Insight on distonic ions as reactive intermediates for unimolecular mass spectrometric fragmentation.<sup>5</sup>
- In this presentation, gas-phase cysteine sulfinyl radical ions (cations) were formed via oxidative cleavage of disulfide bond within cystine or modified cystine ions.



Figure 1. Schematic view of the experimental setup

- NanoESI for peptide ion formation
- Atmospheric pressure helium low temperature plasma (LTP) used for hydroxyl radical formation.<sup>6</sup>
- The interactions between hydroxyl radicals and peptide ions were facilitated in a glass flow tube as shown in Figure 1.
- A 4000Qtrap mass spectrometer was used for data collection.
- All peptides were prepared in 50/49/1 MeOH/H<sub>2</sub>O/HOAc (v/v/v) with a final concentration of 10  $\mu$ M.
- Deuterated peptides were prepared as 99:1 (v/v)  $D_2O$ /acetic acid solutions.

## **Results and Discussion**







Chasity B. Love, Joseph Francisco, and Yu Xia\*

# Beam-type CID of Cysteinyl sulfinyl radical ions







# Conclusions

- Location of charge plays a role in charge driven vs. radical driven fragmentation of cysteine sulfinyl radical ions
- Protonation on nitrogen resulted in 62Da loss ( $CH_2SO$ ) • Formation of glycl radical
- Dominant 51Da product ion loss (H<sub>3</sub>SO) when cystienyl sulfinyl radical ions are acetylated
- Loss of  $H_3SO$  is sequential loss from the initial  $H_2O$  loss • Mobile proton, beta carbon proton, acetyl nitrogen hydrogen are involved in H<sub>3</sub>SO loss

- Purdue University Startup Fund Professoriate

# Department of Chemistry, Purdue University, West Lafayette, IN, 47907-1393, USA

### able 1. Spin densities for cysteine sulfinyl radical at various protonation sites.

| Cys-SO•                       | Spin densities       |
|-------------------------------|----------------------|
| Neutral                       | S: 0.510<br>O: 0.488 |
| Protonated at NH <sub>2</sub> | S: 0.543<br>O: 0.456 |
| Protonated at<br>C=O          | S: 0.552<br>O: 0.453 |

| ergy                   |
|------------------------|
| 9 kJ/mol               |
| 4 kJ/mol               |
| 0 <sup>4</sup> kJ/,mol |

| <b>Table 3.</b> Spin densities for N-<br>acetylated cysteine sulfinyl radical<br>at various protonation sites. |                                 |                      |  |
|----------------------------------------------------------------------------------------------------------------|---------------------------------|----------------------|--|
|                                                                                                                | N-ACys-SO•                      | Spin densities       |  |
|                                                                                                                | Protonated at<br>C=O acetyl     | S: 0.425<br>O: 0.602 |  |
|                                                                                                                | Protonated at<br>C=O carboxylic | S: 0.395<br>O: 0.626 |  |
|                                                                                                                | Protonated at<br>S-O●           | S: 0.913<br>O: 0.134 |  |

| ergy   |
|--------|
| kJ/mol |
|        |

| kJ/mol |  |
|--------|--|
| kJ/mol |  |
|        |  |

### Location of charge significantly impacts charge vs. radical driven fragmentation of sulfinyl radicals

Cysteine sulfinyl radical resulted in radical driven 62Da loss (CH<sub>2</sub>OH) as major fragmentation pathway

 However, N-acetylated cysteine sulfinyl radical resulted in the major fragmentation channel of a charge driven 51Da loss

## **Reaction Schematic for CH<sub>2</sub>SO loss**



Accurate Mass

## <u>C-C bond activation energy for CH<sub>2</sub>SO loss</u>



## References

1. Roberforid, M.B., Calderon, P.B., Free radicals and oxidation phenonmena in biological systmes. 1994, New York: Marcel Dekker, Inc.

2. Sohal, R.S., Weindruch, R., Science, 1996, 273, 59-63. 3. Takamoto, K.; Chance, M. R. Annu. Rev. Biophysics. Biomol. Struct. 2006, 35, 251-276. 4. Hopkinson, A.C., Mass Spectrom. Rev., 2009, 28, 655-671. 5. Gruetmacher, H. F., Int. J. Mass Spectrom. Ion Processes, **1992**, 118/119, 825-55. 6. Ma, X., Love, C.B., Zhang, X., Xia, Y., J. Am. Soc. Mass Spectrom., 2011, 22, 922-930.

## Acknowledgements

Purdue University Midwest Crossroads Alliance for Graduate Education and the

• Dr. Graham Cook's research group at Purdue for accurate mass measurements data

# Accurate mass: 50.9904Da Theoretical mass: 50.9994Da **Isotopic Deuterated Labeling D2-cysteine sulfinyl radical ions** + H+ $H_2C \longrightarrow C \longrightarrow N \longrightarrow$ One Hydrogen comes from beta carbon MS<sup>3</sup> CID of H<sub>2</sub>O loss N-acetylated cysteine sulfinyl radical ions **100** [M+H-H<sub>2</sub>O]<sup>+</sup> -33, SH <sup>120</sup> m/z <sup>140</sup> 100 160 <sup>18</sup>O labeled experiments **180-N-acetyled cysteine sulfinyl radical ions** -51, H<sub>3</sub>SO 132 + H+ ----<sup>18</sup>OH Н $H_3C \rightarrow C \rightarrow N \rightarrow CH$ 112 -42,C -20, H<sub>2</sub><sup>18</sup>O 139 $-42, C_2H_2O$ · · Z 100 140 MS<sup>3</sup> CID of H<sub>3</sub>SO loss N-acetylated cysteine sulfinyl radical ions [M+H-H<sub>3</sub>SO]<sup>+</sup> -18, H<sub>2</sub>O 20 100 120





