Skip to main content
Tian Research Group Department of Chemistry


After Joining Purdue:

4. Rupasinghe, R. Y. P.; Baxter, M. R.; Gupta, H.; Poore, A. T.; Higgins, R. F.; Zeller, M.; Tian, S.; Schelter, E. J.; Bart, S. C., Actinide–Oxygen Multiple Bonds from Air: Synthesis and Characterization of a Thorium Oxo Supported by Redox-Active Ligands. J. Am. Chem. Soc. 2022. Link
3. Sekretareva, A.; Tian, S.; Gounel, S.; Mano, N.; Solomon, E. I. Electron Transfer to the Trinuclear Copper Cluster in Electrocatalysis by the Multicopper Oxidases. J. Am. Chem. Soc. 2021, 143, 17236-17249. Link
Abstract Image
2. Tian, S.#; Fan, R.#; Albert, T.; Khade, R. L.; Dai, H.; Harnden, K. A.; Hosseinzadeh, P.; Liu, J.; Nilges, M. J.; Zhang, Y.; Moënne-Loccoz, P.; Guo, Y.; Lu, Y., Stepwise nitrosylation of the nonheme iron site in an engineered azurin and a molecular basis for nitric oxide signaling mediated by nonheme iron proteins. Chem. Sci. 2021, 12, 6569-6579. Link (# contributed equally)
1. Tian, S.; Jones, S. M.; Solomon, E. I., Role of a Tyrosine Radical in Human Ceruloplasmin Catalysis. ACS Cent. Sci. 2020, 6, 1835–1843. Link

Before Joining Purdue:

  1. Yu, S.-S.; Li, J.-J.; Cui, C.; Tian, S.; Chen, J.-J.; Yu, H.-Q.; Hou, C.; Nilges, M. J.; Lu, Y., Structural Basis for a Quadratic Relationship between Electronic Absorption and Electronic Paramagnetic Resonance Parameters of Type 1 Copper Proteins. Inorg. Chem. 2020, 59 (15), 10620-10627.
  2. Tian, S.; Jones, S. M.; Jose, A.; Solomon, E. I., Chloride control of the mechanism of human serum ceruloplasmin catalysis. J. Am. Chem. Soc. 2019, 141 (27), 10736-10743.
  3. Clark, K. M.; Tian, S.; van der Donk, W. A.; Lu, Y., Probing the role of the backbone carbonyl interaction with the CuA center in azurin by replacing the peptide bond with an ester linkage. Chem. Commun. 2017, 53 (1), 224-227.
  4. Tian, S.; Liu, J.; Cowley, R. E.; Hosseinzadeh, P.; Marshall, N. M.; Yu, Y.; Robinson, H.; Nilges, M. J.; Blackburn, N. J.; Solomon, E. I.; Lu, Y., Reversible S-nitrosylation in an engineered azurin. Nat. Chem. 2016, 8, 670.
  5. Jiang, Z.; Tian, S.; Lai, S.; McAuliffe, R. D.; Rogers, S. P.; Shim, M.; Shoemaker, D. P., Capturing phase evolution during solvothermal synthesis of metastable Cu4O3. Chem. Mater. 2016, 28 (9), 3080-3089.
  6. Hosseinzadeh, P.#; Tian, S.#; Marshall, N. M.#; Hemp, J.; Mullen, T.; Nilges, M. J.; Gao, Y.-G.; Robinson, H.; Stahl, D. A.; Gennis, R. B.; Lu, Y., A purple cupredoxin from Nitrosopumilus maritimus containing a mononuclear type 1 copper center with an open binding site. J. Am. Chem. Soc. 2016, 138 (20), 6324-6327. (# contributed equally)
  7. Sieracki, N. A.#; Tian, S.#; Hadt, R. G.#; Zhang, J.-L.; Woertink, J. S.; Nilges, M. J.; Sun, F.; Solomon, E. I.; Lu, Y., Copper–sulfenate complex from oxidation of a cavity mutant of Pseudomonas aeruginosa azurin. Proc. Natl. Acad. Sci. U.S.A. 2014, 111 (3), 924-929. (#contributed equally)
  8. Liu, J.; Meier, K. K.; Tian, S.; Zhang, J.-l.; Guo, H.; Schulz, C. E.; Robinson, H.; Nilges, M. J.; Münck, E.; Lu, Y., Redesigning the blue copper azurin into a redox-active mononuclear nonheme iron protein: preparation and study of Fe(II)-M121E azurin. J. Am. Chem. Soc. 2014, 136 (35), 12337-12344.
  9. Liu, J.; Chakraborty, S.; Hosseinzadeh, P.; Yu, Y.; Tian, S.; Petrik, I.; Bhagi, A.; Lu, Y., Metalloproteins Containing Cytochrome, Iron–Sulfur, or Copper Redox Centers. Chem. Rev. 2014, 114 (8), 4366-4469.
  10. Singh, W. M.; Baine, T.; Kudo, S.; Tian, S.; Ma, X. A. N.; Zhou, H.; DeYonker, N. J.; Pham, T. C.; Bollinger, J. C.; Baker, D. L.; Yan, B.; Webster, C. E.; Zhao, X., Electrocatalytic and photocatalytic hydrogen production in aqueous solution by a molecular cobalt complex. Angew. Chem. Int. Ed. 2012, 51 (24), 5941-5944.
  11. Wei, H.; Wang, Z.; Yang, L.; Tian, S.; Hou, C.; Lu, Y., Lysozyme-stabilized gold fluorescent cluster: Synthesis and application as Hg2+ sensor. Analyst 2010, 135 (6), 1406-1410.
  12. Lin, Y.-W.; Yeung, N.; Gao, Y.-G.; Miner, K. D.; Tian, S.; Robinson, H.; Lu, Y., Roles of glutamates and metal ions in a rationally designed nitric oxide reductase based on myoglobin. Proc. Natl. Acad. Sci. U.S.A. 2010, 107 (19), 8581-8586.
  13. Li, B.; Tian, S.; Fang, Z.; Shi, Z., Multiple C-H activations to construct biologically active molecules in a process completely free of organohalogen and organometallic components. Angew. Chem. Int. Ed. 2008, 47 (6), 1115-1118.