16.  Quantifying Structural Heterogeneity in Individual CsPbBr3 Quantum Dot Superlattices
Daniel E. Clark, Victoria A. Lumsargis, Daria D. Blach, Kuixin Zhu, Alexander J. Shumski, Lehan Yao, Qian Chen, Libai Huang*, and Christina W. Li* Chem. Mater. 2022, ASAP10.1021/acs.chemmater.2c03153



15.  Superradiance and Exciton Delocalization in Perovskite Quantum Dot Superlattices
Daria D. Blach, Victoria A. Lumsargis, Daniel E. Clark, Chern Chuang, Kang Wang, Letian Dou, Richard D. Schaller, Jianshu Cao, Christina W. Li*, and Libai Huang* Nano Lett. 202222, 7811-7818. 10.1021/acs.nanolett.2c02427   Equal Contribution



14.  Kinetics of Propylene Epoxidation over Extracrystalline Gold Active Sites on AU/TS-1 Catalysts
Arvay, J. W.; Hong, W.; Li, C. W.; Delgass, W. N., Ribeiro, F. H.; and Harris, J. W.*  ACS Catal. 2022, 1210147–1016010.1021/acscatal.2c02213

13.  Haptophilicity and Substrate-Directed Reactivity in Diastereoselective Heterogeneous Hydrogenation
Hong, W.; Swann, W. A.; Yadav, V.; Li, C. W.*  ACS Catal. 2022, 12, 7643–7654. Invited Perspective. 10.1021/acscatal.2c02028   Equal Contribution



12.  Kinetic and Thermodynamic Factors Influencing Palladium Nanoparticle Redispersion into Mononuclear Pd(II) Cations in Zeolite Supports
Lardinois, T.; Mandal, K.; Yadav, V.; Wijerathne, A.; Bolton, B.; Lippie, H.; Li, C. W.; Paolucci, C.*; Gounder, R.*  J. Phys. Chem. C 2022, 126, 8337-8353. 10.1021/acs.jpcc.2c01613


11.  Surface-Limited Galvanic Replacement Reactions of Pd, Pt, and Au onto Ag Core Nanoparticles through Redox Potential Tuning
Yadav, V.; Jeong, S.; Ye, X.; Li, C. W.*  Chem. Mater. 2022, 34, 1987-1904. 10.1021/acs.chemmater.1c04176



10.  Controlling the Co-S Coordination Environment in Co-Doped WS2 Nanosheets for Electrochemical Oxygen Reduction
 Hong, W.; Meza, E.; Li, C. W.* J. Mater. Chem. A 2021, 9, 19865-19873. 10.1039/D1TA02468J   Equal Contribution
 Invited Article: Emerging Investigators 2021



9.  Heterogeneous Hydroxyl-Directed Hydrogenation: Control of Diastereoselectivity through Bimetallic Surface Composition
Shumski, A. J.; Swann, W. A.; Escorcia, N. J.; Li, C. W.*  ACS Catalysis 2021, 11, 6128-6134. 10.1021/acscatal.1c01434


Highlighted by Synfacts 2021, 17, 0913.


8.  Influence of the Defect Stability on n-Type Conductivity in Electron-Doped α- and β-Co(OH)2 Nanosheets
Martinez, E. Y.; Zhu, K.; Li, C. W.*  Inorganic Chemistry 2021, 60, 6950-6956. 10.1021/acs.inorgchem.1c00455
Invited Article: Heterogeneous Interfaces through the Lens of Inorganic Chemistry



7.  Modulating the Structure and Hydrogen Evolution Reactivity of Metal Chalcogenide Complexes through Ligand Exchange onto Colloidal Au Nanoparticles
Yadav, V.; Lowe, J. S.; Shumski, A. J.; Liu, E. Z.; Greeley, J.;  Li, C. W.*  ACS Catalysis 2020, 10, 13305-13313. DOI: 10.1021/acscatal.0c02895



6.  Reversible Electron Doping of Layered Metal Hydroxide Nanoplates (M = Co, Ni) Using n-Butyllithium
Martinez, E. Y.; Zhu, K.; Li, C. W.*  Nano Lett. 2020, 20, 7580-7587. DOI: 10.1021/acs.nanolett.0c03092



5.  Colloidal Synthesis of Well-Defined Bimetallic Nanoparticles for Nonoxidative Alkane Dehydrogenation
Escorcia, N. J.; LiBretto, N. J.; Miller, J. T.; Li, C. W.*  ACS Catalysis 2020, 17, 9813-9823. DOI: 10.1021/acscatal.0c01554




4.  Solution-Phase Activation and Functionalization of Colloidal WS2 Nanosheets with Ni Single Atoms
Meza, E.; Diaz, R. E.; Li, C. W.*  ACS Nano 2020, 14, 2238-2247. DOI: 10.1021/acsnano.9b09245



3.   Microstructural Evolution of Au@Pt Core-shell Nanoparticles under Electrochemical Polarization
Hong, W.; Li, C. W.*  ACS Appl. Mater. Interfaces 2019, 11, 30977-30986. DOI: 10.1021/acsami.9b10158



2.   Surface functionalization of Pt nanoparticles with metal chlorides for bifunctional CO oxidation
Martinez, E. Y.; Li, C. W.*  Polyhedron 2019170, 239-244. DOI: 10.1016/j.poly.2019.05.048
Invited Article: Women with MOxy: Metal Oxide Chemistry from Female Investigators



1.   Systematic Control of Redox Properties and Oxygen Reduction Reactivity through Colloidal Ligand-Exchange Deposition of Pd on Au
Huang, X.; Shumski, A. J.; Zhang, X.; Li, C. W.*  J. Am. Chem. Soc. 2018140, 28, 8918-8923. DOI: 10.1021/jacs.8b04967



Prior to Purdue

5.   Probing the Active Surface Sites for CO Reduction on Oxide-derived Copper Electrocatalysts
Li, C. W.; Verdaguer-Casadevall, A.; Johansson, T. P.; Scott, S. B.; McKeown, J. T.; Kumar, M.; Stephens, I. E. L.; Kanan, M. W.; Chorkendorff, I.  J. Am. Chem. Soc. 2015, 137, 9808-9811.

4.   Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper
Li, C. W.; Ciston, J.; Kanan, M. W. Nature 2014, 508, 504-507.

3.   Aqueous CO2 Reduction at Very Low Overpotential on Oxide-derived Au Nanoparticles
Chen, Y.; Li, C. W.; Kanan, M. W. J. Am. Chem. Soc. 2012, 134, 19969-19972.

2.   CO2 Reduction at Low Overpotential on Cu Electrodes Resulting from the Reduction of Thick Cu2O Films
Li, C. W.; Kanan, M. W. J. Am. Chem. Soc. 2012, 134, 7231-7234.

1.   Finite-Size Effects in O and CO Adsorption for the Late Transition Metals
Peterson, A. A.; Grabow, L. C.; Brennan, T. P.; Shong, B.; Ooi, C.; Wu, D. M.; Li, C. W.; Kushwaha, A.; Medford, A.; Mbuga, F.; Li, L.; Norskov, J. Topics in Catalysis 2012, 1-7.