

Peptide Sulfinyl Radical Ions: Gas-Phase Formation, Unimolecular Dissociation, and Ion/Molecule Reactions

<u>Lei Tan</u>, Yu Xia

Department of Chemistry

Purdue University

Introduction

- Sulfinyl radical (-SO•)
 - Photolysis of sulfoxide (sulfur cycle) $(CH_3)_2SO + hv \rightarrow CH_3SO + \cdot CH_3$
 - HSO• CH₃SO• ArSO•
 - Observed in protein system

Inactivation of Pyruvate Formate-Lyase (PFL)

New Way to Form Sulfinyl Radical Ion

Formation of Site-Specific Sulfinyl Radical

- Easy to determine the site of sulfinyl radical
- Change the polarity of ions easily.

Experiment Setup

4000 QTRAP

1. Helium Atmospheric Pressure (AP) Low Temperature Plasma 2. Low Pressure Hg Lamp – 185 nm , 248 nm

Formation of Site-Specific Peptide Sulfinyl Radical Ions

Formation of Site-Specific Peptide Sulfinyl Ion

Formation of Site-Specific Peptide Sulfinyl Ion

Formation of Sulfinyl Radical Ion

Structure of Cysteine Sulfinyl Radical Ions

Chasity Love Joe Francisco

Tue. Poster: TP 761

Cys-SO•, 137 *m/z*

Cys-SO•	Spin densities
Neutral	S: 0.510 O: 0.488
Protonated at NH ₂	S: 0.543 O: 0.456
Protonated at C=O	S: 0.552 O: 0.453

	O II
	بر HNC بخ محCH مح
H ₂ C 5	H ₂ Ċ S

Protonation	Energy
NH ₂	0 kJ/mol
C=O	+112.9 kJ/mol

Distonic Ion!

All calculation was carried out using Gaussian, MP2/6-31G and B3LYP/6-31G*

Collisional Induced Dissociation (CID) of Peptide Sulfinyl Radical Ions

- Radical v.s. Charge Driven Dissociation

Ion trap CID of Peptide Sulfinyl Cation

Loss of 62 Da (CH₂SO)

Activation energy: 38.7 ± 1.4 kcal/mol * Calculation based on neutral cysteine sulfinyl radical

Activation energy for amide bond cleavage: 25-40 kcal/mol

Lioe H.; J. Am. Soc. Mass Spectr. 2007, 18, 1109-1123

Ion trap CID of Peptide Sulfinyl Cation

Radical v.s. Charge Directed Dissociation - Charge States

Loss of 49Da (HSO•)

Charge Polarity

Reactivity of Sulfinyl Radical

- The fate of sulfinyl radical
- Ion/molecular reaction

Experiment Setup

Ion-Molecule Rxns of Peptide Sulfinyl Radical Ions

Ion-Molecule Rxns of Peptide Sulfinyl Radical Ions

Ion-Molecule Rxns: Sulfinyl v.s. Thiyl

Formation of Site-Specific Glycyl Radical

Sulfinyl Radical

Tracking Radical Migration

Summary

Acknowledgement

Dr. Larry Campbell Dr. Jim Hager Dr. Joe Francisco

